Improving digital charge sharing compensation in photon counting detectors with a low‐threshold comparator

Purpose Charge sharing is a major non‐ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge summing (ACS) is an effective mechanism for charge sharing compensation (CSC), but is complex to implement and may limit the maximum count rate...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 48; no. 10; pp. 5819 - 5829
Main Authors: Hsieh, Scott Sigao, Iniewski, Kris
Format: Journal Article
Language:English
Published: 01-10-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Charge sharing is a major non‐ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge summing (ACS) is an effective mechanism for charge sharing compensation (CSC), but is complex to implement and may limit the maximum count rate of the PCD. Digital CSC mechanisms such as digital count summing (DCS) may be simpler to implement; however, earlier simulation studies suggest that digital CSC only provides half the benefit of ACS. We propose including an additional low‐threshold comparator (LTC) underneath the noise floor of the PCD to improve the effectiveness of digital CSC. Methods We simulated a PCD with four or eight equally spaced energy bins. X‐ray photons arrived on the PCD following a Poisson distribution, and charge was allocated to PCD pixels following Monte Carlo techniques. Gaussian electronic noise was added with standard deviation of 2 keV and the signals were processed with four CSC schemes: no CSC, ACS, DCS, and DCS with LTC. The energy bins were placed from 25 to 100 keV at 25 keV intervals (for four bins) or from 25 to 112.5 keV at 12.5 keV intervals (for eight bins), and the LTC threshold was placed at 8 keV in both cases. The binned counts were transformed into estimates of water and iodine material thickness using a linear estimator that was fitted to the data. Our simulations were performed in the low‐flux limit without any pileup, assuming a 120 kVp spectrum, 25 cm water object, and 0.3 mm PCD pixel size. Results All CSC schemes decreased variance in basis material decomposition. In the four‐bin PCD, the relative dose efficiencies (inverse of the variance) for iodine material decomposition were 1.0, 2.4, 3.2, and 4.3 for a PCD without CSC, DCS without LTC, DCS with LTC, and ACS, respectively. In the eight‐bin PCD, the relative dose efficiencies were 1.1, 2.5, 3.1, and 4.8, respectively. In a sensitivity analysis, electronic noise had a stronger deleterious effect on ACS than DCS. In simulated visual images, DCS and ACS improved high frequency contrast in material decomposition images. Conclusions Introducing an LTC may reduce the performance differential between DCS and ACS. These findings have been derived from simulation studies only and have not been validated experimentally.
AbstractList Purpose Charge sharing is a major non‐ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge summing (ACS) is an effective mechanism for charge sharing compensation (CSC), but is complex to implement and may limit the maximum count rate of the PCD. Digital CSC mechanisms such as digital count summing (DCS) may be simpler to implement; however, earlier simulation studies suggest that digital CSC only provides half the benefit of ACS. We propose including an additional low‐threshold comparator (LTC) underneath the noise floor of the PCD to improve the effectiveness of digital CSC. Methods We simulated a PCD with four or eight equally spaced energy bins. X‐ray photons arrived on the PCD following a Poisson distribution, and charge was allocated to PCD pixels following Monte Carlo techniques. Gaussian electronic noise was added with standard deviation of 2 keV and the signals were processed with four CSC schemes: no CSC, ACS, DCS, and DCS with LTC. The energy bins were placed from 25 to 100 keV at 25 keV intervals (for four bins) or from 25 to 112.5 keV at 12.5 keV intervals (for eight bins), and the LTC threshold was placed at 8 keV in both cases. The binned counts were transformed into estimates of water and iodine material thickness using a linear estimator that was fitted to the data. Our simulations were performed in the low‐flux limit without any pileup, assuming a 120 kVp spectrum, 25 cm water object, and 0.3 mm PCD pixel size. Results All CSC schemes decreased variance in basis material decomposition. In the four‐bin PCD, the relative dose efficiencies (inverse of the variance) for iodine material decomposition were 1.0, 2.4, 3.2, and 4.3 for a PCD without CSC, DCS without LTC, DCS with LTC, and ACS, respectively. In the eight‐bin PCD, the relative dose efficiencies were 1.1, 2.5, 3.1, and 4.8, respectively. In a sensitivity analysis, electronic noise had a stronger deleterious effect on ACS than DCS. In simulated visual images, DCS and ACS improved high frequency contrast in material decomposition images. Conclusions Introducing an LTC may reduce the performance differential between DCS and ACS. These findings have been derived from simulation studies only and have not been validated experimentally.
PURPOSECharge sharing is a major non-ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge summing (ACS) is an effective mechanism for charge sharing compensation (CSC), but is complex to implement and may limit the maximum count rate of the PCD. Digital CSC mechanisms such as digital count summing (DCS) may be simpler to implement; however, earlier simulation studies suggest that digital CSC only provides half the benefit of ACS. We propose including an additional low-threshold comparator (LTC) underneath the noise floor of the PCD to improve the effectiveness of digital CSC. METHODSWe simulated a PCD with four or eight equally spaced energy bins. X-ray photons arrived on the PCD following a Poisson distribution, and charge was allocated to PCD pixels following Monte Carlo techniques. Gaussian electronic noise was added with standard deviation of 2 keV and the signals were processed with four CSC schemes: no CSC, ACS, DCS, and DCS with LTC. The energy bins were placed from 25 to 100 keV at 25 keV intervals (for four bins) or from 25 to 112.5 keV at 12.5 keV intervals (for eight bins), and the LTC threshold was placed at 8 keV in both cases. The binned counts were transformed into estimates of water and iodine material thickness using a linear estimator that was fitted to the data. Our simulations were performed in the low-flux limit without any pileup, assuming a 120 kVp spectrum, 25 cm water object, and 0.3 mm PCD pixel size. RESULTSAll CSC schemes decreased variance in basis material decomposition. In the four-bin PCD, the relative dose efficiencies (inverse of the variance) for iodine material decomposition were 1.0, 2.4, 3.2, and 4.3 for a PCD without CSC, DCS without LTC, DCS with LTC, and ACS, respectively. In the eight-bin PCD, the relative dose efficiencies were 1.1, 2.5, 3.1, and 4.8, respectively. In a sensitivity analysis, electronic noise had a stronger deleterious effect on ACS than DCS. In simulated visual images, DCS and ACS improved high frequency contrast in material decomposition images. CONCLUSIONSIntroducing an LTC may reduce the performance differential between DCS and ACS. These findings have been derived from simulation studies only and have not been validated experimentally.
Author Iniewski, Kris
Hsieh, Scott Sigao
Author_xml – sequence: 1
  givenname: Scott Sigao
  surname: Hsieh
  fullname: Hsieh, Scott Sigao
  email: hsieh.scott@mayo.edu
  organization: Mayo Clinic Rochester
– sequence: 2
  givenname: Kris
  surname: Iniewski
  fullname: Iniewski, Kris
  organization: Redlen Technologies
BookMark eNp10L1OwzAQB3ALFYm2IPEIHllSbMdO6hFVfFQqggHmyEkujZFjB9ul6sYj8Iw8CWmLxMR0p9PvTrr_BI2ss4DQJSUzSgi77voZFVTwEzRmPE8TzogcoTEhkieME3GGJiG8EUKyVJAxMsuu9-5D2zWu9VpHZXDVKr8GHIayH1eu68EGFbWzWFvcty4OXeU2Nh7WIEIVnQ94q2OLFTZu-_35FVsPoXWmPhxQXg3kHJ02ygS4-K1T9Hp3-7J4SFZP98vFzSqpmJzzRErB04bXLM8axfMc-FyVTEiYl1AqkFWuBpA2hFKYZzJjJXAAlYuypiotWTpFV8e7w2vvGwix6HSowBhlwW1CwYSQWUYykf7RyrsQPDRF73Wn_K6gpNgHWnR9cQh0oMmRbrWB3b-ueHw--h_PX3u0
CitedBy_id crossref_primary_10_1002_mp_16990
crossref_primary_10_1016_j_optlastec_2022_108807
Cites_doi 10.1109/TRPMS.2020.3020212
10.1109/TMI.2020.3019461
10.1117/1.JMI.4.2.023503
10.1118/1.1758350
10.1088/1748-0221/11/01/P01007
10.1088/0031-9155/55/7/014
10.1118/1.3570658
10.1109/ISBI.2014.6868080
10.1002/mp.12863
10.1118/1.4922654
10.1109/TMI.2019.2933986
10.1117/12.2517844
10.1002/mp.12799
10.1117/12.2582246
10.1088/1748-0221/6/01/C01095
10.1148/radiol.2018180126
10.1002/mp.14047
10.1016/j.nima.2017.04.014
10.1117/12.877939
10.1109/TRPMS.2020.3003251
10.1148/rg.2019180115
10.1097/RLI.0000000000000524
10.1088/0031-9155/59/20/6195
10.1088/0031-9155/60/8/3175
10.1118/1.4820371
10.1117/12.2043619
10.1002/mp.13098
10.1201/9780429486111
10.1088/0031-9155/53/15/002
10.1088/1361-6560/ab99e4
10.1002/mp.12667
ContentType Journal Article
Copyright 2021 American Association of Physicists in Medicine
Copyright_xml – notice: 2021 American Association of Physicists in Medicine
DBID AAYXX
CITATION
7X8
DOI 10.1002/mp.15154
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 5829
ExternalDocumentID 10_1002_mp_15154
MP15154
Genre article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMNL
AAYXX
ABDPE
CITATION
7X8
ID FETCH-LOGICAL-c2984-99543f4d276fa477e48ab259e8bebae9c7a5433f011e86962be4eea75bd1a3b23
IEDL.DBID 33P
ISSN 0094-2405
IngestDate Thu Jul 25 11:10:36 EDT 2024
Thu Nov 21 23:15:00 EST 2024
Sat Aug 24 01:34:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2984-99543f4d276fa477e48ab259e8bebae9c7a5433f011e86962be4eea75bd1a3b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2559660653
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2559660653
crossref_primary_10_1002_mp_15154
wiley_primary_10_1002_mp_15154_MP15154
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Medical physics (Lancaster)
PublicationYear 2021
References 2010; 55
2021; 5
2017; 4
2011
2019; 54
2018; 289
2013; 40
2019; 39
2003
2008; 53
2018; 45
2011; 38
2011; 6
2017; 873
2016; 11
2004; 31
2015; 60
2021
2020
2015; 42
2014; 59
2019
2020; 47
2014
2020; 65
2021; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – year: 2011
– volume: 4
  issue: 2
  year: 2017
  article-title: Segmented targeted least squares estimator for material decomposition in multibin photon‐counting detectors
  publication-title: J Med Imaging (Bellingham)
– volume: 42
  start-page: 4349
  issue: 7
  year: 2015
  end-page: 4366
  article-title: Performance of today's dual energy CT and future multi energy CT in virtual non‐contrast imaging and in iodine quantification: a simulation study
  publication-title: Med Phys
– volume: 53
  start-page: 4031
  issue: 15
  year: 2008
  article-title: Experimental feasibility of multi‐energy photon‐counting K‐edge imaging in pre‐clinical computed tomography
  publication-title: Phys Med Biol
– volume: 31
  start-page: 3057
  issue: 11
  year: 2004
  end-page: 3067
  article-title: Spektr: a computational tool for X‐ray spectral analysis and imaging system optimization
  publication-title: Med Phys
– volume: 59
  start-page: 6195
  issue: 20
  year: 2014
  article-title: How spectroscopic X‐ray imaging benefits from inter‐pixel communication
  publication-title: Phys Med Biol
– year: 2003
– volume: 60
  start-page: 3175
  issue: 8
  year: 2015
  article-title: Experimental comparison of empirical material decomposition methods for spectral CT
  publication-title: Phys Med Biol
– year: 2021
– volume: 65
  issue: 17
  year: 2020
  article-title: Multi‐energy CT imaging for large patients using dual‐source photon‐counting detector CT
  publication-title: Phys Med Biol
– volume: 38
  start-page: 2324
  issue: 5
  year: 2011
  end-page: 2334
  article-title: Estimator for photon counting energy selective x‐ray imaging with multibin pulse height analysis
  publication-title: Med Phys
– volume: 5
  start-page: 441
  issue: 4
  year: 2021
  end-page: 452
  article-title: Photon counting CT: clinical applications and future developments
  publication-title: IEEE Trans Radiat Plasma Med Sci
– volume: 39
  start-page: 678
  issue: 3
  year: 2019
  end-page: 687
  article-title: Coincidence counters for charge sharing compensation in spectroscopic photon counting detectors
  publication-title: IEEE Trans Med Imaging
– volume: 873
  start-page: 27
  year: 2017
  end-page: 35
  article-title: Review of an initial experience with an experimental spectral photon‐counting computed tomography system
  publication-title: Nucl Instrum Methods Phys Res A
– year: 2014
– volume: 11
  issue: 01
  year: 2016
  article-title: Review of hybrid pixel detector readout ASICs for spectroscopic X‐ray imaging
  publication-title: J Instrum
– volume: 45
  start-page: 1433
  issue: 4
  year: 2018
  end-page: 1443
  article-title: Spectral resolution and high‐flux capability tradeoffs in CdTe detectors for clinical CT
  publication-title: Med Phys
– volume: 45
  start-page: 1985
  issue: 5
  year: 2018
  end-page: 1998
  article-title: Spatio‐energetic cross‐talk in photon counting detectors: numerical detector model (Pc TK) and workflow for CT image quality assessment
  publication-title: Med Phys
– volume: 6
  year: 2011
  article-title: First CT using Medipix3 and the MARS‐CT‐3 spectral scanner
  publication-title: J Instrum
– volume: 5
  start-page: 465
  issue: 4
  year: 2021
  end-page: 475
  article-title: Assessment of multi‐energy inter‐pixel coincidence counters (MEICC) for charge sharing correction or compensation for photon counting detectors with boxcar signals
  publication-title: IEEE Trans Radiat Plasma Med Sci
– volume: 40
  issue: 10
  year: 2013
  article-title: Vision 20/20: single photon counting X‐ray detectors in medical imaging
  publication-title: Med Phys
– volume: 40
  start-page: 3
  issue: 1
  year: 2021
  end-page: 11
  article-title: Improving paralysis compensation in photon counting detectors
  publication-title: IEEE Trans Med Imaging
– volume: 47
  start-page: 2085
  issue: 5
  year: 2020
  end-page: 2098
  article-title: Multi‐energy inter‐pixel coincidence counters for charge sharing correction and compensation in photon counting detectors
  publication-title: Med Phys
– volume: 54
  start-page: 129
  issue: 3
  year: 2019
  article-title: High‐resolution chest CT imaging of the lungs: impact of 1024 matrix reconstruction and photon‐counting‐detector CT
  publication-title: Invest Radiol
– volume: 39
  start-page: 729
  issue: 3
  year: 2019
  end-page: 743
  article-title: Photon‐counting detector CT: system design and clinical applications of an emerging technology
  publication-title: Radiographics
– year: 2020
– volume: 289
  start-page: 436
  issue: 2
  year: 2018
  end-page: 442
  article-title: Detection and characterization of renal stones by using photon‐counting‐based CT
  publication-title: Radiology
– volume: 55
  start-page: 1999
  issue: 7
  year: 2010
  article-title: Photon‐counting spectral computed tomography using silicon strip detectors: a feasibility study
  publication-title: Phys Med Biol
– volume: 45
  start-page: 4085
  issue: 9
  year: 2018
  end-page: 4093
  article-title: Digital count summing vs analog charge summing for photon counting detectors: a performance simulation study
  publication-title: Med Phys
– volume: 45
  start-page: 156
  issue: 1
  year: 2018
  end-page: 166
  article-title: Modeling the frequency‐dependent detective quantum efficiency of photon‐counting X‐ray detectors
  publication-title: Med Phys
– year: 2019
– ident: e_1_2_7_6_1
  doi: 10.1109/TRPMS.2020.3020212
– ident: e_1_2_7_13_1
  doi: 10.1109/TMI.2020.3019461
– ident: e_1_2_7_24_1
  doi: 10.1117/1.JMI.4.2.023503
– ident: e_1_2_7_27_1
  doi: 10.1118/1.1758350
– ident: e_1_2_7_28_1
  doi: 10.1088/1748-0221/11/01/P01007
– ident: e_1_2_7_32_1
  doi: 10.1088/0031-9155/55/7/014
– ident: e_1_2_7_23_1
  doi: 10.1118/1.3570658
– ident: e_1_2_7_33_1
  doi: 10.1109/ISBI.2014.6868080
– ident: e_1_2_7_11_1
  doi: 10.1002/mp.12863
– ident: e_1_2_7_8_1
  doi: 10.1118/1.4922654
– ident: e_1_2_7_17_1
  doi: 10.1109/TMI.2019.2933986
– ident: e_1_2_7_29_1
  doi: 10.1117/12.2517844
– ident: e_1_2_7_14_1
  doi: 10.1002/mp.12799
– ident: e_1_2_7_34_1
  doi: 10.1117/12.2582246
– ident: e_1_2_7_4_1
  doi: 10.1088/1748-0221/6/01/C01095
– ident: e_1_2_7_2_1
  doi: 10.1148/radiol.2018180126
– ident: e_1_2_7_18_1
  doi: 10.1002/mp.14047
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nima.2017.04.014
– ident: e_1_2_7_12_1
  doi: 10.1117/12.877939
– ident: e_1_2_7_19_1
  doi: 10.1109/TRPMS.2020.3003251
– ident: e_1_2_7_16_1
– ident: e_1_2_7_7_1
  doi: 10.1148/rg.2019180115
– ident: e_1_2_7_5_1
  doi: 10.1097/RLI.0000000000000524
– ident: e_1_2_7_10_1
  doi: 10.1088/0031-9155/59/20/6195
– ident: e_1_2_7_25_1
  doi: 10.1088/0031-9155/60/8/3175
– ident: e_1_2_7_9_1
  doi: 10.1118/1.4820371
– ident: e_1_2_7_22_1
  doi: 10.1117/12.2043619
– ident: e_1_2_7_15_1
  doi: 10.1002/mp.13098
– ident: e_1_2_7_31_1
  doi: 10.1201/9780429486111
– ident: e_1_2_7_20_1
  doi: 10.1088/0031-9155/53/15/002
– ident: e_1_2_7_26_1
– ident: e_1_2_7_30_1
  doi: 10.1088/1361-6560/ab99e4
– ident: e_1_2_7_21_1
  doi: 10.1002/mp.12667
SSID ssj0006350
Score 2.4176908
Snippet Purpose Charge sharing is a major non‐ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge...
PURPOSECharge sharing is a major non-ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 5819
SubjectTerms charge sharing
dual energy
photon counting
Title Improving digital charge sharing compensation in photon counting detectors with a low‐threshold comparator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15154
https://search.proquest.com/docview/2559660653
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46ULz4MRXnFxHEW92WpE3rTXRjl8lABW8lad-qsLVl3fDqT_A3-kvMm7abHgTBU6CkofT9_npCyDkLok4shXISxsERPosdxXTiCGOc3E5kRF3joPDgXt49-bc9hMm5qmdhSnyIRcINJcPqaxRwpYv2EjR0kl-iMUYoUBMk2OkNPlooYWNHy-mTQGABwa1xZzusXb_40xIt3cvvTqq1Mv2t_3zfNtmsfEt6XTLDDlmBtEnWh1X1vEnWbLtnVOyS8SKXQOPXZ7w3hFrIJKCFWfAxtpqbCNfSjb6mNH_JjJdI66slaAwzm-8vKGZyqaLj7O3z_WNmWKPAihaNKljxbLpHHvu9h5uBU9274EQs8IWDEHE8ETGTXqKElCB8pU2YBL4GrSCIpDIbeGJUA_he4DENAkBJV8ddxTXj-6SRZikcEKqEZ-IlIVnCA-FyrVU3kSqKTFzqCQ86LXJW0yDMS3iNsARSZuEkD-0PNHtq4oSG97GgoVLI5kWI4ZA533N5i1xYWvx6SDgc2fXwrxuPyAbD9hXbt3dMGrPpHE7IahHPTy2nfQHE4NeZ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsMwGP7xgIcbD1PxbATxrq5L0qbFK1HHRCcDFbwrSZuq4NqxbnjrI_iMPon503XTC0HwKlDSUPqfT18AjmgYu4ng0kkp0w4PaOJIqlKHG-PkubERdYWDwq07cfsYXFwiTM5pNQtT4kOME24oGVZfo4BjQro-QQ3t9k7QGvNpmOW-4UOc32CdsRo2lrScPwk5lhC8CnnWpfXqzZ-2aOJgfndTrZ1pLv_rC1dgaeRekrOSH1ZhSmc1mG-PCug1mLMdn3GxBq_jdAJJXp7w6hBiUZM0KcyCj7Hb3AS5lnTkJSO959w4iqS6XYIkemBT_gXBZC6R5DV_-3z_GBjuKLCoReIRsnjeX4eH5uX9ecsZXb3gxDQMuIMocSzlCRV-KrkQmgdSmUhJB0orqcNYSLOBpUY76MAPfao011oKTyUNyRRlGzCT5ZneBCK5b0ImLmjKQu4xpWQjFTKOTWjqc1-7W3BYESHqlQgbUYmlTKNuL7I_0OypqBMZ9seahsx0PiwijIjM-b7HtuDYEuPXQ6J2x67bf914AAut-_ZNdHN1e70DixS7WWwb3y7MDPpDvQfTRTLct2z3BWf_28E
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8MwHP_jJg4vPqbifEYQb3VbkjatN3EbE90YqOCtJG2qg60t64ZXP4Kf0U9ikq6bHgTBU6CkofT_fv0CcI69oBEyyq0IE2lRF4cWxyKyqDJOdiNQoi70oHD3gfWf3VZbw-RcFbMwOT7EIuGmJcPoay3gaRjVl6Ch4_RSG2NaglWqvHCNm0_IYKGFlSHNx088qisIdgE828D14s2fpmjpX373Uo2Z6Wz-5wO3YGPuXKLrnBu2YUXGVaj05uXzKqyZfs8g24HRIpmAwuGLvjgEGcwkiTK16Me611yFuIZwaBij9DVRbiIq7pZAoZyahH-GdCoXcTRK3j7fP6aKNzJd0kLBHFc8mezCU6f9eNO15hcvWAH2XGppjDgS0RAzJ-KUMUldLlScJF0hBZdewLjaQCKlG6TreA4WkkrJmS3CJicCkz0ox0ks9wFx6qiAiTIcEY_aRAjejBgPAhWYOtSRjRqcFTTw0xxfw8-RlLE_Tn3zA9Wegji-Yn5d0eCxTGaZr-Mhdb5jkxpcGFr8eojfG5j14K8bT6EyaHX8-9v-3SGsY93KYnr4jqA8nczkMZSycHZimO4L4gfaZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+digital+charge+sharing+compensation+in+photon+counting+detectors+with+a+low%E2%80%90threshold+comparator&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Hsieh%2C+Scott+Sigao&rft.au=Iniewski%2C+Kris&rft.date=2021-10-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=10&rft.spage=5819&rft.epage=5829&rft_id=info:doi/10.1002%2Fmp.15154&rft.externalDBID=10.1002%252Fmp.15154&rft.externalDocID=MP15154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon