Row-Sparse Discriminative Deep Dictionary Learning for Hyperspectral Image Classification

In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary learning outperforms other traditional deep learning tools when training data are limited; therefore, hyperspectral imaging is one such example t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 11; no. 12; pp. 5019 - 5028
Main Authors: Singhal, Vanika, Majumdar, Angshul
Format: Journal Article
Language:English
Published: IEEE 01-12-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary learning outperforms other traditional deep learning tools when training data are limited; therefore, hyperspectral imaging is one such example that benefits from this framework. Most of the prior studies were based on the unsupervised formulation; and in all cases, the training algorithm was greedy and hence suboptimal. This is the first work that shows how to learn the deep dictionary learning problem in a joint fashion. Moreover, we propose a new discriminative penalty to the said framework. The third contribution of this work is showing how to incorporate stochastic regularization techniques into the deep dictionary learning framework. Experimental results on hyperspectral image classification shows that the proposed technique excels over all state-of-the-art deep and shallow (traditional) learning based methods published in recent times.
AbstractList In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary learning outperforms other traditional deep learning tools when training data are limited; therefore, hyperspectral imaging is one such example that benefits from this framework. Most of the prior studies were based on the unsupervised formulation; and in all cases, the training algorithm was greedy and hence suboptimal. This is the first work that shows how to learn the deep dictionary learning problem in a joint fashion. Moreover, we propose a new discriminative penalty to the said framework. The third contribution of this work is showing how to incorporate stochastic regularization techniques into the deep dictionary learning framework. Experimental results on hyperspectral image classification shows that the proposed technique excels over all state-of-the-art deep and shallow (traditional) learning based methods published in recent times.
Author Majumdar, Angshul
Singhal, Vanika
Author_xml – sequence: 1
  givenname: Vanika
  orcidid: 0000-0002-9773-1488
  surname: Singhal
  fullname: Singhal, Vanika
  email: vanikas@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology, New Delhi, India
– sequence: 2
  givenname: Angshul
  orcidid: 0000-0002-1065-3000
  surname: Majumdar
  fullname: Majumdar, Angshul
  email: angshul@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology, New Delhi, India
BookMark eNotj91qAjEUhEOxULV9Am_2BdbmJJtscin2R4tQUHvRKzmbPZEU3V2SpcW370p7NczAN8xM2KhpG2JsBnwOwO3j226_2O7mgoOZC1OWpbY3bCxAQQ5KqhEbg5U2h4IXd2yS0hfnWpRWjtnntv3Jdx3GRNlTSC6Gc2iwD9-DJeqGzPWhbTBesg1hbEJzzHwbs9Wlo5g6cn3EU7Y-45Gy5QlTCj44vCL37NbjKdHDv07Zx8vzfrnKN--v6-Vikzthyz53lRTOQKUkgQOqPArrXV16A7amSjgiYzUKrZWw2nHLa-fR16bwhUFXyCmb_fUGIjp0w4Fh7MEoqQul5C81o1YS
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_LGRS_2022_3186493
crossref_primary_10_1190_geo2021_0838_1
crossref_primary_10_3390_rs12040647
crossref_primary_10_1109_JSTARS_2020_3017544
crossref_primary_10_1109_ACCESS_2020_3008841
crossref_primary_10_1109_TIM_2020_3011777
crossref_primary_10_1016_j_neucom_2020_12_003
crossref_primary_10_1109_JSTARS_2020_3038456
crossref_primary_10_1109_LGRS_2021_3112603
crossref_primary_10_1088_1757_899X_1098_3_032065
crossref_primary_10_1109_TGRS_2019_2961681
crossref_primary_10_1109_TNNLS_2022_3193289
crossref_primary_10_1016_j_knosys_2022_110123
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/JSTARS.2018.2877769
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5028
ExternalDocumentID 8536455
Genre orig-research
GrantInformation_xml – fundername: Indo-French CEFIPRA
  grantid: DST-CNRS-2016-02
– fundername: Infosys Center for Artificial Intelligence @ IIIT Delhi
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RIG
RNS
ID FETCH-LOGICAL-c297t-cb32c81b53e1c1ebfa29fcd7f819deb2cee896a2665296c090dcfafd84f48ac43
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Jun 26 19:26:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-cb32c81b53e1c1ebfa29fcd7f819deb2cee896a2665296c090dcfafd84f48ac43
ORCID 0000-0002-1065-3000
0000-0002-9773-1488
PageCount 10
ParticipantIDs ieee_primary_8536455
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0062793
Score 2.3077972
Snippet In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary...
SourceID ieee
SourceType Publisher
StartPage 5019
SubjectTerms Classification
Deep learning
dictionary learning
Hyperspectral imaging
Supervised learning
Training data
Title Row-Sparse Discriminative Deep Dictionary Learning for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/8536455
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDI5oJSQWXgXxVgZG0t47yVjRlrIwtCDBVOUSBzHQnkor1H-PnTtgYWE7ZThFdmR_Tj5_ZuxaeZPmLkfk5sEIPBQxxkENgtC191L7IsyMHE_lw7MaDEkm5-anFwYAAvkMuvQZ3vLdwq7pqqyHqaXI8rzFWlKrulfrO-oWiQwCu4hHtCDJmEZhKI50D494fzIlGpfqJqR_F9jNv7NUQioZ7f1vE_tst4GMvF_7-IBtwfyQbd-FkbybDnuZLD7FtMICFfjgjaIAsVsoivEBQIVroXXBLDe8EVN95YhU-Rgr0LrRcol_v3_HwMLDiEwiDwV_HbGn0fDxdiyagQnCJlquhC3TxCIOzVOIbQylN4n21kmPad9hCY0JUenCYE6m11Yb6chZb7xTmc-UsVl6zNrzxRxOGC8UpFGpdAJYoEVlpqWBUsmsjJVPpNenrEOmmVW1JsasscrZ38vnbIesX9NALlh7tVzDJWt9uPVV8OIXqz6djg
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IxujFLzR-24NHF_a77ZEICBE5ACZ6It3u1HgQCEIM_95pd9WLF2-bHjabTvPmzfbNG4AbYVSU5AkxN4PKo0MREA5K9Cy7NoZLk7qZkd0RHzyLVtva5Nz-9MIgohOfYd0-urv8fKZX9ldZg1JLGidJBTaTmKe86Nb6xt005M5ilxiJ9KxpTOkxFPiyQYe8ORxZIZeoh9YBz-mbf6epuGTS2fvfZ-zDbkkaWbOI8gFs4PQQtu7dUN51DV6Gs09vNKcSFVnrzeKA1bdYHGMtxDmtueYFtViz0k71lRFXZV2qQYtWywW9vfdO0MLckEwrH3IRO4KnTnt81_XKkQmeDiVfejqLQk1MNIkw0AFmRoXS6JwbSvw5FdGUEoVMFWVle9-qfenn2iiTi9jEQuk4OobqdDbFE2CpwMjPhAyRSjQ_iyVXmAkeZ4EwITfyFGp2aybzwhVjUu7K2d_L17DdHT_2J_3e4OEcdmwkClHIBVSXixVeQuUjX125iH4BJjug3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Row-Sparse+Discriminative+Deep+Dictionary+Learning+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Singhal%2C+Vanika&rft.au=Majumdar%2C+Angshul&rft.date=2018-12-01&rft.pub=IEEE&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=11&rft.issue=12&rft.spage=5019&rft.epage=5028&rft_id=info:doi/10.1109%2FJSTARS.2018.2877769&rft.externalDocID=8536455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon