Row-Sparse Discriminative Deep Dictionary Learning for Hyperspectral Image Classification
In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary learning outperforms other traditional deep learning tools when training data are limited; therefore, hyperspectral imaging is one such example t...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 11; no. 12; pp. 5019 - 5028 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
IEEE
01-12-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary learning outperforms other traditional deep learning tools when training data are limited; therefore, hyperspectral imaging is one such example that benefits from this framework. Most of the prior studies were based on the unsupervised formulation; and in all cases, the training algorithm was greedy and hence suboptimal. This is the first work that shows how to learn the deep dictionary learning problem in a joint fashion. Moreover, we propose a new discriminative penalty to the said framework. The third contribution of this work is showing how to incorporate stochastic regularization techniques into the deep dictionary learning framework. Experimental results on hyperspectral image classification shows that the proposed technique excels over all state-of-the-art deep and shallow (traditional) learning based methods published in recent times. |
---|---|
AbstractList | In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary learning outperforms other traditional deep learning tools when training data are limited; therefore, hyperspectral imaging is one such example that benefits from this framework. Most of the prior studies were based on the unsupervised formulation; and in all cases, the training algorithm was greedy and hence suboptimal. This is the first work that shows how to learn the deep dictionary learning problem in a joint fashion. Moreover, we propose a new discriminative penalty to the said framework. The third contribution of this work is showing how to incorporate stochastic regularization techniques into the deep dictionary learning framework. Experimental results on hyperspectral image classification shows that the proposed technique excels over all state-of-the-art deep and shallow (traditional) learning based methods published in recent times. |
Author | Majumdar, Angshul Singhal, Vanika |
Author_xml | – sequence: 1 givenname: Vanika orcidid: 0000-0002-9773-1488 surname: Singhal fullname: Singhal, Vanika email: vanikas@iiitd.ac.in organization: Indraprastha Institute of Information Technology, New Delhi, India – sequence: 2 givenname: Angshul orcidid: 0000-0002-1065-3000 surname: Majumdar fullname: Majumdar, Angshul email: angshul@iiitd.ac.in organization: Indraprastha Institute of Information Technology, New Delhi, India |
BookMark | eNotj91qAjEUhEOxULV9Am_2BdbmJJtscin2R4tQUHvRKzmbPZEU3V2SpcW370p7NczAN8xM2KhpG2JsBnwOwO3j226_2O7mgoOZC1OWpbY3bCxAQQ5KqhEbg5U2h4IXd2yS0hfnWpRWjtnntv3Jdx3GRNlTSC6Gc2iwD9-DJeqGzPWhbTBesg1hbEJzzHwbs9Wlo5g6cn3EU7Y-45Gy5QlTCj44vCL37NbjKdHDv07Zx8vzfrnKN--v6-Vikzthyz53lRTOQKUkgQOqPArrXV16A7amSjgiYzUKrZWw2nHLa-fR16bwhUFXyCmb_fUGIjp0w4Fh7MEoqQul5C81o1YS |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_LGRS_2022_3186493 crossref_primary_10_1190_geo2021_0838_1 crossref_primary_10_3390_rs12040647 crossref_primary_10_1109_JSTARS_2020_3017544 crossref_primary_10_1109_ACCESS_2020_3008841 crossref_primary_10_1109_TIM_2020_3011777 crossref_primary_10_1016_j_neucom_2020_12_003 crossref_primary_10_1109_JSTARS_2020_3038456 crossref_primary_10_1109_LGRS_2021_3112603 crossref_primary_10_1088_1757_899X_1098_3_032065 crossref_primary_10_1109_TGRS_2019_2961681 crossref_primary_10_1109_TNNLS_2022_3193289 crossref_primary_10_1016_j_knosys_2022_110123 |
ContentType | Journal Article |
DBID | 97E RIA RIE |
DOI | 10.1109/JSTARS.2018.2877769 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 5028 |
ExternalDocumentID | 8536455 |
Genre | orig-research |
GrantInformation_xml | – fundername: Indo-French CEFIPRA grantid: DST-CNRS-2016-02 – fundername: Infosys Center for Artificial Intelligence @ IIIT Delhi |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR ABVLG ACIWK AENEX AETIX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RIG RNS |
ID | FETCH-LOGICAL-c297t-cb32c81b53e1c1ebfa29fcd7f819deb2cee896a2665296c090dcfafd84f48ac43 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Jun 26 19:26:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-cb32c81b53e1c1ebfa29fcd7f819deb2cee896a2665296c090dcfafd84f48ac43 |
ORCID | 0000-0002-1065-3000 0000-0002-9773-1488 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8536455 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0062793 |
Score | 2.3077972 |
Snippet | In recent studies in hyperspectral imaging, biometrics, and energy analytics, the framework of deep dictionary learning has shown promise. Deep dictionary... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5019 |
SubjectTerms | Classification Deep learning dictionary learning Hyperspectral imaging Supervised learning Training data |
Title | Row-Sparse Discriminative Deep Dictionary Learning for Hyperspectral Image Classification |
URI | https://ieeexplore.ieee.org/document/8536455 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDI5oJSQWXgXxVgZG0t47yVjRlrIwtCDBVOUSBzHQnkor1H-PnTtgYWE7ZThFdmR_Tj5_ZuxaeZPmLkfk5sEIPBQxxkENgtC191L7IsyMHE_lw7MaDEkm5-anFwYAAvkMuvQZ3vLdwq7pqqyHqaXI8rzFWlKrulfrO-oWiQwCu4hHtCDJmEZhKI50D494fzIlGpfqJqR_F9jNv7NUQioZ7f1vE_tst4GMvF_7-IBtwfyQbd-FkbybDnuZLD7FtMICFfjgjaIAsVsoivEBQIVroXXBLDe8EVN95YhU-Rgr0LrRcol_v3_HwMLDiEwiDwV_HbGn0fDxdiyagQnCJlquhC3TxCIOzVOIbQylN4n21kmPad9hCY0JUenCYE6m11Yb6chZb7xTmc-UsVl6zNrzxRxOGC8UpFGpdAJYoEVlpqWBUsmsjJVPpNenrEOmmVW1JsasscrZ38vnbIesX9NALlh7tVzDJWt9uPVV8OIXqz6djg |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IxujFLzR-24NHF_a77ZEICBE5ACZ6It3u1HgQCEIM_95pd9WLF2-bHjabTvPmzfbNG4AbYVSU5AkxN4PKo0MREA5K9Cy7NoZLk7qZkd0RHzyLVtva5Nz-9MIgohOfYd0-urv8fKZX9ldZg1JLGidJBTaTmKe86Nb6xt005M5ilxiJ9KxpTOkxFPiyQYe8ORxZIZeoh9YBz-mbf6epuGTS2fvfZ-zDbkkaWbOI8gFs4PQQtu7dUN51DV6Gs09vNKcSFVnrzeKA1bdYHGMtxDmtueYFtViz0k71lRFXZV2qQYtWywW9vfdO0MLckEwrH3IRO4KnTnt81_XKkQmeDiVfejqLQk1MNIkw0AFmRoXS6JwbSvw5FdGUEoVMFWVle9-qfenn2iiTi9jEQuk4OobqdDbFE2CpwMjPhAyRSjQ_iyVXmAkeZ4EwITfyFGp2aybzwhVjUu7K2d_L17DdHT_2J_3e4OEcdmwkClHIBVSXixVeQuUjX125iH4BJjug3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Row-Sparse+Discriminative+Deep+Dictionary+Learning+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Singhal%2C+Vanika&rft.au=Majumdar%2C+Angshul&rft.date=2018-12-01&rft.pub=IEEE&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=11&rft.issue=12&rft.spage=5019&rft.epage=5028&rft_id=info:doi/10.1109%2FJSTARS.2018.2877769&rft.externalDocID=8536455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |