Aircraft Recognition in SAR Images Based on Scattering Structure Feature and Template Matching

Scattering characteristics of targets are of great importance for synthetic aperture radar (SAR) image analysis. In this paper, a novel template matching based aircraft recognition method with scattering structure feature (SSF) is proposed to improve recognition accuracy and efficiency in SAR images...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 11; no. 11; pp. 4206 - 4217
Main Authors: Fu, Kun, Dou, Fang-Zheng, Li, Heng-Chao, Diao, Wen-Hui, Sun, Xian, Xu, Guang-Luan
Format: Journal Article
Language:English
Published: IEEE 01-11-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scattering characteristics of targets are of great importance for synthetic aperture radar (SAR) image analysis. In this paper, a novel template matching based aircraft recognition method with scattering structure feature (SSF) is proposed to improve recognition accuracy and efficiency in SAR images, mainly including the feature model construction stage and the recognition stage. In the former stage, the SSF, being composed of strong scattering point and its corresponding scattering intensity distribution, is extracted by a scattering structure feature model newly defined with Gaussian mixture model. In the recognition stage, template matching is implemented via the proposed sample-decision optimization algorithm. Specifically, in the sample step, a geometric prior based Monte Carlo method with Hausdorff distance is introduced to improve the efficiency of candidate template selection. In the decision step, coordinate translation Kullback-Leibler divergence is proposed by defining a new entropy function of translation coordinates to achieve the goal of translation invariance. Experimental results are given to demonstrate the accuracy and efficiency of the proposed method.
AbstractList Scattering characteristics of targets are of great importance for synthetic aperture radar (SAR) image analysis. In this paper, a novel template matching based aircraft recognition method with scattering structure feature (SSF) is proposed to improve recognition accuracy and efficiency in SAR images, mainly including the feature model construction stage and the recognition stage. In the former stage, the SSF, being composed of strong scattering point and its corresponding scattering intensity distribution, is extracted by a scattering structure feature model newly defined with Gaussian mixture model. In the recognition stage, template matching is implemented via the proposed sample-decision optimization algorithm. Specifically, in the sample step, a geometric prior based Monte Carlo method with Hausdorff distance is introduced to improve the efficiency of candidate template selection. In the decision step, coordinate translation Kullback-Leibler divergence is proposed by defining a new entropy function of translation coordinates to achieve the goal of translation invariance. Experimental results are given to demonstrate the accuracy and efficiency of the proposed method.
Author Li, Heng-Chao
Xu, Guang-Luan
Dou, Fang-Zheng
Diao, Wen-Hui
Sun, Xian
Fu, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Fu
  fullname: Fu, Kun
  email: kunfuiecas@gmail.com
  organization: Key Laboratory of Technology, Geo-Spatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Fang-Zheng
  orcidid: 0000-0002-3796-7210
  surname: Dou
  fullname: Dou, Fang-Zheng
  email: doufangzheng@126.com
  organization: Key Laboratory of Technology, Geo-Spatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Heng-Chao
  orcidid: 0000-0002-9735-570X
  surname: Li
  fullname: Li, Heng-Chao
  email: hcli@home.swjtu.edu.cn
  organization: Sichuan Provincial Key Laboratory of Information Coding and Transmission, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Wen-Hui
  surname: Diao
  fullname: Diao, Wen-Hui
  email: dwh1031@gmail.com
  organization: Key Laboratory of Technology, Geo-Spatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xian
  surname: Sun
  fullname: Sun, Xian
  email: sunxian0918@gmail.com
  organization: Key Laboratory of Technology, Geo-Spatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Guang-Luan
  surname: Xu
  fullname: Xu, Guang-Luan
  email: gluanxu@mail.ie.ac.cn
  organization: Key Laboratory of Technology, Geo-Spatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
BookMark eNotzM1OAjEUhuHGaCKgV8CmNzDY03am7XIkohiMCYNbyZnOAWugkE5ZePfiz-pJ3nz5huwyHiIxNgYxARDu7rlZ1ctmIgXYibTmxws2kFBCAaUqL9kAnHIFaKGv2bDvP4WopHFqwN7rkHzCTeZL8odtDDkcIg-RN_WSz_e4pZ7fY08dP-fGY86UQtzyJqeTz6dEfEb4K8aOr2h_3GEm_oLZf5x3N-xqg7uebv8dsbfZw2r6VCxeH-fTelF46UwuJIAyrt2o1qE0nS0r3XZ41lglgKToUJEkD9LIypCXVmtXEQpbttg5q0Zs_PcbiGh9TGGP6Wttta0qrdQ3z1dVCg
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_s22218528
crossref_primary_10_3390_app13106160
crossref_primary_10_1109_JSTARS_2021_3129494
crossref_primary_10_1109_LGRS_2023_3292243
crossref_primary_10_1049_rsn2_12191
crossref_primary_10_1080_01431161_2023_2244642
crossref_primary_10_1109_JSTARS_2021_3076085
crossref_primary_10_1109_TGRS_2023_3236987
crossref_primary_10_1109_TGRS_2023_3340651
crossref_primary_10_1109_TGRS_2022_3208333
crossref_primary_10_1109_TGRS_2021_3130899
crossref_primary_10_3390_rs15051454
crossref_primary_10_1109_JSTARS_2021_3116979
crossref_primary_10_1109_TGRS_2020_3027762
crossref_primary_10_1109_TGRS_2021_3130117
crossref_primary_10_1109_TAES_2023_3342798
crossref_primary_10_1109_TGRS_2024_3374097
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/JSTARS.2018.2872018
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 4217
ExternalDocumentID 8486643
Genre orig-research
GrantInformation_xml – fundername: Frontier Intersection Basic Research Project for the Central Universities
  grantid: A0920502051814-5
– fundername: National Natural Science Foundation of China
  grantid: 61871335; 61371165; 61331017
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RIG
RNS
ID FETCH-LOGICAL-c297t-211379bf3b9a27d8564bdad8578301e20da3e2ec127267ec284496ea085bad983
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Jun 26 19:26:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-211379bf3b9a27d8564bdad8578301e20da3e2ec127267ec284496ea085bad983
ORCID 0000-0002-3796-7210
0000-0002-9735-570X
PageCount 12
ParticipantIDs ieee_primary_8486643
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0062793
Score 2.3252382
Snippet Scattering characteristics of targets are of great importance for synthetic aperture radar (SAR) image analysis. In this paper, a novel template matching based...
SourceID ieee
SourceType Publisher
StartPage 4206
SubjectTerms Aircraft
Aircraft recognition
Atmospheric modeling
Feature extraction
Gaussian mixture model (GMM)
Image recognition
Object recognition
Scattering
scattering structure feature
Synthetic aperture radar
synthetic aperture radar (SAR)
template matching
Title Aircraft Recognition in SAR Images Based on Scattering Structure Feature and Template Matching
URI https://ieeexplore.ieee.org/document/8486643
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJSQWXgXxlgdG3OZtewzQUgYYmiIxUflxkSrRtOpj4N9zdlIkJBYmR86SnO37Ptt33xFyKwDSMNMRCywkLLE2YMgSDEuVFWGZSZFolzs8LPjru3jsO5mcu59cGADwwWfQdY_-Lt_OzcYdlfVEIjJE0BZpcSnqXK2t180i7gV2kY9I5iRjGoWhMJA9nOL5qHBhXKKLGwTX_qql4qFkcPC_jzgk-w1lpHk9xkdkB6pjsvvkS_J-dchHPl2apSrXdLQNBppXdFrRIh_R5xn6ixW9R6yyFLsL4_U0Ea9o4ZVjN0ugjga6VlWWjmG2-ET-SV_QR7vTqRPyNuiPH4asqZrATCT5muGOLuZSl7GWKuJWpFmiLVoelyYuZogCq2KIwIQRjzIOBvEpkRko5F5aWSniU9Ku5hWcEYr4xnXINb4tk9Rw5XaLMrbKid6ZND4nHWefyaIWxpg0prn4u_uS7NVXMRkL-BVp41_CNWmt7ObGD-U32mac5w
link.rule.ids 315,782,786,798,27933,27934,54768
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagCMHCqyDeeGAkbd62xwAtrWg7NEViovLjIlWiadXHwL_nnKRISCxMjpwl8cX3fefcfUfIPQeIvFj5jmsgdEJjXAdZgnYiabiXxYKHytYOd1I2eOfPLSuT8_BTCwMARfIZNOxl8S_fzPTaHpU1echjRNBtshOFSJPLaq2N3419VkjsIiMRjhWNqTSGPFc08SNPhqlN5OINDBHs-KubSgEm7cP_PcYROahII01KKx-TLchPyO5L0ZT3q04-kslCL2S2osNNOtAsp5OcpsmQdqfoMZb0EdHKUJxOdaGoiYhF00I7dr0AaomgHWVu6Aim809koLSPXtqeT52St3Zr9NRxqr4JjvYFWzkY0wVMqCxQQvrM8CgOlcG1x82J2xl818gAfNCez_yYgUaECkUMEtmXkkbw4IzU8lkO54QiwjHlMYV3szDSTNp4UQRGWtk7HQUXpG7XZzwvpTHG1dJc_j19R_Y6o35v3OsOXq_IvjVDWdZ3TWr4xnBDtpdmfVuY9RtRIKAv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+Recognition+in+SAR+Images+Based+on+Scattering+Structure+Feature+and+Template+Matching&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Fu%2C+Kun&rft.au=Dou%2C+Fang-Zheng&rft.au=Li%2C+Heng-Chao&rft.au=Diao%2C+Wen-Hui&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=11&rft.issue=11&rft.spage=4206&rft.epage=4217&rft_id=info:doi/10.1109%2FJSTARS.2018.2872018&rft.externalDocID=8486643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon