A comparison of snowmelt‐derived streamflow from temperature‐index and modified‐temperature‐index snow models

Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modifi...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes Vol. 33; no. 23; pp. 3030 - 3045
Main Authors: Follum, Michael L., Niemann, Jeffrey D., Fassnacht, Steven R.
Format: Journal Article
Language:English
Published: Chichester Wiley Subscription Services, Inc 01-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.
AbstractList Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.
Author Niemann, Jeffrey D.
Fassnacht, Steven R.
Follum, Michael L.
Author_xml – sequence: 1
  givenname: Michael L.
  orcidid: 0000-0003-2720-3409
  surname: Follum
  fullname: Follum, Michael L.
  email: michael.l.follum@usace.army.mil
  organization: Colorado State University
– sequence: 2
  givenname: Jeffrey D.
  surname: Niemann
  fullname: Niemann, Jeffrey D.
  organization: Colorado State University
– sequence: 3
  givenname: Steven R.
  surname: Fassnacht
  fullname: Fassnacht, Steven R.
  organization: Colorado State University
BookMark eNp1kLFOwzAQhi1UJNrCwBtYYmJIe06d1B6rCigSEgwwMFlufBapkjjYKaUbj8Az8iS4hBGm03_67k73jcigcQ0Scs5gwgDS6cu-nbBZxrMjMmQgZcJAZAMyBCGyJAcxPyGjEDYAwEHAkGwXtHB1q30ZXEOdpaFxuxqr7uvj06Av39DQ0HnUta3cjlrvatph3aLX3dZjpMrG4DvVjaG1M6Ut0cTmX8hh84HBKpySY6urgGe_dUyerq8el6vk7v7mdrm4S4pUzrNEMrDcSJPmkkueW6FzUdj4CXKb5mvElFuTo0WTcTvnOWgjxDpmaXVMOBuTi35v693rFkOnNm7rm3hSpTMGKbDoKlKXPVV4F4JHq1pf1trvFQN1sKqiVfVjNbLTnt2VFe7_B9Xq-aGf-AZgfYJa
CitedBy_id crossref_primary_10_3390_hydrology9030047
crossref_primary_10_1016_j_jhydrol_2021_126972
crossref_primary_10_1016_j_ejrh_2021_100976
crossref_primary_10_3390_w14091495
crossref_primary_10_1016_j_jhydrol_2021_126998
crossref_primary_10_1080_02626667_2022_2083512
crossref_primary_10_2166_nh_2022_180
crossref_primary_10_1016_j_jhydrol_2020_125657
crossref_primary_10_3389_feart_2021_640250
crossref_primary_10_1016_j_ejrh_2023_101387
crossref_primary_10_1111_tgis_12925
crossref_primary_10_3390_w14233813
Cites_doi 10.1029/2009JF001426
10.1016/S0022-1694(99)00095-5
10.1029/2018WR022687
10.1175/JHM548.1
10.1016/j.jhydrol.2013.04.026
10.1016/j.advwatres.2005.06.010
10.1002/hyp.6383
10.1002/hyp.10569
10.2166/nh.1994.0016
10.1175/JHM506.1
10.1002/hyp.7325
10.1017/CBO9780511535673
10.21236/ADA583028
10.1016/j.jhydrol.2004.05.002
10.5194/tc-8-329-2014
10.1002/1099-1085(20001230)14:18<3257::AID-HYP199>3.0.CO;2-Z
10.1016/j.jhydrol.2007.09.006
10.5194/hess-22-2669-2018
10.1029/91WR00506
10.1016/j.jhydrol.2015.08.044
10.1016/S0022-1694(03)00257-9
10.1061/(ASCE)0733-9437(1997)123:5(386)
10.1111/j.1752-1688.1995.tb03392.x
10.1016/j.advwatres.2013.03.006
10.1029/91WR02250
10.1016/j.jhydrol.2016.03.026
10.1029/2005WR004522
10.1002/2013WR014382
10.1016/0022-1694(95)02913-3
10.5194/hess-14-339-2010
10.1175/1525-7541(2004)005<0774:ASSODN>2.0.CO;2
10.1002/2013WR013711
10.1017/S002214300002339X
10.1002/hyp.9355
10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2
10.1016/j.advwatres.2005.10.001
10.1007/s11707-017-0645-0
10.1016/S0022-1694(97)00004-8
10.1029/94WR00152
10.1002/hyp.1228
10.1002/(SICI)1099-1085(199610)10:10<1329::AID-HYP464>3.0.CO;2-W
10.1016/S0165-232X(99)00002-6
10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
10.1007/s11707-017-0641-4
10.1016/j.jhydrol.2008.07.013
10.1029/TR035i003p00475
10.3189/S0022143000003087
10.1016/0022-1694(93)90171-5
10.3137/ao.400402
10.1029/WR018i004p00904
10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N
10.1061/(ASCE)1084-0699(2004)9:3(161)
10.1016/j.advwatres.2010.10.002
10.1061/9780784479162.093
10.3189/S0022143000002021
10.1029/WR021i011p01649
10.1175/JCLI3720.1
10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2
10.3989/Pirineos.2012.167008
10.1002/2017GL075826
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/hyp.13545
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 3045
ExternalDocumentID 10_1002_hyp_13545
HYP13545
Genre article
GrantInformation_xml – fundername: U.S. Army Corps of Engineers, Engineering Research and Development Center, Coastal and Hydraulics Laboratory
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMNL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c2975-910f4d9d2694946f8a68cf885e4f26bee24fd6efed54f7460ad88befe9fa460e3
IEDL.DBID 33P
ISSN 0885-6087
IngestDate Thu Oct 10 23:10:28 EDT 2024
Thu Nov 21 22:24:27 EST 2024
Sat Aug 24 01:10:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2975-910f4d9d2694946f8a68cf885e4f26bee24fd6efed54f7460ad88befe9fa460e3
Notes Funding information
U.S. Army Corps of Engineers, Engineering Research and Development Center, Coastal and Hydraulics Laboratory
ORCID 0000-0003-2720-3409
PQID 2310201135
PQPubID 2034139
PageCount 16
ParticipantIDs proquest_journals_2310201135
crossref_primary_10_1002_hyp_13545
wiley_primary_10_1002_hyp_13545_HYP13545
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
1995; 31
1974; 13
1982; 18
2012; 167
2007; 347
2010; 14
2013; 27
2004; 9
1999; 45
1994; 25
1973
2004; 5
1996; 181
1972
2018; 45
1985; 21
1993; 121
2001; 40
1998; 44
2006; 20
1990
2000; 14
2000
2002; 40
2013; 56
2005; 300
2010; 115
2003; 282
2006; 29
1992; 92‐4
1980
2014; 8
2014; 50
1994; 30
1998; 12
2009; 23
2006; 12
1999; 29
2006; 7
2008
2015; 529
2011; 77
2007
2006
2005
1999; 223
2011; 34
1993
1991
2002
2018; 22
1959
1996; 10
2008; 360
1993; 144
1997; 202
1994; 122
1991; 27
2006; 42
2015; 29
2016; 537
1954; 35
2017; 11
2002; 68
1997; 123
2015
2013
2013; 494
2018; 54
Downer C. W. (e_1_2_9_21_1) 2006
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_35_1
Tarboton D. G. (e_1_2_9_77_1) 2000
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Jordan R. (e_1_2_9_46_1) 1991
Allen R. G. (e_1_2_9_3_1) 2005
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
TVA (e_1_2_9_78_1) 1972
Liou K. N. (e_1_2_9_56_1) 2002
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
Kang D. H. (e_1_2_9_49_1) 2005
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
Anderson E. A. (e_1_2_9_5_1) 2006
e_1_2_9_32_1
Lei F. (e_1_2_9_55_1) 2007
e_1_2_9_76_1
Bras R. L. (e_1_2_9_10_1) 1990
e_1_2_9_70_1
Gesch D. (e_1_2_9_39_1) 2002; 68
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
Smith J. A. (e_1_2_9_75_1) 1993
e_1_2_9_7_1
e_1_2_9_80_1
Julien P. Y. (e_1_2_9_48_1) 1991
e_1_2_9_82_1
Doherty J. (e_1_2_9_19_1) 1994; 122
Duffie J. A. (e_1_2_9_24_1) 1980
Chow V. T. (e_1_2_9_13_1) 1959
Fry J. A. (e_1_2_9_37_1) 2011; 77
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 56
  start-page: 77
  year: 2013
  end-page: 89
  article-title: Evaluation of distributed hydrologic impacts of temperature‐index and energy‐based snow models
  publication-title: Advances in Water Resources
– volume: 20
  start-page: 3697
  year: 2006
  end-page: 3708
  article-title: Incoming longwave radiation to melting snow: Observations, sensitivity and estimation in northern environments
  publication-title: Hydrological Processes
– volume: 18
  start-page: 904
  issue: 4
  year: 1982
  end-page: 908
  article-title: The permeability of a melting snow cover
  publication-title: Water Resources Research
– volume: 300
  start-page: 65
  issue: 1‐4
  year: 2005
  end-page: 75
  article-title: Process‐based snowmelt modeling: Does it require more input data than temperature‐index modeling?
  publication-title: Journal of Hydrology
– year: 2005
– start-page: 643
  year: 1990
– volume: 34
  start-page: 114
  issue: 1
  year: 2011
  end-page: 127
  article-title: Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes
  publication-title: Advances in Water Resources
– volume: 27
  start-page: 2383
  issue: 17
  year: 2013
  end-page: 2400
  article-title: Subgrid variability of snow water equivalent at operational snow stations in the western USA
  publication-title: Hydrological Processes
– volume: 45
  start-page: 101
  issue: 149
  year: 1999
  end-page: 111
  article-title: A distributed temperature‐index ice‐and snowmelt model including potential direct solar radiation
  publication-title: Journal of Glaciology
– volume: 7
  start-page: 705
  issue: 4
  year: 2006
  end-page: 712
  article-title: A comparison of snow telemetry and snow course measurements in the Colorado River basin
  publication-title: Journal of Hydrometeorology
– volume: 25
  start-page: 1
  issue: 1
  year: 1994
  end-page: 24
  article-title: Entering the era of distributed snow models
  publication-title: Nordic Hydrology
– start-page: 158
  year: 2000
  end-page: 186
– volume: 50
  start-page: 1773
  issue: 2
  year: 2014
  end-page: 1788
  article-title: Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes
  publication-title: Water Resources Research
– volume: 494
  start-page: 160
  year: 2013
  end-page: 175
  article-title: Calibration of a distributed snow model using MODIS snow covered area data
  publication-title: Journal of Hydrology
– volume: 10
  start-page: 1329
  issue: 10
  year: 1996
  end-page: 1343
  article-title: Incorporating radiation inputs into the snowmelt runoff model
  publication-title: Hydrological Processes
– volume: 360
  start-page: 48
  issue: 1
  year: 2008
  end-page: 66
  article-title: Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 1649
  issue: 11
  year: 1985
  end-page: 1654
  article-title: Radiation balances of melting snow covers at an open site in the Central Sierra Nevada, California
  publication-title: Water Resources Research
– volume: 181
  start-page: 169
  issue: 1–4
  year: 1996
  end-page: 187
  article-title: Snowmelt modelling by combining air temperature and a distributed radiation index
  publication-title: Journal of Hydrology
– volume: 223
  start-page: 1
  issue: 1
  year: 1999
  end-page: 16
  article-title: Developing the snow component of a distributed hydrological model: A step‐wise approach based on multi‐objective analysis
  publication-title: Journal of Hydrology
– volume: 44
  start-page: 498
  issue: 148
  year: 1998
  end-page: 516
  article-title: A snow‐transport model for complex terrain
  publication-title: Journal of Glaciology
– year: 1959
– volume: 31
  start-page: 657
  issue: 4
  year: 1995
  end-page: 669
  article-title: Revisiting the degree‐day method for snowmelt computations
  publication-title: Journal of the American Water Resources Association
– volume: 29
  start-page: 1209
  issue: 8
  year: 2006
  end-page: 1221
  article-title: Assimilation of snow covered area information into hydrologic and land‐surface models
  publication-title: Advances in Water Resources
– volume: 16
  start-page: 3543
  issue: 18
  year: 2002
  end-page: 3558
  article-title: Prediction of seasonal snow accumulation in cold climate forests
  publication-title: Hydrological Processes
– volume: 537
  start-page: 45
  year: 2016
  end-page: 60
  article-title: An overview of current applications, challenges, and future trends in distributed process‐based models in hydrology
  publication-title: Journal of Hydrology
– year: 2008
– volume: 9
  start-page: 161
  issue: 3
  year: 2004
  end-page: 174
  article-title: GSSHA: Model to simulate diverse stream flow producing processes
  publication-title: Journal of Hydrologic Engineering
– volume: 8
  start-page: 329
  issue: 2
  year: 2014
  end-page: 344
  article-title: What drives basin scale spatial variability of snowpack properties in northern Colorado?
  publication-title: The Cryosphere
– volume: 14
  start-page: 339
  issue: 2
  year: 2010
  end-page: 350
  article-title: Use of satellite‐derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
  publication-title: Hydrology and Earth System Sciences
– volume: 202
  start-page: 1
  issue: 1
  year: 1997
  end-page: 20
  article-title: Hydrological response of snowpack under rain‐on‐snow events: A field study
  publication-title: Journal of Hydrology
– volume: 27
  start-page: 1541
  year: 1991
  end-page: 1552
  article-title: Snow accumulation and distribution in an alpine watershed
  publication-title: Water Resources Research
– year: 1972
– volume: 5
  start-page: 745
  issue: 5
  year: 2004
  end-page: 762
  article-title: Parameterization of blowing snow sublimation in a macroscale hydrology model
  publication-title: Journal of Hydrometeorology
– start-page: 65
  year: 2013
  end-page: 70
– volume: 29
  start-page: 558
  issue: 4
  year: 2006
  end-page: 570
  article-title: Distributed snow accumulation and ablation modeling in the American River basin
  publication-title: Advances in Water Resources
– volume: 35
  start-page: 475
  issue: 3
  year: 1954
  end-page: 485
  article-title: The transmission of water through snow
  publication-title: Transactions of the American Geophysical Union
– volume: 30
  start-page: 1515
  issue: 5
  year: 1994
  end-page: 1527
  article-title: A simple energy budget algorithm for the snowmelt runoff model
  publication-title: Water Resources Research
– volume: 5
  start-page: 774
  year: 2004
  end-page: 784
  article-title: A sensitivity study of daytime net radiation during snowmelt to forest canopy and atmospheric conditions
  publication-title: Journal of Hydrometeorology
– start-page: 973
  year: 2015
  end-page: 982
– volume: 23
  start-page: 2513
  issue: 17
  year: 2009
  end-page: 2525
  article-title: The impact of coniferous forest temperature on incoming longwave radiation to melting snow
  publication-title: Hydrological Processes
– volume: 7
  start-page: 1259
  issue: 6
  year: 2006
  end-page: 1276
  article-title: A distributed snow‐evolution modeling system (SnowModel)
  publication-title: Journal of Hydrometeorology
– volume: 14
  start-page: 3257
  issue: 18
  year: 2000
  end-page: 3271
  article-title: An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California
  publication-title: Hydrological Processes
– volume: 68
  start-page: 5
  issue: 1
  year: 2002
  end-page: 32
  article-title: The national elevation dataset
  publication-title: Photogrammetric Engineering & Remote Sensing
– volume: 12
  start-page: 2867
  year: 2006
  end-page: 2881
  article-title: An improved land surface emissivity parameter for land surface models using global remote sensing observations
  publication-title: Journal of Climate
– volume: 347
  start-page: 101
  issue: 1
  year: 2007
  end-page: 115
  article-title: The influence of forest and topography on snow accumulation and melt at the watershed‐scale
  publication-title: Journal of Hydrology
– volume: 144
  start-page: 165
  issue: 1‐4
  year: 1993
  end-page: 192
  article-title: The prairie blowing snow model: Characteristics, validation, operation
  publication-title: Journal of Hydrology
– volume: 282
  start-page: 104
  issue: 1–4
  year: 2003
  end-page: 115
  article-title: Temperature index melt modelling in mountain areas
  publication-title: Journal of Hydrology
– volume: 40
  start-page: 389
  issue: 4
  year: 2002
  end-page: 403
  article-title: Implications during transitional periods of improvements to the snow processes in the land surface scheme‐hydrological model WATCLASS
  publication-title: Atmosphere‐Ocean
– year: 2007
– volume: 29
  start-page: 31
  issue: 1
  year: 1999
  end-page: 48
  article-title: Albedo models for snow and ice on a freshwater lake
  publication-title: Cold Regions Science and Technology
– year: 1973
– volume: 45
  start-page: 797
  issue: 2
  year: 2018
  end-page: 808
  article-title: Variation in rising limb of Colorado River snowmelt runoff hydrograph controlled by dust radiative forcing in snow
  publication-title: Geophysical Research Letters
– volume: 121
  start-page: 1195
  issue: 4
  year: 1993
  end-page: 1214
  article-title: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas
  publication-title: Monthly Weather Review
– start-page: 3.4
  year: 1993
– volume: 167
  start-page: 167
  year: 2012
  end-page: 186
  article-title: Temporal inconsistencies in coarse‐scale snow water equivalent patterns: Colorado River Basin snow telemetry‐topography regressions
  publication-title: Pirineos
– volume: 11
  start-page: 505
  issue: 3
  year: 2017
  end-page: 514
  article-title: Spatio‐temporal snowmelt variability across the headwaters of the Southern Rocky Mountains
  publication-title: Frontiers of Earth Science
– volume: 11
  start-page: 482
  issue: 3
  year: 2017
  end-page: 495
  article-title: Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado
  publication-title: Frontiers of Earth Science
– volume: 50
  start-page: 2002
  year: 2014
  end-page: 2021
  article-title: The value of satellite‐derived snow cover images for calibrating a hydrological model in snow‐dominated catchments in Central Asia
  publication-title: Water Resources Research
– volume: 122
  start-page: 336
  year: 1994
  article-title: PEST: Model‐independent parameter estimation
  publication-title: Watermark Computing, Corinda, Australia
– volume: 40
  start-page: 753
  year: 2001
  end-page: 761
  article-title: Physical basis for the temperature‐based melt index method
  publication-title: Journal of Applied Meteorology
– volume: 22
  start-page: 2669
  issue: 5
  year: 2018
  end-page: 2688
  article-title: A simple temperature‐based method to estimate heterogeneous frozen ground within a distributed watershed model
  publication-title: Hydrology and Earth System Sciences
– volume: 77
  start-page: 858
  issue: 9
  year: 2011
  end-page: 864
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: Photogrammetric Engineering & Remote Sensing
– year: 1980
– year: 2002
– year: 2006
– volume: 54
  start-page: 8478
  issue: 10
  year: 2018
  end-page: 8499
  article-title: The influence of cloudiness on hydrologic fluctuations in the mountains of the western United States
  publication-title: Water Resources Research
– volume: 29
  start-page: 5397
  issue: 26
  year: 2015
  end-page: 5413
  article-title: Regional variability in dust‐on‐snow processes and impacts in the Upper Colorado River basin
  publication-title: Hydrological Processes
– volume: 123
  start-page: 386
  issue: 5
  year: 1997
  end-page: 393
  article-title: Green and Ampt infiltration with redistribution
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 12
  start-page: 1671
  issue: 1011
  year: 1998
  end-page: 1683
  article-title: The influence of the spatial distribution of snow on basin‐averaged snowmelt
  publication-title: Hydrological Processes
– year: 1991
– start-page: 70
  year: 1991
– volume: 27
  start-page: 3171
  issue: 12
  year: 1991
  end-page: 3179
  article-title: Distributed snowmelt simulations in an alpine catchment: 1. Model evaluation on the basis of snow cover patterns
  publication-title: Water Resources Research
– start-page: 195
  year: 2005
– volume: 42
  issue: 5
  year: 2006
  article-title: Comparison of ground‐based and airborne snow surface albedo parameterizations in an alpine watershed: Impacts on snowpack mass balance
  publication-title: Water Resources Research
– volume: 92‐4
  start-page: 701
  year: 1992
  end-page: 710
– volume: 115
  year: 2010
  article-title: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge
  publication-title: Journal of Geophysical Research ‐ Earth Surface
– volume: 13
  start-page: 119
  issue: 67
  year: 1974
  end-page: 123
  article-title: The capillary effects on water percolation in homogeneous snow
  publication-title: Journal of Glaciology
– volume: 529
  start-page: 723
  year: 2015
  end-page: 736
  article-title: A radiation‐derived temperature‐index snow routine for the GSSHA hydrologic model
  publication-title: Journal of Hydrology
– year: 2013
– ident: e_1_2_9_8_1
  doi: 10.1029/2009JF001426
– ident: e_1_2_9_81_1
– ident: e_1_2_9_25_1
  doi: 10.1016/S0022-1694(99)00095-5
– ident: e_1_2_9_76_1
  doi: 10.1029/2018WR022687
– ident: e_1_2_9_57_1
  doi: 10.1175/JHM548.1
– volume: 122
  start-page: 336
  year: 1994
  ident: e_1_2_9_19_1
  article-title: PEST: Model‐independent parameter estimation
  publication-title: Watermark Computing, Corinda, Australia
  contributor:
    fullname: Doherty J.
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jhydrol.2013.04.026
– ident: e_1_2_9_70_1
  doi: 10.1016/j.advwatres.2005.06.010
– volume-title: Solar engineering of thermal processes
  year: 1980
  ident: e_1_2_9_24_1
  contributor:
    fullname: Duffie J. A.
– ident: e_1_2_9_71_1
  doi: 10.1002/hyp.6383
– ident: e_1_2_9_74_1
  doi: 10.1002/hyp.10569
– volume-title: Open channel hydraulics
  year: 1959
  ident: e_1_2_9_13_1
  contributor:
    fullname: Chow V. T.
– ident: e_1_2_9_50_1
  doi: 10.2166/nh.1994.0016
– ident: e_1_2_9_22_1
  doi: 10.1175/JHM506.1
– ident: e_1_2_9_67_1
  doi: 10.1002/hyp.7325
– ident: e_1_2_9_18_1
  doi: 10.1017/CBO9780511535673
– ident: e_1_2_9_32_1
  doi: 10.21236/ADA583028
– ident: e_1_2_9_80_1
  doi: 10.1016/j.jhydrol.2004.05.002
– volume-title: An introduction to atmospheric radiation
  year: 2002
  ident: e_1_2_9_56_1
  contributor:
    fullname: Liou K. N.
– volume-title: A one‐dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89
  year: 1991
  ident: e_1_2_9_46_1
  contributor:
    fullname: Jordan R.
– ident: e_1_2_9_69_1
  doi: 10.5194/tc-8-329-2014
– volume-title: The ASCE Standardized Reference Evapotranspiration Equation
  year: 2005
  ident: e_1_2_9_3_1
  contributor:
    fullname: Allen R. G.
– ident: e_1_2_9_17_1
  doi: 10.1002/1099-1085(20001230)14:18<3257::AID-HYP199>3.0.CO;2-Z
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jhydrol.2007.09.006
– ident: e_1_2_9_4_1
– start-page: 158
  volume-title: Spatial Patterns in Catchment Hydrology: Observations and Modelling
  year: 2000
  ident: e_1_2_9_77_1
  contributor:
    fullname: Tarboton D. G.
– ident: e_1_2_9_34_1
  doi: 10.5194/hess-22-2669-2018
– ident: e_1_2_9_26_1
  doi: 10.1029/91WR00506
– volume-title: Snow accumulation and ablation model—SNOW‐17, NWSRFS User Documentation
  year: 2006
  ident: e_1_2_9_5_1
  contributor:
    fullname: Anderson E. A.
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jhydrol.2015.08.044
– volume: 68
  start-page: 5
  issue: 1
  year: 2002
  ident: e_1_2_9_39_1
  article-title: The national elevation dataset
  publication-title: Photogrammetric Engineering & Remote Sensing
  contributor:
    fullname: Gesch D.
– start-page: 3.4
  volume-title: Handbook of Hydrology
  year: 1993
  ident: e_1_2_9_75_1
  contributor:
    fullname: Smith J. A.
– start-page: 70
  volume-title: A two‐dimensional watershed rainfall‐runoff model—CASC2D user's manual
  year: 1991
  ident: e_1_2_9_48_1
  contributor:
    fullname: Julien P. Y.
– ident: e_1_2_9_43_1
  doi: 10.1016/S0022-1694(03)00257-9
– ident: e_1_2_9_62_1
  doi: 10.1061/(ASCE)0733-9437(1997)123:5(386)
– ident: e_1_2_9_68_1
  doi: 10.1111/j.1752-1688.1995.tb03392.x
– ident: e_1_2_9_30_1
– ident: e_1_2_9_52_1
  doi: 10.1016/j.advwatres.2013.03.006
– ident: e_1_2_9_7_1
  doi: 10.1029/91WR02250
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jhydrol.2016.03.026
– ident: e_1_2_9_61_1
  doi: 10.1029/2005WR004522
– ident: e_1_2_9_23_1
  doi: 10.1002/2013WR014382
– ident: e_1_2_9_79_1
– start-page: 643
  volume-title: Hydrology: An introduction to hydrologic science
  year: 1990
  ident: e_1_2_9_10_1
  contributor:
    fullname: Bras R. L.
– ident: e_1_2_9_12_1
  doi: 10.1016/0022-1694(95)02913-3
– ident: e_1_2_9_51_1
  doi: 10.5194/hess-14-339-2010
– start-page: 195
  volume-title: Distributed snowmelt modeling with GIS and CASC2D at California Gulch, Colorado
  year: 2005
  ident: e_1_2_9_49_1
  contributor:
    fullname: Kang D. H.
– ident: e_1_2_9_72_1
  doi: 10.1175/1525-7541(2004)005<0774:ASSODN>2.0.CO;2
– ident: e_1_2_9_54_1
  doi: 10.1002/2013WR013711
– volume-title: Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User's Manual; Version 1.43 for Watershed Modeling system 6.1 (No. ERDC/CHL‐SR‐06‐1)
  year: 2006
  ident: e_1_2_9_21_1
  contributor:
    fullname: Downer C. W.
– ident: e_1_2_9_15_1
  doi: 10.1017/S002214300002339X
– volume-title: A sensitivity study of an energy budget snow accumulation and ablation model
  year: 2007
  ident: e_1_2_9_55_1
  contributor:
    fullname: Lei F.
– ident: e_1_2_9_60_1
  doi: 10.1002/hyp.9355
– ident: e_1_2_9_9_1
  doi: 10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2
– ident: e_1_2_9_14_1
  doi: 10.1016/j.advwatres.2005.10.001
– ident: e_1_2_9_82_1
  doi: 10.1007/s11707-017-0645-0
– ident: e_1_2_9_73_1
  doi: 10.1016/S0022-1694(97)00004-8
– ident: e_1_2_9_53_1
  doi: 10.1029/94WR00152
– ident: e_1_2_9_65_1
  doi: 10.1002/hyp.1228
– ident: e_1_2_9_11_1
  doi: 10.1002/(SICI)1099-1085(199610)10:10<1329::AID-HYP464>3.0.CO;2-W
– ident: e_1_2_9_41_1
  doi: 10.1016/S0165-232X(99)00002-6
– ident: e_1_2_9_63_1
  doi: 10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
– volume-title: Heat and mass transfer between a water surface and the atmosphere
  year: 1972
  ident: e_1_2_9_78_1
  contributor:
    fullname: TVA
– ident: e_1_2_9_28_1
  doi: 10.1007/s11707-017-0641-4
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jhydrol.2008.07.013
– ident: e_1_2_9_38_1
  doi: 10.1029/TR035i003p00475
– ident: e_1_2_9_42_1
  doi: 10.3189/S0022143000003087
– ident: e_1_2_9_66_1
  doi: 10.1016/0022-1694(93)90171-5
– ident: e_1_2_9_29_1
  doi: 10.3137/ao.400402
– ident: e_1_2_9_16_1
  doi: 10.1029/WR018i004p00904
– ident: e_1_2_9_59_1
  doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N
– ident: e_1_2_9_20_1
  doi: 10.1061/(ASCE)1084-0699(2004)9:3(161)
– ident: e_1_2_9_40_1
  doi: 10.1016/j.advwatres.2010.10.002
– ident: e_1_2_9_44_1
  doi: 10.1061/9780784479162.093
– ident: e_1_2_9_58_1
  doi: 10.3189/S0022143000002021
– volume: 77
  start-page: 858
  issue: 9
  year: 2011
  ident: e_1_2_9_37_1
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: Photogrammetric Engineering & Remote Sensing
  contributor:
    fullname: Fry J. A.
– ident: e_1_2_9_2_1
  doi: 10.1029/WR021i011p01649
– ident: e_1_2_9_45_1
  doi: 10.1175/JCLI3720.1
– ident: e_1_2_9_6_1
  doi: 10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2
– ident: e_1_2_9_27_1
  doi: 10.3989/Pirineos.2012.167008
– ident: e_1_2_9_64_1
  doi: 10.1002/2017GL075826
SSID ssj0004080
Score 2.4050148
Snippet Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3030
SubjectTerms Air temperature
Bedrock
Computer simulation
Economic forecasting
Evaluation
Flood forecasting
Flow rates
Flow velocity
Hydrologic models
Hydrology
Infiltration
Performance evaluation
Radiation
radiation‐derived temperature‐index
River discharge
Runoff
Senator Beck Basin
Snow
Snow-water equivalent
Snowmelt
Snowmelt runoff
snow‐covered area
Stream discharge
Stream flow
Streamflow generation models
streamflow simulation
temperature‐index
Water supply
Watersheds
Title A comparison of snowmelt‐derived streamflow from temperature‐index and modified‐temperature‐index snow models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.13545
https://www.proquest.com/docview/2310201135
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-6i178L06nBPHgpaxr0zTF09CNnWSggp5K1rwwYWuH3Ry7-RH8jH4SX9J2U1AQvDXNayjvT_Je4Pd7hFyAGylXipbjDQLfYRGXTgSCOUGgEghVghFlCsXeXXj7KG46hibnqsLCFPwQyws3Exl2vzYBLgd5c0UaOlxMTNMGZgDmWCVY-IbfX2EiXds1DYMocLgrwopVyPWayy-_n0WrBPNrmmrPme72v_5wh2yV6SVtF_6wS9Yg3SMbZafz4WKfzNo0WbYepJmmeZrNxzCafry9K_TGV1DU4EfkWI-yOTXoE2roq0ruZZSy_IpUpoqOM_WsMYXFlz-JmJWp7bSTH5CHbuf-uueUrRecxEBtcQt0NVORMjjXiHEtJBeJRl0C0x4fAHhMKw4aVMB0yLgrlRADHEda4gj8Q1JLsxSOCOU4FaA34IItFgKWUAFuKlyijiDE-rhOzisjxJOCYSMuuJS9GDUYWw3WSaMyT1wGWR6b1NTkLz5OX1pD_L5A3Hvq24fjv4uekM1WJPziwqVBatOXGZyS9VzNzqyvfQJGydzg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA86D_Pif3E6NYgHL2Vdm6YpeBm6UXGOgRP0VLomYcLWDrs5dvMj-Bn9JL6k7aagIHhrmtekvLz38hL4_R5C58L0uBmyumH1HdsgHg0NTzBiOA6PhMsj8Ch1UPTv3c4ju24qmpzLAguT8UMsLtyUZ-h4rRxcXUjXlqyhg_lYVW0gzipaIxQMUQE47O4SFWnqumngRo5BTeYWvEKmVVt8-n03WqaYXxNVvdO0Nv_3j1toI88wcSMziW20IuIdVM6LnQ_mu2jawNGi-iBOJE7jZDYSw8nH2zsHg3wVHCsISTiSw2SGFQAFKwarnH4ZpDTFIg5jjkcJf5aQxcLLn0TUyFgX20n30EOr2bvyjbz6ghEptC1EQVMS7nEFdfUIlSykLJKgTEGkRftCWERyKqTgDpEuoWbIGetD25MhtIS9j0pxEosDhCl0OWAQMGCduAJOUQ7EFRqCjoQLR-QKOitWIRhnJBtBRqdsBaDBQGuwgqrF-gS5n6WByk5VCmND94Veid8HCPynrn44_LvoKSr7vbt20L7p3B6hdZjKy4CIVVSavEzFMVpN-fREG94nKzDhAA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06QX3xW5xODeKDL2Vdm6QpPg23MVHGQAV9Kl2TMGFrh90ce_Mn-Bv9Jd6k7aagIPjWNGlabu5Nzi2ccxE6l7Yv7JDXLKdHXYv4LLR8yYlFqYikJyKIKJ0otu-8ziNvNLVMzmXBhcn0IeY_3HRkmP1aB_hIqOpCNLQ_G-miDYQuoxUCMFwL57tud0GKtE3ZNIgiajGbe4WskO1U549-P4wWCPMrTjUHTWvzX5-4hTZyfInrmUNsoyUZ76C1vNR5f7aLJnUczWsP4kThNE6mQzkYf7y9C3DHVymwJpCEQzVIpljTT7DWr8rFl2GUEVjEYSzwMBHPCjAs3PxpiJ4Zm1I76R56aDXvr9pWXnvBijTXFvZAWxHhC0109QlTPGQ8UmBLSZTDelI6RAkmlRSUKA_sHwrOe9D2VQgt6e6jUpzE8gBhBl0U3AEmrBFPQg5FYVdhIdhIepAgl9FZsQjBKJPYCDIxZScACwbGgmVUKZYnyKMsDTQ21QDGhe4LsxC_TxC0n7rm4vDvQ0_RarfRCm6vOzdHaB3e5GcsxAoqjV8m8hgtp2JyYtzuE50_36Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+snowmelt%E2%80%90derived+streamflow+from+temperature%E2%80%90index+and+modified%E2%80%90temperature%E2%80%90index+snow+models&rft.jtitle=Hydrological+processes&rft.au=Follum%2C+Michael+L.&rft.au=Niemann%2C+Jeffrey+D.&rft.au=Fassnacht%2C+Steven+R.&rft.date=2019-11-01&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=33&rft.issue=23&rft.spage=3030&rft.epage=3045&rft_id=info:doi/10.1002%2Fhyp.13545&rft.externalDBID=10.1002%252Fhyp.13545&rft.externalDocID=HYP13545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon