A comparison of snowmelt‐derived streamflow from temperature‐index and modified‐temperature‐index snow models
Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modifi...
Saved in:
Published in: | Hydrological processes Vol. 33; no. 23; pp. 3030 - 3045 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester
Wiley Subscription Services, Inc
01-11-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE. |
---|---|
AbstractList | Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE. |
Author | Niemann, Jeffrey D. Fassnacht, Steven R. Follum, Michael L. |
Author_xml | – sequence: 1 givenname: Michael L. orcidid: 0000-0003-2720-3409 surname: Follum fullname: Follum, Michael L. email: michael.l.follum@usace.army.mil organization: Colorado State University – sequence: 2 givenname: Jeffrey D. surname: Niemann fullname: Niemann, Jeffrey D. organization: Colorado State University – sequence: 3 givenname: Steven R. surname: Fassnacht fullname: Fassnacht, Steven R. organization: Colorado State University |
BookMark | eNp1kLFOwzAQhi1UJNrCwBtYYmJIe06d1B6rCigSEgwwMFlufBapkjjYKaUbj8Az8iS4hBGm03_67k73jcigcQ0Scs5gwgDS6cu-nbBZxrMjMmQgZcJAZAMyBCGyJAcxPyGjEDYAwEHAkGwXtHB1q30ZXEOdpaFxuxqr7uvj06Av39DQ0HnUta3cjlrvatph3aLX3dZjpMrG4DvVjaG1M6Ut0cTmX8hh84HBKpySY6urgGe_dUyerq8el6vk7v7mdrm4S4pUzrNEMrDcSJPmkkueW6FzUdj4CXKb5mvElFuTo0WTcTvnOWgjxDpmaXVMOBuTi35v693rFkOnNm7rm3hSpTMGKbDoKlKXPVV4F4JHq1pf1trvFQN1sKqiVfVjNbLTnt2VFe7_B9Xq-aGf-AZgfYJa |
CitedBy_id | crossref_primary_10_3390_hydrology9030047 crossref_primary_10_1016_j_jhydrol_2021_126972 crossref_primary_10_1016_j_ejrh_2021_100976 crossref_primary_10_3390_w14091495 crossref_primary_10_1016_j_jhydrol_2021_126998 crossref_primary_10_1080_02626667_2022_2083512 crossref_primary_10_2166_nh_2022_180 crossref_primary_10_1016_j_jhydrol_2020_125657 crossref_primary_10_3389_feart_2021_640250 crossref_primary_10_1016_j_ejrh_2023_101387 crossref_primary_10_1111_tgis_12925 crossref_primary_10_3390_w14233813 |
Cites_doi | 10.1029/2009JF001426 10.1016/S0022-1694(99)00095-5 10.1029/2018WR022687 10.1175/JHM548.1 10.1016/j.jhydrol.2013.04.026 10.1016/j.advwatres.2005.06.010 10.1002/hyp.6383 10.1002/hyp.10569 10.2166/nh.1994.0016 10.1175/JHM506.1 10.1002/hyp.7325 10.1017/CBO9780511535673 10.21236/ADA583028 10.1016/j.jhydrol.2004.05.002 10.5194/tc-8-329-2014 10.1002/1099-1085(20001230)14:18<3257::AID-HYP199>3.0.CO;2-Z 10.1016/j.jhydrol.2007.09.006 10.5194/hess-22-2669-2018 10.1029/91WR00506 10.1016/j.jhydrol.2015.08.044 10.1016/S0022-1694(03)00257-9 10.1061/(ASCE)0733-9437(1997)123:5(386) 10.1111/j.1752-1688.1995.tb03392.x 10.1016/j.advwatres.2013.03.006 10.1029/91WR02250 10.1016/j.jhydrol.2016.03.026 10.1029/2005WR004522 10.1002/2013WR014382 10.1016/0022-1694(95)02913-3 10.5194/hess-14-339-2010 10.1175/1525-7541(2004)005<0774:ASSODN>2.0.CO;2 10.1002/2013WR013711 10.1017/S002214300002339X 10.1002/hyp.9355 10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2 10.1016/j.advwatres.2005.10.001 10.1007/s11707-017-0645-0 10.1016/S0022-1694(97)00004-8 10.1029/94WR00152 10.1002/hyp.1228 10.1002/(SICI)1099-1085(199610)10:10<1329::AID-HYP464>3.0.CO;2-W 10.1016/S0165-232X(99)00002-6 10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2 10.1007/s11707-017-0641-4 10.1016/j.jhydrol.2008.07.013 10.1029/TR035i003p00475 10.3189/S0022143000003087 10.1016/0022-1694(93)90171-5 10.3137/ao.400402 10.1029/WR018i004p00904 10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N 10.1061/(ASCE)1084-0699(2004)9:3(161) 10.1016/j.advwatres.2010.10.002 10.1061/9780784479162.093 10.3189/S0022143000002021 10.1029/WR021i011p01649 10.1175/JCLI3720.1 10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2 10.3989/Pirineos.2012.167008 10.1002/2017GL075826 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/hyp.13545 |
DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1099-1085 |
EndPage | 3045 |
ExternalDocumentID | 10_1002_hyp_13545 HYP13545 |
Genre | article |
GrantInformation_xml | – fundername: U.S. Army Corps of Engineers, Engineering Research and Development Center, Coastal and Hydraulics Laboratory |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WWD WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMNL AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c2975-910f4d9d2694946f8a68cf885e4f26bee24fd6efed54f7460ad88befe9fa460e3 |
IEDL.DBID | 33P |
ISSN | 0885-6087 |
IngestDate | Thu Oct 10 23:10:28 EDT 2024 Thu Nov 21 22:24:27 EST 2024 Sat Aug 24 01:10:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2975-910f4d9d2694946f8a68cf885e4f26bee24fd6efed54f7460ad88befe9fa460e3 |
Notes | Funding information U.S. Army Corps of Engineers, Engineering Research and Development Center, Coastal and Hydraulics Laboratory |
ORCID | 0000-0003-2720-3409 |
PQID | 2310201135 |
PQPubID | 2034139 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2310201135 crossref_primary_10_1002_hyp_13545 wiley_primary_10_1002_hyp_13545_HYP13545 |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Hydrological processes |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 16 1995; 31 1974; 13 1982; 18 2012; 167 2007; 347 2010; 14 2013; 27 2004; 9 1999; 45 1994; 25 1973 2004; 5 1996; 181 1972 2018; 45 1985; 21 1993; 121 2001; 40 1998; 44 2006; 20 1990 2000; 14 2000 2002; 40 2013; 56 2005; 300 2010; 115 2003; 282 2006; 29 1992; 92‐4 1980 2014; 8 2014; 50 1994; 30 1998; 12 2009; 23 2006; 12 1999; 29 2006; 7 2008 2015; 529 2011; 77 2007 2006 2005 1999; 223 2011; 34 1993 1991 2002 2018; 22 1959 1996; 10 2008; 360 1993; 144 1997; 202 1994; 122 1991; 27 2006; 42 2015; 29 2016; 537 1954; 35 2017; 11 2002; 68 1997; 123 2015 2013 2013; 494 2018; 54 Downer C. W. (e_1_2_9_21_1) 2006 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_35_1 Tarboton D. G. (e_1_2_9_77_1) 2000 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Jordan R. (e_1_2_9_46_1) 1991 Allen R. G. (e_1_2_9_3_1) 2005 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 TVA (e_1_2_9_78_1) 1972 Liou K. N. (e_1_2_9_56_1) 2002 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 Kang D. H. (e_1_2_9_49_1) 2005 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Anderson E. A. (e_1_2_9_5_1) 2006 e_1_2_9_32_1 Lei F. (e_1_2_9_55_1) 2007 e_1_2_9_76_1 Bras R. L. (e_1_2_9_10_1) 1990 e_1_2_9_70_1 Gesch D. (e_1_2_9_39_1) 2002; 68 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 Smith J. A. (e_1_2_9_75_1) 1993 e_1_2_9_7_1 e_1_2_9_80_1 Julien P. Y. (e_1_2_9_48_1) 1991 e_1_2_9_82_1 Doherty J. (e_1_2_9_19_1) 1994; 122 Duffie J. A. (e_1_2_9_24_1) 1980 Chow V. T. (e_1_2_9_13_1) 1959 Fry J. A. (e_1_2_9_37_1) 2011; 77 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 56 start-page: 77 year: 2013 end-page: 89 article-title: Evaluation of distributed hydrologic impacts of temperature‐index and energy‐based snow models publication-title: Advances in Water Resources – volume: 20 start-page: 3697 year: 2006 end-page: 3708 article-title: Incoming longwave radiation to melting snow: Observations, sensitivity and estimation in northern environments publication-title: Hydrological Processes – volume: 18 start-page: 904 issue: 4 year: 1982 end-page: 908 article-title: The permeability of a melting snow cover publication-title: Water Resources Research – volume: 300 start-page: 65 issue: 1‐4 year: 2005 end-page: 75 article-title: Process‐based snowmelt modeling: Does it require more input data than temperature‐index modeling? publication-title: Journal of Hydrology – year: 2005 – start-page: 643 year: 1990 – volume: 34 start-page: 114 issue: 1 year: 2011 end-page: 127 article-title: Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes publication-title: Advances in Water Resources – volume: 27 start-page: 2383 issue: 17 year: 2013 end-page: 2400 article-title: Subgrid variability of snow water equivalent at operational snow stations in the western USA publication-title: Hydrological Processes – volume: 45 start-page: 101 issue: 149 year: 1999 end-page: 111 article-title: A distributed temperature‐index ice‐and snowmelt model including potential direct solar radiation publication-title: Journal of Glaciology – volume: 7 start-page: 705 issue: 4 year: 2006 end-page: 712 article-title: A comparison of snow telemetry and snow course measurements in the Colorado River basin publication-title: Journal of Hydrometeorology – volume: 25 start-page: 1 issue: 1 year: 1994 end-page: 24 article-title: Entering the era of distributed snow models publication-title: Nordic Hydrology – start-page: 158 year: 2000 end-page: 186 – volume: 50 start-page: 1773 issue: 2 year: 2014 end-page: 1788 article-title: Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes publication-title: Water Resources Research – volume: 494 start-page: 160 year: 2013 end-page: 175 article-title: Calibration of a distributed snow model using MODIS snow covered area data publication-title: Journal of Hydrology – volume: 10 start-page: 1329 issue: 10 year: 1996 end-page: 1343 article-title: Incorporating radiation inputs into the snowmelt runoff model publication-title: Hydrological Processes – volume: 360 start-page: 48 issue: 1 year: 2008 end-page: 66 article-title: Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts publication-title: Journal of Hydrology – volume: 21 start-page: 1649 issue: 11 year: 1985 end-page: 1654 article-title: Radiation balances of melting snow covers at an open site in the Central Sierra Nevada, California publication-title: Water Resources Research – volume: 181 start-page: 169 issue: 1–4 year: 1996 end-page: 187 article-title: Snowmelt modelling by combining air temperature and a distributed radiation index publication-title: Journal of Hydrology – volume: 223 start-page: 1 issue: 1 year: 1999 end-page: 16 article-title: Developing the snow component of a distributed hydrological model: A step‐wise approach based on multi‐objective analysis publication-title: Journal of Hydrology – volume: 44 start-page: 498 issue: 148 year: 1998 end-page: 516 article-title: A snow‐transport model for complex terrain publication-title: Journal of Glaciology – year: 1959 – volume: 31 start-page: 657 issue: 4 year: 1995 end-page: 669 article-title: Revisiting the degree‐day method for snowmelt computations publication-title: Journal of the American Water Resources Association – volume: 29 start-page: 1209 issue: 8 year: 2006 end-page: 1221 article-title: Assimilation of snow covered area information into hydrologic and land‐surface models publication-title: Advances in Water Resources – volume: 16 start-page: 3543 issue: 18 year: 2002 end-page: 3558 article-title: Prediction of seasonal snow accumulation in cold climate forests publication-title: Hydrological Processes – volume: 537 start-page: 45 year: 2016 end-page: 60 article-title: An overview of current applications, challenges, and future trends in distributed process‐based models in hydrology publication-title: Journal of Hydrology – year: 2008 – volume: 9 start-page: 161 issue: 3 year: 2004 end-page: 174 article-title: GSSHA: Model to simulate diverse stream flow producing processes publication-title: Journal of Hydrologic Engineering – volume: 8 start-page: 329 issue: 2 year: 2014 end-page: 344 article-title: What drives basin scale spatial variability of snowpack properties in northern Colorado? publication-title: The Cryosphere – volume: 14 start-page: 339 issue: 2 year: 2010 end-page: 350 article-title: Use of satellite‐derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation publication-title: Hydrology and Earth System Sciences – volume: 202 start-page: 1 issue: 1 year: 1997 end-page: 20 article-title: Hydrological response of snowpack under rain‐on‐snow events: A field study publication-title: Journal of Hydrology – volume: 27 start-page: 1541 year: 1991 end-page: 1552 article-title: Snow accumulation and distribution in an alpine watershed publication-title: Water Resources Research – year: 1972 – volume: 5 start-page: 745 issue: 5 year: 2004 end-page: 762 article-title: Parameterization of blowing snow sublimation in a macroscale hydrology model publication-title: Journal of Hydrometeorology – start-page: 65 year: 2013 end-page: 70 – volume: 29 start-page: 558 issue: 4 year: 2006 end-page: 570 article-title: Distributed snow accumulation and ablation modeling in the American River basin publication-title: Advances in Water Resources – volume: 35 start-page: 475 issue: 3 year: 1954 end-page: 485 article-title: The transmission of water through snow publication-title: Transactions of the American Geophysical Union – volume: 30 start-page: 1515 issue: 5 year: 1994 end-page: 1527 article-title: A simple energy budget algorithm for the snowmelt runoff model publication-title: Water Resources Research – volume: 5 start-page: 774 year: 2004 end-page: 784 article-title: A sensitivity study of daytime net radiation during snowmelt to forest canopy and atmospheric conditions publication-title: Journal of Hydrometeorology – start-page: 973 year: 2015 end-page: 982 – volume: 23 start-page: 2513 issue: 17 year: 2009 end-page: 2525 article-title: The impact of coniferous forest temperature on incoming longwave radiation to melting snow publication-title: Hydrological Processes – volume: 7 start-page: 1259 issue: 6 year: 2006 end-page: 1276 article-title: A distributed snow‐evolution modeling system (SnowModel) publication-title: Journal of Hydrometeorology – volume: 14 start-page: 3257 issue: 18 year: 2000 end-page: 3271 article-title: An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California publication-title: Hydrological Processes – volume: 68 start-page: 5 issue: 1 year: 2002 end-page: 32 article-title: The national elevation dataset publication-title: Photogrammetric Engineering & Remote Sensing – volume: 12 start-page: 2867 year: 2006 end-page: 2881 article-title: An improved land surface emissivity parameter for land surface models using global remote sensing observations publication-title: Journal of Climate – volume: 347 start-page: 101 issue: 1 year: 2007 end-page: 115 article-title: The influence of forest and topography on snow accumulation and melt at the watershed‐scale publication-title: Journal of Hydrology – volume: 144 start-page: 165 issue: 1‐4 year: 1993 end-page: 192 article-title: The prairie blowing snow model: Characteristics, validation, operation publication-title: Journal of Hydrology – volume: 282 start-page: 104 issue: 1–4 year: 2003 end-page: 115 article-title: Temperature index melt modelling in mountain areas publication-title: Journal of Hydrology – volume: 40 start-page: 389 issue: 4 year: 2002 end-page: 403 article-title: Implications during transitional periods of improvements to the snow processes in the land surface scheme‐hydrological model WATCLASS publication-title: Atmosphere‐Ocean – year: 2007 – volume: 29 start-page: 31 issue: 1 year: 1999 end-page: 48 article-title: Albedo models for snow and ice on a freshwater lake publication-title: Cold Regions Science and Technology – year: 1973 – volume: 45 start-page: 797 issue: 2 year: 2018 end-page: 808 article-title: Variation in rising limb of Colorado River snowmelt runoff hydrograph controlled by dust radiative forcing in snow publication-title: Geophysical Research Letters – volume: 121 start-page: 1195 issue: 4 year: 1993 end-page: 1214 article-title: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas publication-title: Monthly Weather Review – start-page: 3.4 year: 1993 – volume: 167 start-page: 167 year: 2012 end-page: 186 article-title: Temporal inconsistencies in coarse‐scale snow water equivalent patterns: Colorado River Basin snow telemetry‐topography regressions publication-title: Pirineos – volume: 11 start-page: 505 issue: 3 year: 2017 end-page: 514 article-title: Spatio‐temporal snowmelt variability across the headwaters of the Southern Rocky Mountains publication-title: Frontiers of Earth Science – volume: 11 start-page: 482 issue: 3 year: 2017 end-page: 495 article-title: Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado publication-title: Frontiers of Earth Science – volume: 50 start-page: 2002 year: 2014 end-page: 2021 article-title: The value of satellite‐derived snow cover images for calibrating a hydrological model in snow‐dominated catchments in Central Asia publication-title: Water Resources Research – volume: 122 start-page: 336 year: 1994 article-title: PEST: Model‐independent parameter estimation publication-title: Watermark Computing, Corinda, Australia – volume: 40 start-page: 753 year: 2001 end-page: 761 article-title: Physical basis for the temperature‐based melt index method publication-title: Journal of Applied Meteorology – volume: 22 start-page: 2669 issue: 5 year: 2018 end-page: 2688 article-title: A simple temperature‐based method to estimate heterogeneous frozen ground within a distributed watershed model publication-title: Hydrology and Earth System Sciences – volume: 77 start-page: 858 issue: 9 year: 2011 end-page: 864 article-title: Completion of the 2006 national land cover database for the conterminous United States publication-title: Photogrammetric Engineering & Remote Sensing – year: 1980 – year: 2002 – year: 2006 – volume: 54 start-page: 8478 issue: 10 year: 2018 end-page: 8499 article-title: The influence of cloudiness on hydrologic fluctuations in the mountains of the western United States publication-title: Water Resources Research – volume: 29 start-page: 5397 issue: 26 year: 2015 end-page: 5413 article-title: Regional variability in dust‐on‐snow processes and impacts in the Upper Colorado River basin publication-title: Hydrological Processes – volume: 123 start-page: 386 issue: 5 year: 1997 end-page: 393 article-title: Green and Ampt infiltration with redistribution publication-title: Journal of Irrigation and Drainage Engineering – volume: 12 start-page: 1671 issue: 1011 year: 1998 end-page: 1683 article-title: The influence of the spatial distribution of snow on basin‐averaged snowmelt publication-title: Hydrological Processes – year: 1991 – start-page: 70 year: 1991 – volume: 27 start-page: 3171 issue: 12 year: 1991 end-page: 3179 article-title: Distributed snowmelt simulations in an alpine catchment: 1. Model evaluation on the basis of snow cover patterns publication-title: Water Resources Research – start-page: 195 year: 2005 – volume: 42 issue: 5 year: 2006 article-title: Comparison of ground‐based and airborne snow surface albedo parameterizations in an alpine watershed: Impacts on snowpack mass balance publication-title: Water Resources Research – volume: 92‐4 start-page: 701 year: 1992 end-page: 710 – volume: 115 year: 2010 article-title: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge publication-title: Journal of Geophysical Research ‐ Earth Surface – volume: 13 start-page: 119 issue: 67 year: 1974 end-page: 123 article-title: The capillary effects on water percolation in homogeneous snow publication-title: Journal of Glaciology – volume: 529 start-page: 723 year: 2015 end-page: 736 article-title: A radiation‐derived temperature‐index snow routine for the GSSHA hydrologic model publication-title: Journal of Hydrology – year: 2013 – ident: e_1_2_9_8_1 doi: 10.1029/2009JF001426 – ident: e_1_2_9_81_1 – ident: e_1_2_9_25_1 doi: 10.1016/S0022-1694(99)00095-5 – ident: e_1_2_9_76_1 doi: 10.1029/2018WR022687 – ident: e_1_2_9_57_1 doi: 10.1175/JHM548.1 – volume: 122 start-page: 336 year: 1994 ident: e_1_2_9_19_1 article-title: PEST: Model‐independent parameter estimation publication-title: Watermark Computing, Corinda, Australia contributor: fullname: Doherty J. – ident: e_1_2_9_36_1 doi: 10.1016/j.jhydrol.2013.04.026 – ident: e_1_2_9_70_1 doi: 10.1016/j.advwatres.2005.06.010 – volume-title: Solar engineering of thermal processes year: 1980 ident: e_1_2_9_24_1 contributor: fullname: Duffie J. A. – ident: e_1_2_9_71_1 doi: 10.1002/hyp.6383 – ident: e_1_2_9_74_1 doi: 10.1002/hyp.10569 – volume-title: Open channel hydraulics year: 1959 ident: e_1_2_9_13_1 contributor: fullname: Chow V. T. – ident: e_1_2_9_50_1 doi: 10.2166/nh.1994.0016 – ident: e_1_2_9_22_1 doi: 10.1175/JHM506.1 – ident: e_1_2_9_67_1 doi: 10.1002/hyp.7325 – ident: e_1_2_9_18_1 doi: 10.1017/CBO9780511535673 – ident: e_1_2_9_32_1 doi: 10.21236/ADA583028 – ident: e_1_2_9_80_1 doi: 10.1016/j.jhydrol.2004.05.002 – volume-title: An introduction to atmospheric radiation year: 2002 ident: e_1_2_9_56_1 contributor: fullname: Liou K. N. – volume-title: A one‐dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89 year: 1991 ident: e_1_2_9_46_1 contributor: fullname: Jordan R. – ident: e_1_2_9_69_1 doi: 10.5194/tc-8-329-2014 – volume-title: The ASCE Standardized Reference Evapotranspiration Equation year: 2005 ident: e_1_2_9_3_1 contributor: fullname: Allen R. G. – ident: e_1_2_9_17_1 doi: 10.1002/1099-1085(20001230)14:18<3257::AID-HYP199>3.0.CO;2-Z – ident: e_1_2_9_47_1 doi: 10.1016/j.jhydrol.2007.09.006 – ident: e_1_2_9_4_1 – start-page: 158 volume-title: Spatial Patterns in Catchment Hydrology: Observations and Modelling year: 2000 ident: e_1_2_9_77_1 contributor: fullname: Tarboton D. G. – ident: e_1_2_9_34_1 doi: 10.5194/hess-22-2669-2018 – ident: e_1_2_9_26_1 doi: 10.1029/91WR00506 – volume-title: Snow accumulation and ablation model—SNOW‐17, NWSRFS User Documentation year: 2006 ident: e_1_2_9_5_1 contributor: fullname: Anderson E. A. – ident: e_1_2_9_33_1 doi: 10.1016/j.jhydrol.2015.08.044 – volume: 68 start-page: 5 issue: 1 year: 2002 ident: e_1_2_9_39_1 article-title: The national elevation dataset publication-title: Photogrammetric Engineering & Remote Sensing contributor: fullname: Gesch D. – start-page: 3.4 volume-title: Handbook of Hydrology year: 1993 ident: e_1_2_9_75_1 contributor: fullname: Smith J. A. – start-page: 70 volume-title: A two‐dimensional watershed rainfall‐runoff model—CASC2D user's manual year: 1991 ident: e_1_2_9_48_1 contributor: fullname: Julien P. Y. – ident: e_1_2_9_43_1 doi: 10.1016/S0022-1694(03)00257-9 – ident: e_1_2_9_62_1 doi: 10.1061/(ASCE)0733-9437(1997)123:5(386) – ident: e_1_2_9_68_1 doi: 10.1111/j.1752-1688.1995.tb03392.x – ident: e_1_2_9_30_1 – ident: e_1_2_9_52_1 doi: 10.1016/j.advwatres.2013.03.006 – ident: e_1_2_9_7_1 doi: 10.1029/91WR02250 – ident: e_1_2_9_31_1 doi: 10.1016/j.jhydrol.2016.03.026 – ident: e_1_2_9_61_1 doi: 10.1029/2005WR004522 – ident: e_1_2_9_23_1 doi: 10.1002/2013WR014382 – ident: e_1_2_9_79_1 – start-page: 643 volume-title: Hydrology: An introduction to hydrologic science year: 1990 ident: e_1_2_9_10_1 contributor: fullname: Bras R. L. – ident: e_1_2_9_12_1 doi: 10.1016/0022-1694(95)02913-3 – ident: e_1_2_9_51_1 doi: 10.5194/hess-14-339-2010 – start-page: 195 volume-title: Distributed snowmelt modeling with GIS and CASC2D at California Gulch, Colorado year: 2005 ident: e_1_2_9_49_1 contributor: fullname: Kang D. H. – ident: e_1_2_9_72_1 doi: 10.1175/1525-7541(2004)005<0774:ASSODN>2.0.CO;2 – ident: e_1_2_9_54_1 doi: 10.1002/2013WR013711 – volume-title: Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User's Manual; Version 1.43 for Watershed Modeling system 6.1 (No. ERDC/CHL‐SR‐06‐1) year: 2006 ident: e_1_2_9_21_1 contributor: fullname: Downer C. W. – ident: e_1_2_9_15_1 doi: 10.1017/S002214300002339X – volume-title: A sensitivity study of an energy budget snow accumulation and ablation model year: 2007 ident: e_1_2_9_55_1 contributor: fullname: Lei F. – ident: e_1_2_9_60_1 doi: 10.1002/hyp.9355 – ident: e_1_2_9_9_1 doi: 10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2 – ident: e_1_2_9_14_1 doi: 10.1016/j.advwatres.2005.10.001 – ident: e_1_2_9_82_1 doi: 10.1007/s11707-017-0645-0 – ident: e_1_2_9_73_1 doi: 10.1016/S0022-1694(97)00004-8 – ident: e_1_2_9_53_1 doi: 10.1029/94WR00152 – ident: e_1_2_9_65_1 doi: 10.1002/hyp.1228 – ident: e_1_2_9_11_1 doi: 10.1002/(SICI)1099-1085(199610)10:10<1329::AID-HYP464>3.0.CO;2-W – ident: e_1_2_9_41_1 doi: 10.1016/S0165-232X(99)00002-6 – ident: e_1_2_9_63_1 doi: 10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2 – volume-title: Heat and mass transfer between a water surface and the atmosphere year: 1972 ident: e_1_2_9_78_1 contributor: fullname: TVA – ident: e_1_2_9_28_1 doi: 10.1007/s11707-017-0641-4 – ident: e_1_2_9_35_1 doi: 10.1016/j.jhydrol.2008.07.013 – ident: e_1_2_9_38_1 doi: 10.1029/TR035i003p00475 – ident: e_1_2_9_42_1 doi: 10.3189/S0022143000003087 – ident: e_1_2_9_66_1 doi: 10.1016/0022-1694(93)90171-5 – ident: e_1_2_9_29_1 doi: 10.3137/ao.400402 – ident: e_1_2_9_16_1 doi: 10.1029/WR018i004p00904 – ident: e_1_2_9_59_1 doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N – ident: e_1_2_9_20_1 doi: 10.1061/(ASCE)1084-0699(2004)9:3(161) – ident: e_1_2_9_40_1 doi: 10.1016/j.advwatres.2010.10.002 – ident: e_1_2_9_44_1 doi: 10.1061/9780784479162.093 – ident: e_1_2_9_58_1 doi: 10.3189/S0022143000002021 – volume: 77 start-page: 858 issue: 9 year: 2011 ident: e_1_2_9_37_1 article-title: Completion of the 2006 national land cover database for the conterminous United States publication-title: Photogrammetric Engineering & Remote Sensing contributor: fullname: Fry J. A. – ident: e_1_2_9_2_1 doi: 10.1029/WR021i011p01649 – ident: e_1_2_9_45_1 doi: 10.1175/JCLI3720.1 – ident: e_1_2_9_6_1 doi: 10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2 – ident: e_1_2_9_27_1 doi: 10.3989/Pirineos.2012.167008 – ident: e_1_2_9_64_1 doi: 10.1002/2017GL075826 |
SSID | ssj0004080 |
Score | 2.4050148 |
Snippet | Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3030 |
SubjectTerms | Air temperature Bedrock Computer simulation Economic forecasting Evaluation Flood forecasting Flow rates Flow velocity Hydrologic models Hydrology Infiltration Performance evaluation Radiation radiation‐derived temperature‐index River discharge Runoff Senator Beck Basin Snow Snow-water equivalent Snowmelt Snowmelt runoff snow‐covered area Stream discharge Stream flow Streamflow generation models streamflow simulation temperature‐index Water supply Watersheds |
Title | A comparison of snowmelt‐derived streamflow from temperature‐index and modified‐temperature‐index snow models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.13545 https://www.proquest.com/docview/2310201135 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-6i178L06nBPHgpaxr0zTF09CNnWSggp5K1rwwYWuH3Ry7-RH8jH4SX9J2U1AQvDXNayjvT_Je4Pd7hFyAGylXipbjDQLfYRGXTgSCOUGgEghVghFlCsXeXXj7KG46hibnqsLCFPwQyws3Exl2vzYBLgd5c0UaOlxMTNMGZgDmWCVY-IbfX2EiXds1DYMocLgrwopVyPWayy-_n0WrBPNrmmrPme72v_5wh2yV6SVtF_6wS9Yg3SMbZafz4WKfzNo0WbYepJmmeZrNxzCafry9K_TGV1DU4EfkWI-yOTXoE2roq0ruZZSy_IpUpoqOM_WsMYXFlz-JmJWp7bSTH5CHbuf-uueUrRecxEBtcQt0NVORMjjXiHEtJBeJRl0C0x4fAHhMKw4aVMB0yLgrlRADHEda4gj8Q1JLsxSOCOU4FaA34IItFgKWUAFuKlyijiDE-rhOzisjxJOCYSMuuJS9GDUYWw3WSaMyT1wGWR6b1NTkLz5OX1pD_L5A3Hvq24fjv4uekM1WJPziwqVBatOXGZyS9VzNzqyvfQJGydzg |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA86D_Pif3E6NYgHL2Vdm6YpeBm6UXGOgRP0VLomYcLWDrs5dvMj-Bn9JL6k7aagIHhrmtekvLz38hL4_R5C58L0uBmyumH1HdsgHg0NTzBiOA6PhMsj8Ch1UPTv3c4ju24qmpzLAguT8UMsLtyUZ-h4rRxcXUjXlqyhg_lYVW0gzipaIxQMUQE47O4SFWnqumngRo5BTeYWvEKmVVt8-n03WqaYXxNVvdO0Nv_3j1toI88wcSMziW20IuIdVM6LnQ_mu2jawNGi-iBOJE7jZDYSw8nH2zsHg3wVHCsISTiSw2SGFQAFKwarnH4ZpDTFIg5jjkcJf5aQxcLLn0TUyFgX20n30EOr2bvyjbz6ghEptC1EQVMS7nEFdfUIlSykLJKgTEGkRftCWERyKqTgDpEuoWbIGetD25MhtIS9j0pxEosDhCl0OWAQMGCduAJOUQ7EFRqCjoQLR-QKOitWIRhnJBtBRqdsBaDBQGuwgqrF-gS5n6WByk5VCmND94Veid8HCPynrn44_LvoKSr7vbt20L7p3B6hdZjKy4CIVVSavEzFMVpN-fREG94nKzDhAA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06QX3xW5xODeKDL2Vdm6QpPg23MVHGQAV9Kl2TMGFrh90ce_Mn-Bv9Jd6k7aagIPjWNGlabu5Nzi2ccxE6l7Yv7JDXLKdHXYv4LLR8yYlFqYikJyKIKJ0otu-8ziNvNLVMzmXBhcn0IeY_3HRkmP1aB_hIqOpCNLQ_G-miDYQuoxUCMFwL57tud0GKtE3ZNIgiajGbe4WskO1U549-P4wWCPMrTjUHTWvzX5-4hTZyfInrmUNsoyUZ76C1vNR5f7aLJnUczWsP4kThNE6mQzkYf7y9C3DHVymwJpCEQzVIpljTT7DWr8rFl2GUEVjEYSzwMBHPCjAs3PxpiJ4Zm1I76R56aDXvr9pWXnvBijTXFvZAWxHhC0109QlTPGQ8UmBLSZTDelI6RAkmlRSUKA_sHwrOe9D2VQgt6e6jUpzE8gBhBl0U3AEmrBFPQg5FYVdhIdhIepAgl9FZsQjBKJPYCDIxZScACwbGgmVUKZYnyKMsDTQ21QDGhe4LsxC_TxC0n7rm4vDvQ0_RarfRCm6vOzdHaB3e5GcsxAoqjV8m8hgtp2JyYtzuE50_36Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+snowmelt%E2%80%90derived+streamflow+from+temperature%E2%80%90index+and+modified%E2%80%90temperature%E2%80%90index+snow+models&rft.jtitle=Hydrological+processes&rft.au=Follum%2C+Michael+L.&rft.au=Niemann%2C+Jeffrey+D.&rft.au=Fassnacht%2C+Steven+R.&rft.date=2019-11-01&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=33&rft.issue=23&rft.spage=3030&rft.epage=3045&rft_id=info:doi/10.1002%2Fhyp.13545&rft.externalDBID=10.1002%252Fhyp.13545&rft.externalDocID=HYP13545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |