Effect of molecular weight on inhibition performance of modified polyethyleneimine as polymer corrosion inhibitor for carbon steel in neutral medium
Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple adsorption sites and temperature toleration, which are becoming the focus of scholars in the field of water treatment. However, the effect of molecular...
Saved in:
Published in: | Journal of applied polymer science Vol. 139; no. 15 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
15-04-2022
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple adsorption sites and temperature toleration, which are becoming the focus of scholars in the field of water treatment. However, the effect of molecular weight of polymer inhibitors is rarely studied, which has a significant impact on its performance. Polyethyleneimine (PEI) containing polar groups and numerous N atoms is a kind of water‐soluble polymer which is prone to being modified, and three kinds of modified polyethyleneimine (PEPA) inhibitors are synthesized by PEI with different molecular weights (600, 1800, 10,000) in this work. The anti‐corrosion performance of PEPA for Q235 carbon steel in neutral medium was evaluated by electrochemical measurements (Tafel polarization plots and electrochemical impendence spectroscopy [EIS]), weight‐loss tests, and surface morphology analysis. Results of weight loss method and other measurements confirm that PEPA is an excellent polymer inhibitor, and the inhibition performance of PEPA synthesized by PEI with molecular weight of 1800 is the best with an inhibition efficiency of 94.6% at a dosage of 200 mg/L at 298 K in neutral medium.
Effect of molecular weight on corrosion inhibition performance of PEPA. |
---|---|
AbstractList | Abstract
Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple adsorption sites and temperature toleration, which are becoming the focus of scholars in the field of water treatment. However, the effect of molecular weight of polymer inhibitors is rarely studied, which has a significant impact on its performance. Polyethyleneimine (PEI) containing polar groups and numerous N atoms is a kind of water‐soluble polymer which is prone to being modified, and three kinds of modified polyethyleneimine (PEPA) inhibitors are synthesized by PEI with different molecular weights (600, 1800, 10,000) in this work. The anti‐corrosion performance of PEPA for Q235 carbon steel in neutral medium was evaluated by electrochemical measurements (Tafel polarization plots and electrochemical impendence spectroscopy [EIS]), weight‐loss tests, and surface morphology analysis. Results of weight loss method and other measurements confirm that PEPA is an excellent polymer inhibitor, and the inhibition performance of PEPA synthesized by PEI with molecular weight of 1800 is the best with an inhibition efficiency of 94.6% at a dosage of 200 mg/L at 298 K in neutral medium. Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple adsorption sites and temperature toleration, which are becoming the focus of scholars in the field of water treatment. However, the effect of molecular weight of polymer inhibitors is rarely studied, which has a significant impact on its performance. Polyethyleneimine (PEI) containing polar groups and numerous N atoms is a kind of water‐soluble polymer which is prone to being modified, and three kinds of modified polyethyleneimine (PEPA) inhibitors are synthesized by PEI with different molecular weights (600, 1800, 10,000) in this work. The anti‐corrosion performance of PEPA for Q235 carbon steel in neutral medium was evaluated by electrochemical measurements (Tafel polarization plots and electrochemical impendence spectroscopy [EIS]), weight‐loss tests, and surface morphology analysis. Results of weight loss method and other measurements confirm that PEPA is an excellent polymer inhibitor, and the inhibition performance of PEPA synthesized by PEI with molecular weight of 1800 is the best with an inhibition efficiency of 94.6% at a dosage of 200 mg/L at 298 K in neutral medium. Effect of molecular weight on corrosion inhibition performance of PEPA. Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple adsorption sites and temperature toleration, which are becoming the focus of scholars in the field of water treatment. However, the effect of molecular weight of polymer inhibitors is rarely studied, which has a significant impact on its performance. Polyethyleneimine (PEI) containing polar groups and numerous N atoms is a kind of water‐soluble polymer which is prone to being modified, and three kinds of modified polyethyleneimine (PEPA) inhibitors are synthesized by PEI with different molecular weights (600, 1800, 10,000) in this work. The anti‐corrosion performance of PEPA for Q235 carbon steel in neutral medium was evaluated by electrochemical measurements (Tafel polarization plots and electrochemical impendence spectroscopy [EIS]), weight‐loss tests, and surface morphology analysis. Results of weight loss method and other measurements confirm that PEPA is an excellent polymer inhibitor, and the inhibition performance of PEPA synthesized by PEI with molecular weight of 1800 is the best with an inhibition efficiency of 94.6% at a dosage of 200 mg/L at 298 K in neutral medium. |
Author | Fu, Chaoyang Chen, Tianqi Chen, Mengjin |
Author_xml | – sequence: 1 givenname: Tianqi orcidid: 0000-0003-3839-3164 surname: Chen fullname: Chen, Tianqi organization: Huazhong University of Science and Technology – sequence: 2 givenname: Mengjin surname: Chen fullname: Chen, Mengjin organization: Huazhong University of Science and Technology – sequence: 3 givenname: Chaoyang surname: Fu fullname: Fu, Chaoyang email: cyfu@hust.edu.cn organization: Huazhong University of Science and Technology |
BookMark | eNp1kMtOwzAQRS0EEqWw4A8ssWKRduwmTbxEiJeERBewjvwYU1eJHZxEqP_BB2MaJFasZnTnzB3NPSPHPngk5JLBggHwpey6RcEE50dkxkCUWb7m1TGZpRnLKiGKU3LW9zsAxgpYz8jXnbWoBxosbUODemxkpJ_o3rdJ89T5rVNucKntMNoQW-k1TrRx1qGhXWj2OGz3DXp0rfNIZX8QW4xUhxhD7_6cQqTJhWoZVRL7AbFJI-pxHKJsaIvGje05ObGy6fHit87J2_3d6-1j9vzy8HR785xpLkqeWW20lrJYKZCwVraqQBjBysoynnNuWFkqroQEyQ0UyuSgCgMiB4OFVKxazcnV5NvF8DFiP9S7MEafTtZ8zXNW5PkKEnU9UTq90ke0dRddK-O-ZlD_hF6n0OtD6IldTuyna3D_P1jfbDbTxjfgSokj |
CitedBy_id | crossref_primary_10_3390_ma16082954 crossref_primary_10_1016_j_mtcomm_2024_108673 |
Cites_doi | 10.1038/s41529-017-0005-2 10.1016/j.desal.2012.11.028 10.1016/j.molliq.2019.111975 10.1016/j.matchemphys.2007.04.009 10.1039/d0cc03061a 10.1016/j.molliq.2021.116638 10.1016/j.corsci.2014.04.044 10.1016/j.molliq.2021.115380 10.1016/j.carbpol.2020.116110 10.1016/j.carbpol.2015.12.038 10.1016/j.corsci.2016.05.028 10.1016/j.corsci.2020.108960 10.1016/j.desal.2016.04.010 10.1021/acsomega.9b02570 10.1016/j.corsci.2008.12.008 10.1039/C8NJ01762J 10.1016/j.corsci.2019.02.019 10.1016/j.jcis.2016.03.023 10.1515/corrrev-2018-0058 10.1021/acsami.8b09487 10.1016/j.apsusc.2015.09.159 10.1016/j.corsci.2020.109011 10.1016/j.molstruc.2021.130881 10.1016/j.pmatsci.2017.07.006 10.1016/j.reactfunctpolym.2015.08.006 10.1016/j.molliq.2019.02.093 10.1016/j.molliq.2021.116803 10.1016/j.porgcoat.2019.04.005 10.1016/j.molliq.2020.115010 10.1016/j.corsci.2014.10.052 10.1016/j.pmatsci.2019.04.002 10.1016/j.jcis.2019.01.113 10.1016/j.jcis.2020.03.065 10.1016/j.molliq.2020.115132 10.1016/j.molliq.2021.116610 10.1016/j.watres.2019.115134 10.1016/j.porgcoat.2019.105451 10.1016/j.jtice.2016.08.031 10.1016/j.porgcoat.2020.106126 10.1016/j.apsusc.2019.01.113 10.1016/j.corsci.2020.109002 10.1016/j.molliq.2020.115110 10.1016/j.matchemphys.2009.03.010 10.1016/j.corsci.2019.108097 10.1016/j.corsci.2020.108632 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.51922 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_51922 APP51922 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c2972-fcdccaa53b0a06bf8809d9178f12422d177b2b9a0a2d05bd40b5d0940de5ab183 |
IEDL.DBID | 33P |
ISSN | 0021-8995 |
IngestDate | Thu Oct 10 18:11:53 EDT 2024 Fri Aug 23 00:42:34 EDT 2024 Sat Aug 24 00:57:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2972-fcdccaa53b0a06bf8809d9178f12422d177b2b9a0a2d05bd40b5d0940de5ab183 |
ORCID | 0000-0003-3839-3164 |
PQID | 2624154430 |
PQPubID | 1006379 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2624154430 crossref_primary_10_1002_app_51922 wiley_primary_10_1002_app_51922_APP51922 |
PublicationCentury | 2000 |
PublicationDate | April 15, 2022 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: April 15, 2022 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 1 2019; 4 2007; 105 2015; 95 2021; 324 2021; 326 2021; 325 2019; 37 2019; 104 2020; 56 2019; 281 2018; 42 2019; 167 2019; 541 2016; 140 2009; 116 2014; 86 2021; 1244 2017; 90 2009; 51 2021; 178 2015; 357 2020; 572 2021 2020 2013; 313 2021; 338 2020; 237 2016; 111 2019; 476 2019; 158 2020; 177 2021; 152 2020; 298 2015; 90 2019; 151 2018; 10 2016; 472 2016; 68 2016; 392 2019; 132 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 167 year: 2019 publication-title: Water Res. – volume: 37 start-page: 71 year: 2019 publication-title: Corros. Rev. – volume: 338 start-page: 116638 year: 2021 publication-title: J. Mol. Liq. – volume: 178 start-page: 108960 year: 2021 publication-title: Corros. Sci. – volume: 152 start-page: 106126 year: 2021 publication-title: Prog. Org. Coat. – volume: 4 start-page: 21148 year: 2019 publication-title: ACS Omega – volume: 56 start-page: 11931 year: 2020 publication-title: Chem. Commun. – volume: 392 start-page: 1 year: 2016 publication-title: Desalination – volume: 95 start-page: 25 year: 2015 publication-title: React. Funct. Polym. – volume: 111 start-page: 370 year: 2016 publication-title: Corros. Sci. – volume: 298 start-page: 111975 year: 2020 publication-title: J. Mol. Liq. – volume: 116 start-page: 198 year: 2009 publication-title: Mater. Chem. Phys. – volume: 158 start-page: 108097 year: 2019 publication-title: Corros. Sci. – volume: 325 start-page: 115110 year: 2021 publication-title: J. Mol. Liq. – start-page: 105451 year: 2020 publication-title: Prog. Org. Coat. – volume: 177 start-page: 109002 year: 2020 publication-title: Corros. Sci. – volume: 90 start-page: 159 year: 2017 publication-title: Prog. Mater. Sci. – volume: 281 start-page: 528 year: 2019 publication-title: J. Mol. Liq. – volume: 326 start-page: 115380 year: 2021 publication-title: J. Mol. Liq. – volume: 572 start-page: 91 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 51 start-page: 658 year: 2009 publication-title: Corros. Sci. – volume: 86 start-page: 17 year: 2014 publication-title: Corros. Sci. – volume: 541 start-page: 418 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 105 start-page: 114 year: 2007 publication-title: Mater. Chem. Phys. – volume: 472 start-page: 52 year: 2016 publication-title: J. Colloid Interface Sci. – volume: 325 start-page: 115132 year: 2021 publication-title: J. Mol. Liq. – volume: 132 start-page: 417 year: 2019 publication-title: Prog. Org. Coat. – volume: 1 start-page: 4 year: 2017 publication-title: NPJ Mater. Degrad. – volume: 1244 start-page: 130881 year: 2021 publication-title: J. Mol. Struct. – volume: 324 start-page: 115010 year: 2021 publication-title: J. Mol. Liq. – volume: 357 start-page: 1294 year: 2015 publication-title: Appl. Surf. Sci. – volume: 42 start-page: 12649 year: 2018 publication-title: New J. Chem. – volume: 313 start-page: 18 year: 2013 publication-title: Desalination – volume: 338 start-page: 116610 year: 2021 publication-title: J. Mol. Liq. – volume: 476 start-page: 422 year: 2019 publication-title: Appl. Surf. Sci. – volume: 177 start-page: 109011 year: 2020 publication-title: Corros. Sci. – volume: 10 start-page: 28112 year: 2018 publication-title: ACS Appl. Mater. Interfaces – start-page: 116803 year: 2021 publication-title: J. Mol. Liq. – volume: 281 start-page: 528 year: 2019 publication-title: Corros. Sci. – volume: 140 start-page: 314 year: 2016 publication-title: Carbohydr. Polym. – volume: 151 start-page: 190 year: 2019 publication-title: Corros. Sci. – volume: 68 start-page: 169 year: 2016 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 237 year: 2020 publication-title: Carbohydr. Polym. – volume: 104 start-page: 380 year: 2019 publication-title: Prog. Mater. Sci. – volume: 90 start-page: 572 year: 2015 publication-title: Corros. Sci. – ident: e_1_2_7_7_1 doi: 10.1038/s41529-017-0005-2 – ident: e_1_2_7_3_1 doi: 10.1016/j.desal.2012.11.028 – ident: e_1_2_7_19_1 doi: 10.1016/j.molliq.2019.111975 – ident: e_1_2_7_32_1 doi: 10.1016/j.matchemphys.2007.04.009 – ident: e_1_2_7_26_1 doi: 10.1039/d0cc03061a – ident: e_1_2_7_38_1 doi: 10.1016/j.molliq.2021.116638 – ident: e_1_2_7_13_1 doi: 10.1016/j.corsci.2014.04.044 – ident: e_1_2_7_21_1 doi: 10.1016/j.molliq.2021.115380 – ident: e_1_2_7_24_1 doi: 10.1016/j.carbpol.2020.116110 – ident: e_1_2_7_29_1 doi: 10.1016/j.carbpol.2015.12.038 – ident: e_1_2_7_16_1 doi: 10.1016/j.corsci.2016.05.028 – ident: e_1_2_7_2_1 doi: 10.1016/j.corsci.2020.108960 – ident: e_1_2_7_30_1 doi: 10.1016/j.desal.2016.04.010 – ident: e_1_2_7_35_1 doi: 10.1021/acsomega.9b02570 – ident: e_1_2_7_31_1 doi: 10.1016/j.corsci.2008.12.008 – ident: e_1_2_7_44_1 doi: 10.1039/C8NJ01762J – ident: e_1_2_7_18_1 doi: 10.1016/j.corsci.2019.02.019 – ident: e_1_2_7_39_1 doi: 10.1016/j.jcis.2016.03.023 – ident: e_1_2_7_25_1 doi: 10.1515/corrrev-2018-0058 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.8b09487 – ident: e_1_2_7_46_1 doi: 10.1016/j.apsusc.2015.09.159 – ident: e_1_2_7_12_1 doi: 10.1016/j.corsci.2020.109011 – ident: e_1_2_7_41_1 doi: 10.1016/j.molstruc.2021.130881 – ident: e_1_2_7_14_1 doi: 10.1016/j.pmatsci.2017.07.006 – ident: e_1_2_7_28_1 doi: 10.1016/j.reactfunctpolym.2015.08.006 – ident: e_1_2_7_17_1 doi: 10.1016/j.molliq.2019.02.093 – ident: e_1_2_7_36_1 doi: 10.1016/j.molliq.2021.116803 – ident: e_1_2_7_40_1 doi: 10.1016/j.porgcoat.2019.04.005 – ident: e_1_2_7_42_1 doi: 10.1016/j.molliq.2020.115010 – ident: e_1_2_7_43_1 doi: 10.1016/j.corsci.2014.10.052 – ident: e_1_2_7_8_1 doi: 10.1016/j.pmatsci.2019.04.002 – ident: e_1_2_7_23_1 doi: 10.1016/j.jcis.2019.01.113 – ident: e_1_2_7_22_1 doi: 10.1016/j.jcis.2020.03.065 – ident: e_1_2_7_20_1 doi: 10.1016/j.molliq.2020.115132 – ident: e_1_2_7_45_1 doi: 10.1016/j.molliq.2021.116610 – ident: e_1_2_7_4_1 doi: 10.1016/j.watres.2019.115134 – ident: e_1_2_7_10_1 doi: 10.1016/j.porgcoat.2019.105451 – ident: e_1_2_7_5_1 doi: 10.1016/j.jtice.2016.08.031 – ident: e_1_2_7_9_1 doi: 10.1016/j.porgcoat.2020.106126 – ident: e_1_2_7_37_1 doi: 10.1016/j.apsusc.2019.01.113 – ident: e_1_2_7_11_1 doi: 10.1016/j.corsci.2020.109002 – ident: e_1_2_7_27_1 doi: 10.1016/j.molliq.2020.115110 – ident: e_1_2_7_33_1 doi: 10.1016/j.matchemphys.2009.03.010 – ident: e_1_2_7_6_1 doi: 10.1016/j.corsci.2019.108097 – ident: e_1_2_7_15_1 doi: 10.1016/j.corsci.2020.108632 |
SSID | ssj0011506 |
Score | 2.4534264 |
Snippet | Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple adsorption... Abstract Compared with small organic molecular, polymer corrosion inhibitors exhibit better anti‐corrosion performance in neutral medium because of multiple... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon steel Carbon steels Chemical synthesis Corrosion Corrosion inhibitors electrochemical measurements Electrode polarization Killed steels Materials science Molecular weight Organic chemistry Polyethyleneimine polymer corrosion inhibitor Polymers Q235 carbon steel Water treatment Weight loss measurement |
Title | Effect of molecular weight on inhibition performance of modified polyethyleneimine as polymer corrosion inhibitor for carbon steel in neutral medium |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.51922 https://www.proquest.com/docview/2624154430 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66kx78LU6nBPHgJSxNm3XB09CNnWSggreSNCkWtna0FvH_8A_2JV3XeRAEbyVNQ5OXvHzvJe97CN3QWCjKlCGAVTkJuPCJEMojXqD9UFAWB8r6dKdP4ePr8GFsaXLumliYmh9i7XCzK8Ppa7vApSr7LWmoTYMF8INZ_QtWggvf8GfrEwTLnFdf7_AI2BS8YRWirL_-8ude1ALMTZjq9pnJ_r_-8ADtreAlHtXz4RBtmewI7W6QDh6jr5qwGOcJXjS5cfGH85DiPMNp9pYqd48LL9uggrq2ThNArHiZzz8NCBg2LGOTghksS1e4MAUGaxY6m7Yt5QWGVnAsCwWFMKnMHF7hzFTWyYLt4X61OEEvk_Hz_ZSscjOQmImQkSTWIHvJfUUlHagE1IDQYPoNEwAMjGkvDBVTQlLJNOVKB1Rxbbn6tOFSgR45RZ0sz8wZwkpSlpghFwzgjPaE5NznShp7SJhQL-6i60ZK0bKm4IhqsmUWwRBHboi7qNfIL1qtwjJiA4tPgsCnXXTrJPV7A9FoNnMP53-veoF2mI2GsNSPvIc670VlLtF2qasrNxm_AXDq48c |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46D-rB3-J0ahAPXsrStFkX8DJ0Y-IcAyd4K0mT4mBrR-cQ_w__YF_SdZ0HQfBW0jQ0eS8vX17yvofQNYm4JFRqB7Aqc3zGPYdz6Tqur7yAExr50vh0u89B_7V53zY0ObdFLEzOD7F0uJmZYe21meDGIV0vWUNNHizAHxQM8Ibf8LlJ3OB5g-UZguHOyy94uA7sKljBK0Roffnpz9WohJirQNWuNJ3d__3jHtpZIEzcylViH63p5ABtr_AOHqKvnLMYpzGeFOlx8Yd1kuI0waPkbSTtVS48LeMK8tpqFANoxdN0_KlBxrBmaZMXTGMxs4UTnWHY0EJvR2VLaYahFRyJTEIh6JUewyuc6Lnxs2Bzvj-fHKGXTnt413UW6RmciPKAOnGkQPyCeZII0pAxWAKuYPfXjAEzUKrcIJBUckEEVYRJ5RPJlKHrU5oJCabkGFWSNNEnCEtBaKybjFNANMrlgjGPSaHNOWFM3KiKrgoxhdOchSPM-ZZpCEMc2iGuolohwHAxEWchbRiI4vseqaIbK6rfGwhbg4F9OP171Uu02R0-9cLeQ__xDG1RExxhmCBZDVXes7k-R-szNb-wmvkNvGvn6A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46QfTgb3E6NYgHL2Vp2qwLnobbmCijoIK3kjQpFrZ2bA7x__AP9iVd13kQBG8lTUOTl7x87yXvewhdk5hLQqV2AKsyx2fccziXruP6ygs4obEvjU938BQMX9vdnqHJuS1jYQp-iKXDzawMq6_NAp-opFmRhpo0WAA_KOjfDd_AcBO_4YXLIwRDnVfc73AdMCpYSStEaHP56c_NqEKYqzjVbjT93X_94h7aWeBL3CkmxD5a09kB2l5hHTxEXwVjMc4TPC6T4-IP6yLFeYbT7C2V9iIXnlRRBUVtlSYAWfEkH31qkDDsWNpkBdNYzGzhWE8xmLPQ2bRqKZ9iaAXHYiqhEGaVHsErnOm58bJgc7o_Hx-hl37v-W7gLJIzODHlAXWSWIHwBfMkEaQlE9ADXIHt104AMVCq3CCQVHJBBFWESeUTyZQh61OaCQmK5BjVsjzTJwhLQWii24xTwDPK5YIxj0mhzSlhQty4jq5KKUWTgoMjKtiWaQRDHNkhrqNGKb9osQxnEW0ZgOL7HqmjGyup3xuIOmFoH07_XvUSbYbdfvR4P3w4Q1vUREYYGkjWQLX36Vyfo_WZml_YefkNIOLmlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+molecular+weight+on+inhibition+performance+of+modified+polyethyleneimine+as+polymer+corrosion+inhibitor+for+carbon+steel+in+neutral+medium&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Chen%2C+Tianqi&rft.au=Chen%2C+Mengjin&rft.au=Fu%2C+Chaoyang&rft.date=2022-04-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=139&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.51922&rft.externalDBID=10.1002%252Fapp.51922&rft.externalDocID=APP51922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |