Molecular cloning and functional characterization of two glycerol‐3‐phosphate acyltransferases from the green microalga Chlamydomonas reinhardtii
SUMMARY Glycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In plants, there are different isozymes for GPAT in different organelles, including the endoplasmic reticulum (ER) membrane‐bound GPAT and the so...
Saved in:
Published in: | Phycological research Vol. 67; no. 2; pp. 102 - 111 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kyoto, Japan
John Wiley & Sons Australia, Ltd
01-04-2019
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | SUMMARY
Glycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In plants, there are different isozymes for GPAT in different organelles, including the endoplasmic reticulum (ER) membrane‐bound GPAT and the soluble chloroplast (plastid) GPAT. In microalgae, studies on GPAT have been limited; only the microsomal TpGPAT from the diatom Thalassiosira pseudonana has been characterized by enzymatic assay using heterologous expression in Saccharomyces cerevisiae. In the present study, we report the cloning and sequence analysis of two genes encoding GPAT isozymes from the green microalga Chlamydomonas reinhardtii, CrGPATer and CrGPATcl. CrGPATer is a homolog to Arabidopsis thaliana AtGPAT9, which encodes an ER‐located GPAT, and CrGPATcl is a homolog to A. thaliana ATS1, which encodes a chloroplast‐located GPAT. We mapped the 3′UTRs of both CrGPATer and CrGPATcl and identified three alternative splicings in CrGPATer mRNA and two in CrGPATcl mRNA. Interestingly, one of these splicings results from a trans‐splicing event in CrGPATer mRNA. The heterologous expression of the cDNAs from each gene in the S. cerevisiae gat1Δ mutant demonstrated, for the first time, that both CrGPATer and CrGPATcl show GPAT activity. Moreover, GPAT activity for CrGPATer was detected in the membrane extract, while that for CrGPATcl was detected in both the soluble and membrane extracts. Overall, these findings represent an important contribution to the better understanding of lipid metabolism in C. reinhardtii and in green microalgae in general. |
---|---|
AbstractList | SUMMARYGlycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In plants, there are different isozymes for GPAT in different organelles, including the endoplasmic reticulum (ER) membrane‐bound GPAT and the soluble chloroplast (plastid) GPAT. In microalgae, studies on GPAT have been limited; only the microsomal TpGPAT from the diatom Thalassiosira pseudonana has been characterized by enzymatic assay using heterologous expression in Saccharomyces cerevisiae. In the present study, we report the cloning and sequence analysis of two genes encoding GPAT isozymes from the green microalga Chlamydomonas reinhardtii, CrGPATer and CrGPATcl. CrGPATer is a homolog to Arabidopsis thaliana AtGPAT9, which encodes an ER‐located GPAT, and CrGPATcl is a homolog to A. thaliana ATS1, which encodes a chloroplast‐located GPAT. We mapped the 3′UTRs of both CrGPATer and CrGPATcl and identified three alternative splicings in CrGPATer mRNA and two in CrGPATcl mRNA. Interestingly, one of these splicings results from a trans‐splicing event in CrGPATer mRNA. The heterologous expression of the cDNAs from each gene in the S. cerevisiae gat1Δ mutant demonstrated, for the first time, that both CrGPATer and CrGPATcl show GPAT activity. Moreover, GPAT activity for CrGPATer was detected in the membrane extract, while that for CrGPATcl was detected in both the soluble and membrane extracts. Overall, these findings represent an important contribution to the better understanding of lipid metabolism in C. reinhardtii and in green microalgae in general. SUMMARY Glycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In plants, there are different isozymes for GPAT in different organelles, including the endoplasmic reticulum (ER) membrane‐bound GPAT and the soluble chloroplast (plastid) GPAT. In microalgae, studies on GPAT have been limited; only the microsomal TpGPAT from the diatom Thalassiosira pseudonana has been characterized by enzymatic assay using heterologous expression in Saccharomyces cerevisiae. In the present study, we report the cloning and sequence analysis of two genes encoding GPAT isozymes from the green microalga Chlamydomonas reinhardtii, CrGPATer and CrGPATcl. CrGPATer is a homolog to Arabidopsis thaliana AtGPAT9, which encodes an ER‐located GPAT, and CrGPATcl is a homolog to A. thaliana ATS1, which encodes a chloroplast‐located GPAT. We mapped the 3′UTRs of both CrGPATer and CrGPATcl and identified three alternative splicings in CrGPATer mRNA and two in CrGPATcl mRNA. Interestingly, one of these splicings results from a trans‐splicing event in CrGPATer mRNA. The heterologous expression of the cDNAs from each gene in the S. cerevisiae gat1Δ mutant demonstrated, for the first time, that both CrGPATer and CrGPATcl show GPAT activity. Moreover, GPAT activity for CrGPATer was detected in the membrane extract, while that for CrGPATcl was detected in both the soluble and membrane extracts. Overall, these findings represent an important contribution to the better understanding of lipid metabolism in C. reinhardtii and in green microalgae in general. Glycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In plants, there are different isozymes for GPAT in different organelles, including the endoplasmic reticulum (ER) membrane‐bound GPAT and the soluble chloroplast (plastid) GPAT. In microalgae, studies on GPAT have been limited; only the microsomal TpGPAT from the diatom Thalassiosira pseudonana has been characterized by enzymatic assay using heterologous expression in Saccharomyces cerevisiae . In the present study, we report the cloning and sequence analysis of two genes encoding GPAT isozymes from the green microalga Chlamydomonas reinhardtii , CrGPATer and CrGPATcl. CrGPATer is a homolog to Arabidopsis thaliana AtGPAT9 , which encodes an ER‐located GPAT, and CrGPATcl is a homolog to A. thaliana ATS1 , which encodes a chloroplast‐located GPAT. We mapped the 3′UTRs of both CrGPATer and CrGPATcl and identified three alternative splicings in CrGPATer mRNA and two in CrGPATcl mRNA. Interestingly, one of these splicings results from a trans ‐splicing event in CrGPATer mRNA. The heterologous expression of the cDNAs from each gene in the S. cerevisiae gat1 Δ mutant demonstrated, for the first time, that both CrGPATer and CrGPATcl show GPAT activity. Moreover, GPAT activity for CrGPATer was detected in the membrane extract, while that for CrGPATcl was detected in both the soluble and membrane extracts. Overall, these findings represent an important contribution to the better understanding of lipid metabolism in C. reinhardtii and in green microalgae in general. |
Author | Peraza‐Echeverria, Santy Echevarría‐Machado, Ileana Casais‐Molina, Melissa L. Herrera‐Valencia, Virginia A. Duarte‐Coello, María E. |
Author_xml | – sequence: 1 givenname: María E. surname: Duarte‐Coello fullname: Duarte‐Coello, María E. organization: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) – sequence: 2 givenname: Virginia A. surname: Herrera‐Valencia fullname: Herrera‐Valencia, Virginia A. organization: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) – sequence: 3 givenname: Ileana surname: Echevarría‐Machado fullname: Echevarría‐Machado, Ileana organization: Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY) – sequence: 4 givenname: Melissa L. surname: Casais‐Molina fullname: Casais‐Molina, Melissa L. organization: Universidad Autónoma de Yucatán (UADY) – sequence: 5 givenname: Santy orcidid: 0000-0001-8982-2008 surname: Peraza‐Echeverria fullname: Peraza‐Echeverria, Santy email: santype@cicy.mx organization: Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) |
BookMark | eNp1kMlKBDEQhoMouB58g4AnD61Jej_K4AaKInpuatKV6QzppE16kPbkI3jxBX0SM45XC4pKJV9q-ffJtnUWCTnm7IxHOx88nnGR5myL7PEsYwmv0nw7nlMhElaJepfsh7BkjIm8qvfI170zKFcGPJXGWW0XFGxL1crKUTsLhsoOPMgRvX6H9RV1io5vji7MJNE78_3xmUYfOheGDkakICczerBBoYeAgSrvejp2SBce0dJeS-_ALIDOOgP91Lo-NgrUo7axVztqfUh2FJiAR3_xgLxcXT7PbpK7h-vb2cVdIkVdskTmwFQtizzN5nlVtgIyqdS8qjOYS8C6jC85Z5IVObZYyaItqrh3y1hd8kK16QE52dQdvHtdYRibpVv5uHVohGCs5FHCLFKnGyrOHYJH1Qxe9-CnhrNmrXrMsflVPbLnG_ZNG5z-B5vHp8vNjx86NIug |
CitedBy_id | crossref_primary_10_1016_j_algal_2019_101758 crossref_primary_10_1016_j_algal_2020_102172 crossref_primary_10_3390_plants10040675 crossref_primary_10_1093_plphys_kiad091 |
Cites_doi | 10.1007/s10811-015-0588-3 10.1074/jbc.M111.334052 10.1016/0003-9861(59)90090-6 10.1002/wrna.71 10.1093/molbev/msm092 10.1093/nar/gkw1071 10.1104/pp.15.01563 10.1016/0378-1119(95)00711-3 10.1007/s00425-007-0514-2 10.1139/B08-145 10.1093/nar/25.17.3389 10.1111/pbi.12572 10.5504/BBEQ.2011.0155 10.1007/s00709-012-0448-9 10.1111/j.1432-1033.1983.tb07096.x 10.1016/S0005-2760(97)00115-X 10.1093/nar/gkr944 10.1007/BF02540647 10.1074/jbc.M104749200 10.1105/tpc.113.121418 10.1016/j.plaphy.2009.05.008 10.1016/j.tig.2006.01.001 10.1007/s10811-015-0634-1 10.1089/omi.2012.0094 10.1007/s00425-010-1232-8 10.1105/tpc.012427 10.1007/s00284-011-9956-7 10.1111/tpj.12787 10.1111/tpj.13089 10.1021/bi982805d 10.1104/pp.68.3.653 10.1007/s00299-014-1711-7 10.1016/j.biortech.2013.07.088 10.4161/psb.6.11.17777 10.1146/annurev.arplant.52.1.363 10.1111/j.1365-313X.2008.03492.x 10.1093/nar/gks400 10.1128/EC.05242-11 10.1016/j.febslet.2011.05.018 10.1093/aob/mcs264 10.1186/s13068-016-0478-1 10.1186/s12864-017-3602-0 10.1007/BF00019943 10.1016/0022-2836(82)90515-0 10.1093/gbe/evw025 10.3389/fpls.2016.00828 10.1186/1471-2164-11-114 |
ContentType | Journal Article |
Copyright | 2018 Japanese Society of Phycology 2019 Japanese Society of Phycology |
Copyright_xml | – notice: 2018 Japanese Society of Phycology – notice: 2019 Japanese Society of Phycology |
DBID | AAYXX CITATION 7TN 8FD F1W FR3 H95 H99 L.F L.G M7N P64 |
DOI | 10.1111/pre.12350 |
DatabaseName | CrossRef Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1440-1835 |
EndPage | 111 |
ExternalDocumentID | 10_1111_pre_12350 PRE12350 |
Genre | article |
GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología (CONACYT) funderid: 254372; 269833; 169217 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBD EBS EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TN5 TUS UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT ZJWQK ZZTAW ~IA ~KM ~WT AAMNL AAYXX CITATION 7TN 8FD F1W FR3 H95 H99 L.F L.G M7N P64 |
ID | FETCH-LOGICAL-c2970-c5a0f9c6534b587d2a4cffb894abcae97653510c065ede8c6d68025d009716fd3 |
IEDL.DBID | 33P |
ISSN | 1322-0829 |
IngestDate | Thu Oct 10 17:17:58 EDT 2024 Thu Nov 21 20:56:02 EST 2024 Sat Aug 24 01:07:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2970-c5a0f9c6534b587d2a4cffb894abcae97653510c065ede8c6d68025d009716fd3 |
ORCID | 0000-0001-8982-2008 |
PQID | 2200711444 |
PQPubID | 1096355 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2200711444 crossref_primary_10_1111_pre_12350 wiley_primary_10_1111_pre_12350_PRE12350 |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | Kyoto, Japan |
PublicationPlace_xml | – name: Kyoto, Japan – name: Richmond |
PublicationTitle | Phycological research |
PublicationYear | 2019 |
Publisher | John Wiley & Sons Australia, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 34 2010; 11 2009; 47 2012; 287 2007; 226 2009; 87 1993; 21 2017; 45 2014; 26 2003; 15 2011; 10 2013; 17 2015; 82 2000 2006; 22 2011; 63 2010; 232 2013; 111 2016; 85 2011; 24 2012; 26 2001; 52 1989 2011; 2 1959; 82 1997; 25 1981; 68 2013; 146 2008; 54 2004 2011; 6 1996; 168 2004; D60 2016; 14 1997; 1348 2001; 276 2016; 7 1990; 67 1999; 38 2017; 18 2013; 250 1982; 157 2016; 28 2016; 170 1998; 6 2011; 585 2016; 8 2016; 9 2012; 40 1983; 129 Lodish H. (e_1_2_6_35_1) 2000 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Sonnhammer E. L. L. (e_1_2_6_45_1) 1998; 6 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Nelson D. L. (e_1_2_6_40_1) 2004 Tamada T. (e_1_2_6_47_1) 2004; 60 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Harris E. H. (e_1_2_6_19_1) 1989 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 Tamura K. (e_1_2_6_48_1) 2011; 24 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 9 start-page: 60 year: 2016 article-title: Molecular characterization of a glycerol 3‐phosphate acyltransferase reveals key features essential for triacylglycerol production in publication-title: Biotechnol. Biofuels – volume: 10 start-page: 1592 year: 2011 end-page: 606 article-title: Structural correlates of cytoplasmic and chloroplast lipid body synthesis in and stimulation of lipid body production with acetate boost publication-title: Eukaryot. Cell – volume: 1348 start-page: 10 year: 1997 end-page: 6 article-title: Glycerol‐3‐phosphate acyltransferase in plants publication-title: Biochem. Biophys. Acta – volume: 87 start-page: 544 year: 2009 end-page: 51 article-title: A membrane‐bound glycerol‐3‐phosphate acyltransferase from regulates acyl composition of glycerolipids publication-title: Botany – volume: 146 start-page: 310 year: 2013 end-page: 6 article-title: Triacylglycerol profiling of microalgae and publication-title: Bioresour. Technol. – year: 1989 – volume: 54 start-page: 621 year: 2008 end-page: 39 article-title: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances publication-title: Plant J. – volume: 26 start-page: 1645 year: 2014 end-page: 65 article-title: Choreography of transcriptomes and lipidomes of reveals the mechanisms of oil synthesis in microalgae publication-title: Plant Cell – volume: 7 start-page: 828 year: 2016 article-title: The RNA structure of cis‐acting translational elements of the chloroplast psbC mRNA in publication-title: Front. Plant Sci. – volume: 6 start-page: 1695 year: 2011 end-page: 9 article-title: sn‐Glycerol‐ 3‐phosphate acyltransferases in plants publication-title: Plant Signal. Behav. – volume: 25 start-page: 3389 year: 1997 end-page: 402 article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. – volume: 52 start-page: 363 year: 2001 end-page: 406 article-title: as a model organism publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol. – volume: 34 start-page: 545 year: 2015 end-page: 55 article-title: Microalgal lipid droplets: composition, diversity, biogenesis and functions publication-title: Plant Cell Rep. – volume: 250 start-page: 639 year: 2013 end-page: 50 article-title: On the physiological significance of alternative splicing events in higher plants publication-title: Protoplasma – volume: 63 start-page: 151 year: 2011 end-page: 7 article-title: The green microalga as a suitable source of oil for biodiesel production publication-title: Curr. Microbiol. – volume: 168 start-page: 117 year: 1996 end-page: 21 article-title: Cloning and characterization of the actin‐encoding gene of publication-title: Gene – volume: 111 start-page: 191 year: 2013 end-page: 205 article-title: Mastoparan‐induced programmed cell death in the unicellular alga publication-title: Ann. Bot. – volume: 40 start-page: D1178 issue: D1 year: 2012 end-page: 86 article-title: Phytozome: a comparative platform for green plant genomics publication-title: Nucleic Acids Res. – volume: 47 start-page: 867 year: 2009 end-page: 79 article-title: GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells publication-title: Plant Physiol. Biochem. – year: 2004 – volume: 276 start-page: 41710 year: 2001 end-page: 6 article-title: The initial step of the glycerolipid pathway publication-title: J. Biol. Chem. – volume: 22 start-page: 119 year: 2006 end-page: 22 article-title: Regulation of gene expression by alternative untranslated regions publication-title: Trends Genet. – volume: 24 start-page: 1596 year: 2011 end-page: 9 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 publication-title: Mol. Biol. Evol. – volume: 8 start-page: 562 year: 2016 end-page: 77 article-title: Evolutionary insights into RNA ‐splicing in vertebrates publication-title: Genome Biol. Evol. – volume: 170 start-page: 163 year: 2016 end-page: 79 article-title: Identification of GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis publication-title: Plant Physiol. – volume: 28 start-page: 219 year: 2016 end-page: 26 article-title: Expression of and cDNAs in yeast reveals that they encode functional glycerol‐3‐phosphate dehydrogenases involved in glycerol production and osmotic stress tolerance publication-title: J. Appl. Phycol. – volume: 40 start-page: W597 issue: W1 year: 2012 end-page: 603 article-title: ExPASy: SIB bioinformatics resource portal publication-title: Nucleic Acids Res. – volume: 85 start-page: 57 year: 2016 end-page: 69 article-title: A pioneer protein is part of a large complex involved in ‐splicing of a group II intron in the chloroplast of publication-title: Plant J. – volume: 21 start-page: 267 year: 1993 end-page: 77 article-title: The gene and the RNA for the precursor to the plastid‐located glycerol‐3‐phosphate acyltransferase of publication-title: Plant Mol. Biol. – volume: 129 start-page: 629 year: 1983 end-page: 36 article-title: Specificities and selectivities of glycerol‐3‐phosphate acyltransferase and monoacylglycerol‐3‐phosphate acyltransferase from pea and spinach chloroplasts publication-title: Eur. J. Biochem. – year: 2000 – volume: 6 start-page: 175 year: 1998 end-page: 82 article-title: A hidden Markov model for predicting transmembrane helices in protein sequences publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 26 start-page: 2794 year: 2012 end-page: 800 article-title: structural determination of GPAT enzyme from O for biotechnological application of microalgal biofuel production publication-title: Biotechnol. Biotechnol. Equip. – volume: 18 start-page: 223 year: 2017 article-title: Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway publication-title: BMC Genomics – volume: 157 start-page: 105 year: 1982 end-page: 32 article-title: A simple method for displaying the hydropathic character of a protein publication-title: J. Mol. Biol. – volume: 82 start-page: 504 year: 2015 end-page: 22 article-title: Metabolism of acyl‐lipids in publication-title: Plant J. – volume: 17 start-page: 173 year: 2013 end-page: 86 article-title: In search of actionable targets for agrigenomics and microalgal biofuel production: sequence‐structural diversity studies on algal and higher plants with a focus on GPAT protein publication-title: OMICS J. Integr. Biol. – volume: 45 start-page: D12 issue: 1 year: 2017 end-page: 7 article-title: Database resources of the National Center for Biotechnology Information publication-title: Nucleic Acids Res. – volume: 82 start-page: 70 year: 1959 end-page: 7 article-title: Tissue sulfhydryl groups publication-title: Arch. Biochem. Biophys. – volume: 28 start-page: 907 year: 2016 end-page: 19 article-title: Cloning and characterization of a GPAT‐like gene from the microalga (Trebouxiophyceae): overexpression in enhances TAG production publication-title: J. Appl. Phycol. – volume: 232 start-page: 987 year: 2010 end-page: 97 article-title: Cloning and molecular characterization of a glycerol‐3‐phosphate ‐acyltransferase (GPAT) gene from (Boraginaceae) involved in the biosynthesis of cutin polyesters publication-title: Planta – volume: 226 start-page: 655 year: 2007 end-page: 70 article-title: , a model system for functional validation of abiotic stress responsive genes publication-title: Planta – volume: 2 start-page: 417 year: 2011 end-page: 34 article-title: ‐splicing publication-title: WIREs RNA – volume: 15 start-page: 1872 year: 2003 end-page: 87 article-title: Arabidopsis , a member of the membrane‐bound glycerol‐3‐phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility publication-title: Plant Cell – volume: 38 start-page: 5764 year: 1999 end-page: 71 article-title: Analysis of amino acid motifs diagnostic for the sn‐glycerol‐3‐phosphate acyltransferase reaction publication-title: Biochemistry – volume: 68 start-page: 653 year: 1981 end-page: 7 article-title: Positional specificity and fatty acid selectivity of purified ‐glycerol 3‐phosphate acyltransferases from chloroplasts publication-title: Plant Physiol. – volume: 287 start-page: 15811 year: 2012 end-page: 25 article-title: Three acyltransferases and nitrogen‐responsive regulator are implicated in nitrogen starvation‐induced triacylglycerol accumulation in publication-title: J. Biol. Chem. – volume: 585 start-page: 1985 year: 2011 end-page: 91 article-title: A chloroplast pathway for the de novo biosynthesis of triacylglycerol in publication-title: FEBS Lett. – volume: D60 start-page: 13 year: 2004 end-page: 21 article-title: Substrate recognition and selectivity of plant glycerol‐3‐phosphate acyltransferases (GPATs) from and publication-title: Acta Crystallogr. – volume: 67 start-page: 217 year: 1990 end-page: 25 article-title: Properties of the glycerol acylating enzymes in microsomal preparations from the developing seeds of safflower and turnip rape and their ability to assemble cocoa‐butter type fats publication-title: J. Am. Oil Chem. Soc. – volume: 11 start-page: 114 year: 2010 article-title: Genome‐wide analysis of alternative splicing in publication-title: BMC Genomics – volume: 14 start-page: 2158 year: 2016 end-page: 67 article-title: Identification of a plastidial 2‐lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content publication-title: Plant Biotechnol. J. – ident: e_1_2_6_10_1 doi: 10.1007/s10811-015-0588-3 – ident: e_1_2_6_8_1 doi: 10.1074/jbc.M111.334052 – ident: e_1_2_6_12_1 doi: 10.1016/0003-9861(59)90090-6 – ident: e_1_2_6_28_1 doi: 10.1002/wrna.71 – volume: 24 start-page: 1596 year: 2011 ident: e_1_2_6_48_1 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm092 contributor: fullname: Tamura K. – ident: e_1_2_6_39_1 doi: 10.1093/nar/gkw1071 – ident: e_1_2_6_44_1 doi: 10.1104/pp.15.01563 – ident: e_1_2_6_46_1 doi: 10.1016/0378-1119(95)00711-3 – ident: e_1_2_6_21_1 doi: 10.1007/s00425-007-0514-2 – volume-title: Lehninger, Principles of Biochemystry year: 2004 ident: e_1_2_6_40_1 contributor: fullname: Nelson D. L. – ident: e_1_2_6_49_1 doi: 10.1139/B08-145 – ident: e_1_2_6_2_1 doi: 10.1093/nar/25.17.3389 – ident: e_1_2_6_50_1 doi: 10.1111/pbi.12572 – ident: e_1_2_6_6_1 doi: 10.5504/BBEQ.2011.0155 – ident: e_1_2_6_9_1 doi: 10.1007/s00709-012-0448-9 – ident: e_1_2_6_14_1 doi: 10.1111/j.1432-1033.1983.tb07096.x – volume: 60 start-page: 13 year: 2004 ident: e_1_2_6_47_1 article-title: Substrate recognition and selectivity of plant glycerol‐3‐phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea publication-title: Acta Crystallogr. contributor: fullname: Tamada T. – ident: e_1_2_6_38_1 doi: 10.1016/S0005-2760(97)00115-X – ident: e_1_2_6_17_1 doi: 10.1093/nar/gkr944 – ident: e_1_2_6_4_1 doi: 10.1007/BF02540647 – ident: e_1_2_6_52_1 doi: 10.1074/jbc.M104749200 – ident: e_1_2_6_32_1 doi: 10.1105/tpc.113.121418 – ident: e_1_2_6_15_1 doi: 10.1016/j.plaphy.2009.05.008 – ident: e_1_2_6_24_1 doi: 10.1016/j.tig.2006.01.001 – ident: e_1_2_6_25_1 doi: 10.1007/s10811-015-0634-1 – ident: e_1_2_6_37_1 doi: 10.1089/omi.2012.0094 – ident: e_1_2_6_36_1 doi: 10.1007/s00425-010-1232-8 – ident: e_1_2_6_53_1 doi: 10.1105/tpc.012427 – ident: e_1_2_6_22_1 doi: 10.1007/s00284-011-9956-7 – ident: e_1_2_6_33_1 doi: 10.1111/tpj.12787 – volume: 6 start-page: 175 year: 1998 ident: e_1_2_6_45_1 article-title: A hidden Markov model for predicting transmembrane helices in protein sequences publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. contributor: fullname: Sonnhammer E. L. L. – ident: e_1_2_6_29_1 doi: 10.1111/tpj.13089 – ident: e_1_2_6_31_1 doi: 10.1021/bi982805d – ident: e_1_2_6_7_1 doi: 10.1104/pp.68.3.653 – ident: e_1_2_6_18_1 doi: 10.1007/s00299-014-1711-7 – ident: e_1_2_6_34_1 doi: 10.1016/j.biortech.2013.07.088 – ident: e_1_2_6_11_1 doi: 10.4161/psb.6.11.17777 – ident: e_1_2_6_20_1 doi: 10.1146/annurev.arplant.52.1.363 – volume-title: Molecular Cell Biology year: 2000 ident: e_1_2_6_35_1 contributor: fullname: Lodish H. – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-313X.2008.03492.x – ident: e_1_2_6_3_1 doi: 10.1093/nar/gks400 – ident: e_1_2_6_16_1 doi: 10.1128/EC.05242-11 – ident: e_1_2_6_13_1 doi: 10.1016/j.febslet.2011.05.018 – ident: e_1_2_6_51_1 doi: 10.1093/aob/mcs264 – ident: e_1_2_6_42_1 doi: 10.1186/s13068-016-0478-1 – ident: e_1_2_6_5_1 doi: 10.1186/s12864-017-3602-0 – ident: e_1_2_6_41_1 doi: 10.1007/BF00019943 – volume-title: The Chlamydomonas Sourcebook, a Comprehensive Guide to Biology and Laboratory Use year: 1989 ident: e_1_2_6_19_1 contributor: fullname: Harris E. H. – ident: e_1_2_6_26_1 doi: 10.1016/0022-2836(82)90515-0 – ident: e_1_2_6_30_1 doi: 10.1093/gbe/evw025 – ident: e_1_2_6_43_1 doi: 10.3389/fpls.2016.00828 – ident: e_1_2_6_27_1 doi: 10.1186/1471-2164-11-114 |
SSID | ssj0002589 |
Score | 2.2468426 |
Snippet | SUMMARY
Glycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In... Glycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In plants,... SUMMARYGlycerol‐3‐phosphate acyltransferase (GPAT) catalyzes the first step of both the glycerolipid and the triacylglycerol (TAG) biosynthetic pathways. In... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 102 |
SubjectTerms | Acyltransferase Algae Chlamydomonas reinhardtii Chloroplasts Cloning Diatoms Endoplasmic reticulum enzyme activity Gene expression Glycerol heterologous expression Homology Isoenzymes Lipid metabolism Lipids Metabolism mRNA Nucleotide sequence Organelles Phosphates phylogenetic analysis Phytoplankton Plants (botany) Plastids Saccharomyces cerevisiae Splicing trans‐splicing Triglycerides Yeast |
Title | Molecular cloning and functional characterization of two glycerol‐3‐phosphate acyltransferases from the green microalga Chlamydomonas reinhardtii |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpre.12350 https://www.proquest.com/docview/2200711444 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA66ePDiv7i6ShAPXiprk7QNnnTdZS-KoIK3kiapu7C2pd1F9uYjePEFfRIn6Y_rQRA8FApNS8nMZL4Z5ptB6CSKGT-nru8wIalDYyKcIPIihygvcHUsfI8ZNvLw3r99Cq77pk3ORc2FKftDNAk3Yxn2vDYGLqJiwcizXJ8ZoqeJ1yFKsPQNctecwi6z4-9ssGX4o1VXIVPF07z50xd9A8xFmGr9zGD9X3-4gdYqeIkvS33YREs62UIrVylAwPk2-riph-FiObF5WCwShY1vK1OCWDb9m0t6Jk5jPH1N8fNkLnWeTj7f3glc2SgtshHAVCzkfDK14Ffn4BALbPgqGFAlfjYVPfjFFPwZvgjujUD55ioFvRcFzvU4MYSv6Xi8gx4H_Yfe0KnmMjjS5X7XkUx0Yy49RmjEAl-5gso4jgJORSSFBoDDCJi6BHSjlQ6kB3IHeaiyX1WsyC5qJWmi9xAW8KDLXY9LyamURBA_0ox5cET73FPdNjquJRRmZfuNsA5bYHtDu71t1KllF1YWWISuScJCsEdpG51aKf3-gRC03d7s_33pAVoF7MTLIp4Oak3zmT5Ey4WaHVlF_AIk7eTv |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58gV58i9Wqi3jwEqnZR7LgRatS8YGggrew2d20hZqUpCK9-RO8-Af9Jc5umqoHQfAQCGQTws7MzjfDfDMI7cUJE4fUDzwmFfVoQqQXxjz2iOahbxIZcGbZyK274OYxPD2zbXKOKi5M2R9inHCzluHOa2vgNiH9zcr7uTmwTE8I2KcpB0W0BA5yOz6HfeYG4LlwyzJIR32FbB3P-NWf3ugLYn4Hqs7TnC_87x8X0fwIYeLjUiWW0IRJl9HMSQYocLiC3q-rebhY9VwqFstUY-veyqwgVuMWziVDE2cJHrxkuN0bKpNnvY_XNwJXv5MV_Q4gVSzVsDdw-Nfk4BMLbCkrGIAlbtuiHvxka_4sZQQ3O6B_Q52B6ssC56abWs7XoNtdRQ_nZ_fNljcazeApXwQNTzHZSITijNCYhYH2JVVJEoeCylhJAxiHEbB2BQDHaBMqDqIHgeiyZVWiyRqaSrPUrCMs4UFD-FwoJahSRJIgNoxxOKUDwXWjhnYrEUX9sgNHVEUusL2R294aqlfCi0ZGWES-zcNCvEdpDe07Mf3-gQgU3t1s_H3pDppt3V9fRVcXN5ebaA6glChreupoapA_my00WejnbaeVn4576Rc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEG3cEC_u4rg24sFLZEx3J2k8uQ2KC4IK3kKnl5mBMQnJiMzNT_DiD_olVncmox4EwUMgkIWQqup6VdR7jdBuYhg_oH7oMSGpRw0RXpQEiUdUEPnaiDBglo18fhfePEanZ1Ym57DmwlT6EKOGm40Mt17bAM-V-RbkeaH3LdET6vVJCjDcCucTcjtahn3m9r9z1ZYlkA5lhewYz-jRn8noC2F-x6ku0bTm_vWJ82h2iC_xUeUQC2hMp4to6jgDDDhYQu_X9W64WPZcIxaLVGGb3KqeIJYjAeeKn4kzg_svGW73BlIXWe_j9Y3AkXeyMu8ATsVCDnp9h351ARmxxJawggFW4rYd6cFPduLPEkbwSQe8b6AycHxR4kJ3U8v46ne7y-ihdXZ_cu4NN2bwpM_DpieZaBouA0ZowqJQ-YJKY5KIU5FIoQHhMAKxLgHeaKUjGYDhwR6qEqwyiqygiTRL9SrCAi40uR9wKTmVkggSJpqxANbokAeq2UA7tYXivNLfiOu6BX5v7H5vA23UtouHIVjGvu3CQrVHaQPtOSv9_oIY3N2drP391m00fXvaiq8ubi7X0QzgKF4N9GygiX7xrDfReKmet5xPfgLcMue9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+cloning+and+functional+characterization+of+two+glycerol%E2%80%903%E2%80%90phosphate+acyltransferases+from+the+green+microalga+Chlamydomonas+reinhardtii&rft.jtitle=Phycological+research&rft.au=Duarte%E2%80%90Coello%2C+Mar%C3%ADa+E.&rft.au=Herrera%E2%80%90Valencia%2C+Virginia+A.&rft.au=Echevarr%C3%ADa%E2%80%90Machado%2C+Ileana&rft.au=Casais%E2%80%90Molina%2C+Melissa+L.&rft.date=2019-04-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=1322-0829&rft.eissn=1440-1835&rft.volume=67&rft.issue=2&rft.spage=102&rft.epage=111&rft_id=info:doi/10.1111%2Fpre.12350&rft.externalDBID=10.1111%252Fpre.12350&rft.externalDocID=PRE12350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1322-0829&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1322-0829&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1322-0829&client=summon |