Experimental detection of marine plastic litter in surface waters by 405 nm LD-based fluorescence lidar

Plastic pollution has become a global challenge, affecting water quality and health. Plastics including polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), polyethylene terephthalate (PET), and high-density polyethylene (HDPE), are significant contributors to environmental pollution. Wit...

Full description

Saved in:
Bibliographic Details
Published in:Marine pollution bulletin Vol. 207; p. 116842
Main Authors: Cadondon, Jumar, Vallar, Edgar, Shiina, Tatsuo, Galvez, Maria Cecilia
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plastic pollution has become a global challenge, affecting water quality and health. Plastics including polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), polyethylene terephthalate (PET), and high-density polyethylene (HDPE), are significant contributors to environmental pollution. With the growing need for investigation and detection of plastics found in natural waters, we propose the use of a portable laser diode (LD)-based fluorescence lidar system for in-situ detection of plastic litters in surface waters based on excitation-emission fluorescence spectroscopic data. The experiments were carried out in a controlled environment using a fluorescence lidar system with 405 nm excitation wavelength to determine the fluorescence signals of several plastics at 470 nm emission wavelength. Simultaneous detection of PET plastic and Chlorella vulgaris were also observed to determine the fluorescence influence of chlorophyll in surface waters. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed to study the chemical composition of the plastics used before and after being submerged in the water. Scanning electron microscopy (SEM) and high-resolution camera microscopy were used to analyze the morphology of the submerged PET samples. This study provides a basis for a new in-situ technique using a fluorescence lidar system for submerged or transparent plastics in surface waters. •Portable fluorescence lidar system for plastic detection and monitoring.•Fluorescence emission of plastic samples varies.•Plastic degradation is caused by weathering and microorganisms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0025-326X
1879-3363
1879-3363
DOI:10.1016/j.marpolbul.2024.116842