Green synthesis of quaternized chitosan nanogel using emulsion-photopolymerization as redox-responsive drug carrier

We report the green synthesis of trimethyl chitosan-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA-TMC) nanogels via surfactant-free emulsion photopolymerization. TMC, a quaternized derivative of chitosan, was synthesized through methylation of chitosan, resulting in quaternary and tertiary...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers Vol. 304; p. 120495
Main Authors: Lekjinda, Kritsadayut, Sunintaboon, Panya
Format: Journal Article
Language:English
Published: England Elsevier Ltd 15-03-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the green synthesis of trimethyl chitosan-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA-TMC) nanogels via surfactant-free emulsion photopolymerization. TMC, a quaternized derivative of chitosan, was synthesized through methylation of chitosan, resulting in quaternary and tertiary amine groups as the main substitution products. TMC tertiary amine moiety and riboflavin (RF) acted as a redox photo-initiating system to generate free radicals for the polymerization under light irradiation. The effects of polymerization parameters such as irradiation time, concentrations of TMC and RF were investigated using MBA as crosslinker. Under the optimal condition of 1 % TMC, 4 % HEMA, 0.8 μM RF, 5 % MBA, and 4 h of polymerization time, the cationic PHEMA-TMC nanogel was synthesized with 76 % monomer conversion and an average diameter of about 106 nm. Moreover, the disulfide-crosslinked PHEMA-TMC nanogel was also synthesized using the disulfide dimethacrylate crosslinker, which exhibited a redox-induced degradation and release of encapsulated melatonin, potentially useful as a redox-responsive drug delivery carrier. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2022.120495