Privacy-Preserving Power System Obfuscation: A Bilevel Optimization Approach
This paper considers the problem of releasing optimal power flow (OPF) test cases that preserve the privacy of customers (loads) using the notion of Differential Privacy. It is motivated by the observation that traditional differential privacy algorithms are not suitable for releasing privacy preser...
Saved in:
Published in: | IEEE transactions on power systems Vol. 35; no. 2; pp. 1627 - 1637 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-03-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers the problem of releasing optimal power flow (OPF) test cases that preserve the privacy of customers (loads) using the notion of Differential Privacy. It is motivated by the observation that traditional differential privacy algorithms are not suitable for releasing privacy preserving OPF test cases: The added noise fundamentally changes the nature of the underlying optimization and often leads to test cases with no solutions. To remedy this limitation, the paper introduces the OPF Load Indistinguishability (OLI) problem, which guarantees load privacy while satisfying the OPF constraints and remaining close to the optimal dispatch cost. The paper introduces an exact mechanism, based on bilevel optimization, as well as three mechanisms that approximate the OLI problem accurately. These mechanisms enjoy desirable theoretical properties, and the computational experiments show that they produce orders of magnitude improvements over standard approaches on an extensive collection of test cases. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2019.2945069 |