Histone Deacetylase 3‐Directed PROTACs Have Anti‐inflammatory Potential by Blocking Polarization of M0‐like into M1‐like Macrophages

Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 62; no. 42; p. e202310059
Main Authors: Zhao, Chunlong, Chen, Shipeng, Chen, Deng, Río‐Bergé, Clàudia, Zhang, Jianqiu, Van Der Wouden, Petra E., Daemen, Toos, Dekker, Frank J.
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 16-10-2023
Edition:International ed. in English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase‐independent function of HDAC3. We developed a potent and selective HDAC3‐directed PROTAC, P7 , which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP‐1 cells and human primary macrophages. P7 increases the anti‐inflammatory cytokine secretion in THP‐1‐derived M1‐like macrophages. Importantly, P7 decreases the secretion of pro‐inflammatory cytokines in M1‐like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0‐like into M1‐like macrophage. In conclusion, we demonstrate that the HDAC3‐directed PROTAC P7 has anti‐inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.
AbstractList Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can activate pro-inflammatory gene expression in lipopolysaccharide-stimulated M1-like macrophages and cannot be blocked by traditional small-molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase-independent function of HDAC3. We developed a potent and selective HDAC3-directed PROTAC, P7, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP-1 cells and human primary macrophages. P7 increases the anti-inflammatory cytokine secretion in THP-1-derived M1-like macrophages. Importantly, P7 decreases the secretion of pro-inflammatory cytokines in M1-like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0-like into M1-like macrophage. In conclusion, we demonstrate that the HDAC3-directed PROTAC P7 has anti-inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can activate pro-inflammatory gene expression in lipopolysaccharide-stimulated M1-like macrophages and cannot be blocked by traditional small-molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase-independent function of HDAC3. We developed a potent and selective HDAC3-directed PROTAC, P7, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP-1 cells and human primary macrophages. P7 increases the anti-inflammatory cytokine secretion in THP-1-derived M1-like macrophages. Importantly, P7 decreases the secretion of pro-inflammatory cytokines in M1-like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0-like into M1-like macrophage. In conclusion, we demonstrate that the HDAC3-directed PROTAC P7 has anti-inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.
Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase‐independent function of HDAC3. We developed a potent and selective HDAC3‐directed PROTAC, P7, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP‐1 cells and human primary macrophages. P7 increases the anti‐inflammatory cytokine secretion in THP‐1‐derived M1‐like macrophages. Importantly, P7 decreases the secretion of pro‐inflammatory cytokines in M1‐like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0‐like into M1‐like macrophage. In conclusion, we demonstrate that the HDAC3‐directed PROTAC P7 has anti‐inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.
Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase‐independent function of HDAC3. We developed a potent and selective HDAC3‐directed PROTAC, P7 , which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP‐1 cells and human primary macrophages. P7 increases the anti‐inflammatory cytokine secretion in THP‐1‐derived M1‐like macrophages. Importantly, P7 decreases the secretion of pro‐inflammatory cytokines in M1‐like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0‐like into M1‐like macrophage. In conclusion, we demonstrate that the HDAC3‐directed PROTAC P7 has anti‐inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.
Author Zhang, Jianqiu
Chen, Shipeng
Zhao, Chunlong
Río‐Bergé, Clàudia
Daemen, Toos
Van Der Wouden, Petra E.
Dekker, Frank J.
Chen, Deng
Author_xml – sequence: 1
  givenname: Chunlong
  orcidid: 0000-0001-7920-8231
  surname: Zhao
  fullname: Zhao, Chunlong
  organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 2
  givenname: Shipeng
  surname: Chen
  fullname: Chen, Shipeng
  organization: Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy University Medical Center Groningen, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 3
  givenname: Deng
  orcidid: 0000-0002-6078-6995
  surname: Chen
  fullname: Chen, Deng
  organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 4
  givenname: Clàudia
  surname: Río‐Bergé
  fullname: Río‐Bergé, Clàudia
  organization: Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy University Medical Center Groningen, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 5
  givenname: Jianqiu
  surname: Zhang
  fullname: Zhang, Jianqiu
  organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 6
  givenname: Petra E.
  surname: Van Der Wouden
  fullname: Van Der Wouden, Petra E.
  organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 7
  givenname: Toos
  surname: Daemen
  fullname: Daemen, Toos
  organization: Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy University Medical Center Groningen, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
– sequence: 8
  givenname: Frank J.
  orcidid: 0000-0001-7217-9300
  surname: Dekker
  fullname: Dekker, Frank J.
  organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
BookMark eNpdkctOGzEUhq0KpELotmtLbLqZ1JexZ2YZAiVIRKCKrkcnnjPU4Nip7VRKV30AFn1GngQjLouuzu07v87Rf0j2fPBIyGfOppwx8RW8xalgQpZKdR_IAVeCV7Jp5F7JaymrplX8IzlM6a7wbcv0AXlY2JSLDj1FMJh3DhJS-fj336mNaDIO9Pr71c1snugCfiOd-WzL0PrRwXoNOcQdvQ4ZSxscXe3oiQvm3vrb0nUQ7R_INngaRrpkZc_Ze6TW50CX_K1cgolh8xNuMR2R_RFcwk-vcUJ-fDu7mS-qy6vzi_nssjKiU7nqpBFcSG3qWpmGS9kwNugBJXRd-b-px5UcmhYUH4WooeWDMFoDZ1yNK6FGOSFfXnQ3MfzaYsr92iaDzoHHsE29aFVbM6VlV9Dj_9C7sI2-XFeoptat1loWavpClVdSijj2m2jXEHc9Z_2zOf2zOf27OfIJd2yHXQ
Cites_doi 10.1016/S1525-0016(03)00235-1
10.1002/anie.202004310
10.1128/MCB.21.20.7065-7077.2001
10.1016/j.pharmthera.2017.02.027
10.1016/j.actbio.2016.07.003
10.1073/pnas.1521738113
10.1016/j.intimp.2014.08.002
10.1021/acs.jmedchem.0c00442
10.1016/j.ejmech.2020.112800
10.1016/j.bcp.2016.03.010
10.1021/acs.jmedchem.1c02179
10.1126/science.aas8995
10.1039/D2CS00387B
10.1042/BJ20070779
10.1016/j.critrevonc.2018.05.009
10.1038/s41573-021-00371-6
10.1038/s41419-020-03127-z
10.1056/NEJMra1805035
10.1021/acs.jmedchem.0c00830
10.1101/gad.175950.111
10.1111/bph.15014
10.1038/nrd4360
10.1128/MCB.25.13.5429-5444.2005
10.1016/j.drudis.2013.11.012
10.1002/anie.200501724
10.1073/pnas.1121131109
10.1097/MOL.0000000000000109
10.1038/s41586-020-2576-2
10.1021/jm0303094
10.1002/cbic.202100270
10.1002/cbic.201300201
10.1038/nri1733
10.1016/j.chembiol.2014.12.015
10.1021/acs.jmedchem.2c01159
10.1021/acs.jmedchem.6b01385
10.1038/nrd.2016.211
10.1002/anie.201507978
10.1021/acsptsci.2c00089
10.1016/j.tips.2020.02.006
10.1371/journal.pone.0059702
10.1016/j.chembiol.2021.04.011
10.1039/D0CC03243C
10.1016/j.drudis.2016.08.006
10.1002/med.21505
10.1021/acs.jmedchem.8b00136
10.1039/D2CS00148A
10.1021/acschembio.5b00640
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202310059
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
ExternalDocumentID 10_1002_anie_202310059
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
7X8
ID FETCH-LOGICAL-c295t-93c21236c445c7133700d6de3a9920274fb3d78a51f224a81d2c66a1015fb25f3
ISSN 1433-7851
1521-3773
IngestDate Sat Oct 26 04:10:54 EDT 2024
Tue Nov 19 06:27:58 EST 2024
Thu Nov 21 22:31:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-93c21236c445c7133700d6de3a9920274fb3d78a51f224a81d2c66a1015fb25f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7217-9300
0000-0001-7920-8231
0000-0002-6078-6995
OpenAccessLink https://doi.org/10.1002/anie.202310059
PQID 2874686663
PQPubID 946352
ParticipantIDs proquest_miscellaneous_2858405639
proquest_journals_2874686663
crossref_primary_10_1002_anie_202310059
PublicationCentury 2000
PublicationDate 2023-10-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-16
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – ident: e_1_2_7_13_1
  doi: 10.1016/S1525-0016(03)00235-1
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202004310
– ident: e_1_2_7_15_1
  doi: 10.1128/MCB.21.20.7065-7077.2001
– ident: e_1_2_7_31_1
  doi: 10.1016/j.pharmthera.2017.02.027
– ident: e_1_2_7_1_1
  doi: 10.1016/j.actbio.2016.07.003
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.1521738113
– ident: e_1_2_7_39_1
  doi: 10.1016/j.intimp.2014.08.002
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.jmedchem.0c00442
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ejmech.2020.112800
– ident: e_1_2_7_20_1
  doi: 10.1016/j.bcp.2016.03.010
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.jmedchem.1c02179
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aas8995
– ident: e_1_2_7_34_1
  doi: 10.1039/D2CS00387B
– ident: e_1_2_7_18_1
  doi: 10.1042/BJ20070779
– ident: e_1_2_7_6_1
  doi: 10.1016/j.critrevonc.2018.05.009
– ident: e_1_2_7_23_1
  doi: 10.1038/s41573-021-00371-6
– ident: e_1_2_7_2_1
  doi: 10.1038/s41419-020-03127-z
– ident: e_1_2_7_8_1
  doi: 10.1056/NEJMra1805035
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.jmedchem.0c00830
– ident: e_1_2_7_21_1
  doi: 10.1101/gad.175950.111
– ident: e_1_2_7_40_1
  doi: 10.1111/bph.15014
– ident: e_1_2_7_7_1
  doi: 10.1038/nrd4360
– ident: e_1_2_7_16_1
  doi: 10.1128/MCB.25.13.5429-5444.2005
– ident: e_1_2_7_12_1
  doi: 10.1016/j.drudis.2013.11.012
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.200501724
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.1121131109
– ident: e_1_2_7_3_1
  doi: 10.1097/MOL.0000000000000109
– ident: e_1_2_7_10_1
  doi: 10.1038/s41586-020-2576-2
– ident: e_1_2_7_36_1
  doi: 10.1021/jm0303094
– ident: e_1_2_7_30_1
  doi: 10.1002/cbic.202100270
– ident: e_1_2_7_14_1
  doi: 10.1002/cbic.201300201
– ident: e_1_2_7_5_1
  doi: 10.1038/nri1733
– ident: e_1_2_7_42_1
  doi: 10.1016/j.chembiol.2014.12.015
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.jmedchem.2c01159
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.jmedchem.6b01385
– ident: e_1_2_7_24_1
  doi: 10.1038/nrd.2016.211
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201507978
– ident: e_1_2_7_28_1
  doi: 10.1021/acsptsci.2c00089
– ident: e_1_2_7_41_1
  doi: 10.1016/j.tips.2020.02.006
– ident: e_1_2_7_17_1
  doi: 10.1371/journal.pone.0059702
– ident: e_1_2_7_29_1
  doi: 10.1016/j.chembiol.2021.04.011
– ident: e_1_2_7_46_1
  doi: 10.1039/D0CC03243C
– ident: e_1_2_7_4_1
  doi: 10.1016/j.drudis.2016.08.006
– ident: e_1_2_7_37_1
  doi: 10.1002/med.21505
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.jmedchem.8b00136
– ident: e_1_2_7_33_1
  doi: 10.1039/D2CS00148A
– ident: e_1_2_7_35_1
  doi: 10.1021/acschembio.5b00640
SSID ssj0028806
Score 2.4875565
Snippet Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can...
Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage e202310059
SubjectTerms Anti-inflammatory agents
Chimeras
Cytokines
Gene expression
Histone deacetylase
Histones
Inflammation
Lipopolysaccharides
Macrophages
Molecular modelling
Polarization
Proteolysis
Title Histone Deacetylase 3‐Directed PROTACs Have Anti‐inflammatory Potential by Blocking Polarization of M0‐like into M1‐like Macrophages
URI https://www.proquest.com/docview/2874686663
https://www.proquest.com/docview/2858405639
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLe6cYAL4q8oDGQkJA5VILGdODl2bace1q3aOmniEiWxs1aUdKKN0DjxATjwGfkkvBcnbgoSGgcuUeokluv3y3s_vzy_R8gbLULlAU918iBUjkiEciI3D5yMMamkTqWuMvCNz-XJZTgciVGn05RQ3bb9V0lDG8gad87-g7Rtp9AA5yBzOILU4XgruVd5PwqMBkoyvbkBcqx73IY0GA0HJHN6djrrD9a9MVYf6hebhb0FBgEo-WS-vk9XGwwnAjkCTT0Ew4eedQyagyX2V8s2J659ern4iGlIgNFOvN3GSYLVwuagv9ZtRtwvrvSXBDcV9KrkBfo3J-VILdqxAh_miXHuzstiuarNbhWeYPTn-XxxrbfNQ210GV62ty6r6AC3hFejd1adD1d2rIcY71ZFD7QdIqwKrTP7NW-pdlvqXnDuyLBOeatrE8A8ULumwEpjIwLWehdMOrA_bI_JZYuJAd7hsDzc17u1sk1kwclpfHRxfBzPRpezPXKHgX5E9cz51PoJQKWaTXH14Jpcoy57v9v7LpfapRIVP5o9IPfrhQ3tG0Q-JB1dPCJ3B009wcfke41M2kIm5T-__WgwSWtMUsQkRUzCxTYaqUUjTW9og0baRiNd5XTiwnMIOYo4pBOv-dlC4BNycTSaDcZOXQsEtEbkb5yIZ0iygkwIP0PHinRdFSjNkyhC_53IU65kmPheDqQ0gVUYy4IgAYPj5ynzc_6U7BfwH58RCktkoTwpZcZ9ISMZqjxKec5EypTQOuuSt82sxtcm5UtsknuzGOc_tvPfJQfNpMe1CljHWEAiCANg8l3y2l6GucYvcUmhVyXeA7wflh48ev73Ll6Qe1uIH5D9zedSvyR7a1W-qjDzC9V2ssA
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+Deacetylase+3%E2%80%90Directed+PROTACs+Have+Anti%E2%80%90inflammatory+Potential+by+Blocking+Polarization+of+M0%E2%80%90like+into+M1%E2%80%90like+Macrophages&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Chunlong&rft.au=Chen%2C+Shipeng&rft.au=Deng%2C+Chen&rft.au=Cl%C3%A0udia+R%C3%ADo%E2%80%90Berg%C3%A9&rft.date=2023-10-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=42&rft_id=info:doi/10.1002%2Fanie.202310059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon