Histone Deacetylase 3‐Directed PROTACs Have Anti‐inflammatory Potential by Blocking Polarization of M0‐like into M1‐like Macrophages
Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule...
Saved in:
Published in: | Angewandte Chemie International Edition Vol. 62; no. 42; p. e202310059 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
16-10-2023
|
Edition: | International ed. in English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase‐independent function of HDAC3. We developed a potent and selective HDAC3‐directed PROTAC,
P7
, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP‐1 cells and human primary macrophages.
P7
increases the anti‐inflammatory cytokine secretion in THP‐1‐derived M1‐like macrophages. Importantly,
P7
decreases the secretion of pro‐inflammatory cytokines in M1‐like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0‐like into M1‐like macrophage. In conclusion, we demonstrate that the HDAC3‐directed PROTAC
P7
has anti‐inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics. |
---|---|
AbstractList | Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can activate pro-inflammatory gene expression in lipopolysaccharide-stimulated M1-like macrophages and cannot be blocked by traditional small-molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase-independent function of HDAC3. We developed a potent and selective HDAC3-directed PROTAC, P7, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP-1 cells and human primary macrophages. P7 increases the anti-inflammatory cytokine secretion in THP-1-derived M1-like macrophages. Importantly, P7 decreases the secretion of pro-inflammatory cytokines in M1-like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0-like into M1-like macrophage. In conclusion, we demonstrate that the HDAC3-directed PROTAC P7 has anti-inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can activate pro-inflammatory gene expression in lipopolysaccharide-stimulated M1-like macrophages and cannot be blocked by traditional small-molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase-independent function of HDAC3. We developed a potent and selective HDAC3-directed PROTAC, P7, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP-1 cells and human primary macrophages. P7 increases the anti-inflammatory cytokine secretion in THP-1-derived M1-like macrophages. Importantly, P7 decreases the secretion of pro-inflammatory cytokines in M1-like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0-like into M1-like macrophage. In conclusion, we demonstrate that the HDAC3-directed PROTAC P7 has anti-inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics. Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase‐independent function of HDAC3. We developed a potent and selective HDAC3‐directed PROTAC, P7, which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP‐1 cells and human primary macrophages. P7 increases the anti‐inflammatory cytokine secretion in THP‐1‐derived M1‐like macrophages. Importantly, P7 decreases the secretion of pro‐inflammatory cytokines in M1‐like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0‐like into M1‐like macrophage. In conclusion, we demonstrate that the HDAC3‐directed PROTAC P7 has anti‐inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics. Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can activate pro‐inflammatory gene expression in lipopolysaccharide‐stimulated M1‐like macrophages and cannot be blocked by traditional small‐molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase‐independent function of HDAC3. We developed a potent and selective HDAC3‐directed PROTAC, P7 , which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP‐1 cells and human primary macrophages. P7 increases the anti‐inflammatory cytokine secretion in THP‐1‐derived M1‐like macrophages. Importantly, P7 decreases the secretion of pro‐inflammatory cytokines in M1‐like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0‐like into M1‐like macrophage. In conclusion, we demonstrate that the HDAC3‐directed PROTAC P7 has anti‐inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics. |
Author | Zhang, Jianqiu Chen, Shipeng Zhao, Chunlong Río‐Bergé, Clàudia Daemen, Toos Van Der Wouden, Petra E. Dekker, Frank J. Chen, Deng |
Author_xml | – sequence: 1 givenname: Chunlong orcidid: 0000-0001-7920-8231 surname: Zhao fullname: Zhao, Chunlong organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 2 givenname: Shipeng surname: Chen fullname: Chen, Shipeng organization: Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy University Medical Center Groningen, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 3 givenname: Deng orcidid: 0000-0002-6078-6995 surname: Chen fullname: Chen, Deng organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 4 givenname: Clàudia surname: Río‐Bergé fullname: Río‐Bergé, Clàudia organization: Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy University Medical Center Groningen, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 5 givenname: Jianqiu surname: Zhang fullname: Zhang, Jianqiu organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 6 givenname: Petra E. surname: Van Der Wouden fullname: Van Der Wouden, Petra E. organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 7 givenname: Toos surname: Daemen fullname: Daemen, Toos organization: Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy University Medical Center Groningen, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands – sequence: 8 givenname: Frank J. orcidid: 0000-0001-7217-9300 surname: Dekker fullname: Dekker, Frank J. organization: Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands |
BookMark | eNpdkctOGzEUhq0KpELotmtLbLqZ1JexZ2YZAiVIRKCKrkcnnjPU4Nip7VRKV30AFn1GngQjLouuzu07v87Rf0j2fPBIyGfOppwx8RW8xalgQpZKdR_IAVeCV7Jp5F7JaymrplX8IzlM6a7wbcv0AXlY2JSLDj1FMJh3DhJS-fj336mNaDIO9Pr71c1snugCfiOd-WzL0PrRwXoNOcQdvQ4ZSxscXe3oiQvm3vrb0nUQ7R_INngaRrpkZc_Ze6TW50CX_K1cgolh8xNuMR2R_RFcwk-vcUJ-fDu7mS-qy6vzi_nssjKiU7nqpBFcSG3qWpmGS9kwNugBJXRd-b-px5UcmhYUH4WooeWDMFoDZ1yNK6FGOSFfXnQ3MfzaYsr92iaDzoHHsE29aFVbM6VlV9Dj_9C7sI2-XFeoptat1loWavpClVdSijj2m2jXEHc9Z_2zOf2zOf27OfIJd2yHXQ |
Cites_doi | 10.1016/S1525-0016(03)00235-1 10.1002/anie.202004310 10.1128/MCB.21.20.7065-7077.2001 10.1016/j.pharmthera.2017.02.027 10.1016/j.actbio.2016.07.003 10.1073/pnas.1521738113 10.1016/j.intimp.2014.08.002 10.1021/acs.jmedchem.0c00442 10.1016/j.ejmech.2020.112800 10.1016/j.bcp.2016.03.010 10.1021/acs.jmedchem.1c02179 10.1126/science.aas8995 10.1039/D2CS00387B 10.1042/BJ20070779 10.1016/j.critrevonc.2018.05.009 10.1038/s41573-021-00371-6 10.1038/s41419-020-03127-z 10.1056/NEJMra1805035 10.1021/acs.jmedchem.0c00830 10.1101/gad.175950.111 10.1111/bph.15014 10.1038/nrd4360 10.1128/MCB.25.13.5429-5444.2005 10.1016/j.drudis.2013.11.012 10.1002/anie.200501724 10.1073/pnas.1121131109 10.1097/MOL.0000000000000109 10.1038/s41586-020-2576-2 10.1021/jm0303094 10.1002/cbic.202100270 10.1002/cbic.201300201 10.1038/nri1733 10.1016/j.chembiol.2014.12.015 10.1021/acs.jmedchem.2c01159 10.1021/acs.jmedchem.6b01385 10.1038/nrd.2016.211 10.1002/anie.201507978 10.1021/acsptsci.2c00089 10.1016/j.tips.2020.02.006 10.1371/journal.pone.0059702 10.1016/j.chembiol.2021.04.011 10.1039/D0CC03243C 10.1016/j.drudis.2016.08.006 10.1002/med.21505 10.1021/acs.jmedchem.8b00136 10.1039/D2CS00148A 10.1021/acschembio.5b00640 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202310059 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
ExternalDocumentID | 10_1002_anie_202310059 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c295t-93c21236c445c7133700d6de3a9920274fb3d78a51f224a81d2c66a1015fb25f3 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Sat Oct 26 04:10:54 EDT 2024 Tue Nov 19 06:27:58 EST 2024 Thu Nov 21 22:31:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c295t-93c21236c445c7133700d6de3a9920274fb3d78a51f224a81d2c66a1015fb25f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7217-9300 0000-0001-7920-8231 0000-0002-6078-6995 |
OpenAccessLink | https://doi.org/10.1002/anie.202310059 |
PQID | 2874686663 |
PQPubID | 946352 |
ParticipantIDs | proquest_miscellaneous_2858405639 proquest_journals_2874686663 crossref_primary_10_1002_anie_202310059 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-16 |
PublicationDateYYYYMMDD | 2023-10-16 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – ident: e_1_2_7_13_1 doi: 10.1016/S1525-0016(03)00235-1 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202004310 – ident: e_1_2_7_15_1 doi: 10.1128/MCB.21.20.7065-7077.2001 – ident: e_1_2_7_31_1 doi: 10.1016/j.pharmthera.2017.02.027 – ident: e_1_2_7_1_1 doi: 10.1016/j.actbio.2016.07.003 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1521738113 – ident: e_1_2_7_39_1 doi: 10.1016/j.intimp.2014.08.002 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jmedchem.0c00442 – ident: e_1_2_7_32_1 doi: 10.1016/j.ejmech.2020.112800 – ident: e_1_2_7_20_1 doi: 10.1016/j.bcp.2016.03.010 – ident: e_1_2_7_47_1 doi: 10.1021/acs.jmedchem.1c02179 – ident: e_1_2_7_11_1 doi: 10.1126/science.aas8995 – ident: e_1_2_7_34_1 doi: 10.1039/D2CS00387B – ident: e_1_2_7_18_1 doi: 10.1042/BJ20070779 – ident: e_1_2_7_6_1 doi: 10.1016/j.critrevonc.2018.05.009 – ident: e_1_2_7_23_1 doi: 10.1038/s41573-021-00371-6 – ident: e_1_2_7_2_1 doi: 10.1038/s41419-020-03127-z – ident: e_1_2_7_8_1 doi: 10.1056/NEJMra1805035 – ident: e_1_2_7_9_1 doi: 10.1021/acs.jmedchem.0c00830 – ident: e_1_2_7_21_1 doi: 10.1101/gad.175950.111 – ident: e_1_2_7_40_1 doi: 10.1111/bph.15014 – ident: e_1_2_7_7_1 doi: 10.1038/nrd4360 – ident: e_1_2_7_16_1 doi: 10.1128/MCB.25.13.5429-5444.2005 – ident: e_1_2_7_12_1 doi: 10.1016/j.drudis.2013.11.012 – ident: e_1_2_7_25_1 doi: 10.1002/anie.200501724 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.1121131109 – ident: e_1_2_7_3_1 doi: 10.1097/MOL.0000000000000109 – ident: e_1_2_7_10_1 doi: 10.1038/s41586-020-2576-2 – ident: e_1_2_7_36_1 doi: 10.1021/jm0303094 – ident: e_1_2_7_30_1 doi: 10.1002/cbic.202100270 – ident: e_1_2_7_14_1 doi: 10.1002/cbic.201300201 – ident: e_1_2_7_5_1 doi: 10.1038/nri1733 – ident: e_1_2_7_42_1 doi: 10.1016/j.chembiol.2014.12.015 – ident: e_1_2_7_27_1 doi: 10.1021/acs.jmedchem.2c01159 – ident: e_1_2_7_44_1 doi: 10.1021/acs.jmedchem.6b01385 – ident: e_1_2_7_24_1 doi: 10.1038/nrd.2016.211 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201507978 – ident: e_1_2_7_28_1 doi: 10.1021/acsptsci.2c00089 – ident: e_1_2_7_41_1 doi: 10.1016/j.tips.2020.02.006 – ident: e_1_2_7_17_1 doi: 10.1371/journal.pone.0059702 – ident: e_1_2_7_29_1 doi: 10.1016/j.chembiol.2021.04.011 – ident: e_1_2_7_46_1 doi: 10.1039/D0CC03243C – ident: e_1_2_7_4_1 doi: 10.1016/j.drudis.2016.08.006 – ident: e_1_2_7_37_1 doi: 10.1002/med.21505 – ident: e_1_2_7_43_1 doi: 10.1021/acs.jmedchem.8b00136 – ident: e_1_2_7_33_1 doi: 10.1039/D2CS00148A – ident: e_1_2_7_35_1 doi: 10.1021/acschembio.5b00640 |
SSID | ssj0028806 |
Score | 2.4875565 |
Snippet | Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase‐independent function that can... Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | e202310059 |
SubjectTerms | Anti-inflammatory agents Chimeras Cytokines Gene expression Histone deacetylase Histones Inflammation Lipopolysaccharides Macrophages Molecular modelling Polarization Proteolysis |
Title | Histone Deacetylase 3‐Directed PROTACs Have Anti‐inflammatory Potential by Blocking Polarization of M0‐like into M1‐like Macrophages |
URI | https://www.proquest.com/docview/2874686663 https://www.proquest.com/docview/2858405639 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLe6cYAL4q8oDGQkJA5VILGdODl2bace1q3aOmniEiWxs1aUdKKN0DjxATjwGfkkvBcnbgoSGgcuUeokluv3y3s_vzy_R8gbLULlAU918iBUjkiEciI3D5yMMamkTqWuMvCNz-XJZTgciVGn05RQ3bb9V0lDG8gad87-g7Rtp9AA5yBzOILU4XgruVd5PwqMBkoyvbkBcqx73IY0GA0HJHN6djrrD9a9MVYf6hebhb0FBgEo-WS-vk9XGwwnAjkCTT0Ew4eedQyagyX2V8s2J659ern4iGlIgNFOvN3GSYLVwuagv9ZtRtwvrvSXBDcV9KrkBfo3J-VILdqxAh_miXHuzstiuarNbhWeYPTn-XxxrbfNQ210GV62ty6r6AC3hFejd1adD1d2rIcY71ZFD7QdIqwKrTP7NW-pdlvqXnDuyLBOeatrE8A8ULumwEpjIwLWehdMOrA_bI_JZYuJAd7hsDzc17u1sk1kwclpfHRxfBzPRpezPXKHgX5E9cz51PoJQKWaTXH14Jpcoy57v9v7LpfapRIVP5o9IPfrhQ3tG0Q-JB1dPCJ3B009wcfke41M2kIm5T-__WgwSWtMUsQkRUzCxTYaqUUjTW9og0baRiNd5XTiwnMIOYo4pBOv-dlC4BNycTSaDcZOXQsEtEbkb5yIZ0iygkwIP0PHinRdFSjNkyhC_53IU65kmPheDqQ0gVUYy4IgAYPj5ynzc_6U7BfwH58RCktkoTwpZcZ9ISMZqjxKec5EypTQOuuSt82sxtcm5UtsknuzGOc_tvPfJQfNpMe1CljHWEAiCANg8l3y2l6GucYvcUmhVyXeA7wflh48ev73Ll6Qe1uIH5D9zedSvyR7a1W-qjDzC9V2ssA |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+Deacetylase+3%E2%80%90Directed+PROTACs+Have+Anti%E2%80%90inflammatory+Potential+by+Blocking+Polarization+of+M0%E2%80%90like+into+M1%E2%80%90like+Macrophages&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Chunlong&rft.au=Chen%2C+Shipeng&rft.au=Deng%2C+Chen&rft.au=Cl%C3%A0udia+R%C3%ADo%E2%80%90Berg%C3%A9&rft.date=2023-10-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=42&rft_id=info:doi/10.1002%2Fanie.202310059&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |