Reducing Bias for Multistatic Localization of a Moving Object by Transmitter At Unknown Position

Multistatic localization plays an important role in object localization. In this paper, we address the problem of multistatic localization of a moving object in the absence of transmitter position when the transmitter is not synchronized with the receivers. We propose to jointly estimate the unknown...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 59; no. 5; pp. 1 - 18
Main Authors: Pei, Jian, Wang, Gang, Ho, K. C., Huang, Lei
Format: Journal Article
Language:English
Published: New York IEEE 01-10-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multistatic localization plays an important role in object localization. In this paper, we address the problem of multistatic localization of a moving object in the absence of transmitter position when the transmitter is not synchronized with the receivers. We propose to jointly estimate the unknowns, including the object position and velocity, the transmitter position, and the clock and frequency offsets, using both time delay and Doppler frequency shift measurements. To this end, we first formulate a constrained weighted least squares (CWLS) minimization problem, whose solution is found to have significant bias caused by approximations in transforming the model equations and solving the problem. To reduce the bias, we further formulate a non-convex bias reduced CWLS (BR-CWLS) problem by imposing a quadratic constraint, which is constructed by considering the second-order noise and errors of the matrices and vectors involved in the CWLS problem. One particular aspect of the proposed BR-CWLS method is that the errors in approximating the weighting matrix are taken into consideration for bias reduction. The non-convex BR-CWLS problem is solved by applying the semidefinite relaxation technique to relax it as a convex semidefinite program. In addition, we show through the mean square error (MSE) analysis that the performance of the BR-CWLS solution can approach the Cramer-Rao lower bound performance when the noise is not significant. We also derive the theoretical bias expression for evaluating the amount of bias. Simulation results demonstrate the good performance of the proposed method in terms of both MSE and bias.
AbstractList Multistatic localization plays an important role in object localization. In this paper, we address the problem of multistatic localization of a moving object in the absence of transmitter position when the transmitter is not synchronized with the receivers. We propose to jointly estimate the unknowns, including the object position and velocity, the transmitter position, and the clock and frequency offsets, using both time delay and Doppler frequency shift measurements. To this end, we first formulate a constrained weighted least squares (CWLS) minimization problem, whose solution is found to have significant bias caused by approximations in transforming the model equations and solving the problem. To reduce the bias, we further formulate a non-convex bias reduced CWLS (BR-CWLS) problem by imposing a quadratic constraint, which is constructed by considering the second-order noise and errors of the matrices and vectors involved in the CWLS problem. One particular aspect of the proposed BR-CWLS method is that the errors in approximating the weighting matrix are taken into consideration for bias reduction. The non-convex BR-CWLS problem is solved by applying the semidefinite relaxation technique to relax it as a convex semidefinite program. In addition, we show through the mean square error (MSE) analysis that the performance of the BR-CWLS solution can approach the Cramer-Rao lower bound performance when the noise is not significant. We also derive the theoretical bias expression for evaluating the amount of bias. Simulation results demonstrate the good performance of the proposed method in terms of both MSE and bias.
Multistatic localization plays an important role in object localization. In this article, we address the problem of multistatic localization of a moving object in the absence of transmitter position when the transmitter is not synchronized with the receivers. We propose to jointly estimate the unknowns, including the object position and velocity, the transmitter position, and the clock and frequency offsets, using both time delay and Doppler frequency shift measurements. To this end, we first formulate a constrained weighted least squares (CWLS) minimization problem, whose solution is found to have significant bias caused by approximations in transforming the model equations and solving the problem. To reduce the bias, we further formulate a nonconvex bias reduced CWLS (BR-CWLS) problem by imposing a quadratic constraint, which is constructed by considering the second-order noise and errors of the matrices and vectors involved in the CWLS problem. One particular aspect of the proposed BR-CWLS method is that the errors in approximating the weighting matrix are taken into consideration for bias reduction. The nonconvex BR-CWLS problem is solved by applying the semidefinite relaxation technique to relax it as a convex semidefinite program. In addition, we show through the mean square error (MSE) analysis that the performance of the BR-CWLS solution can approach the Cramer–Rao lower bound performance when the noise is not significant. We also derive the theoretical bias expression for evaluating the amount of bias. Simulation results demonstrate the good performance of the proposed method in terms of both MSE and bias.
Author Ho, K. C.
Wang, Gang
Huang, Lei
Pei, Jian
Author_xml – sequence: 1
  givenname: Jian
  surname: Pei
  fullname: Pei, Jian
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
– sequence: 2
  givenname: Gang
  orcidid: 0000-0001-7018-9513
  surname: Wang
  fullname: Wang, Gang
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
– sequence: 3
  givenname: K. C.
  orcidid: 0000-0002-4883-2151
  surname: Ho
  fullname: Ho, K. C.
  organization: Electrical Engineering and Computer Science Department, University of Missouri, Columbia, USA
– sequence: 4
  givenname: Lei
  orcidid: 0000-0003-4534-7625
  surname: Huang
  fullname: Huang, Lei
  organization: College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
BookMark eNpNkE1LAzEQhoNUsK3-AMFDwPPWJLvZbI611A9oqWh7XrfZiaS2SU2ySv317tIehIGZgeedgWeAetZZQOiakhGlRN4tx9O3ESMsHaWMCybEGepTzkUic5L2UJ8QWiSScXqBBiFs2jUrsrSP3l-hbpSxH_jeVAFr5_G82UYTYhWNwjOnqq35bWdnsdO4wnP33dGL9QZUxOsDXvrKhp2JETweR7yyn9b9WPzigulSl-hcV9sAV6c-RKuH6XLylMwWj8-T8SxRTGYx0UJIkFldSyg4Y4JqIqQGkpM1z3JQXJK2KhCC1TmHOmepyqFQoIWsdb5Oh-j2eHfv3VcDIZYb13jbvixZIThvr-aypeiRUt6F4EGXe292lT-UlJSdyLITWXYiy5PINnNzzBgA-McTQQqapX8NtHFG
CODEN IEARAX
CitedBy_id crossref_primary_10_1109_JSEN_2024_3388510
Cites_doi 10.1109/78.301830
10.1109/TSP.2014.2314064
10.1109/TWC.2020.3044217
10.1109/TSP.2004.831921
10.1109/TSP.2020.3008752
10.1109/RADAR.2010.5494404
10.1109/TWC.2014.2314640
10.1109/TVT.2012.2225074
10.1109/TIM.2010.2049185
10.1109/TAES.2012.6129656
10.1109/TVT.2015.2508501
10.1109/JOE.2008.927916
10.1109/TVT.2014.2334397
10.1109/JOE.2005.862117
10.1109/MSP.2010.936019
10.1109/TSP.2009.2016891
10.1109/MIS.2015.18
10.1109/TSP.2009.2014813
10.1109/ICCW.2013.6649199
10.1109/TSP.2020.2981773
10.1109/TWC.2015.2456057
10.1109/TASSP.1981.1163621
10.1109/TMC.2021.3123330
10.1109/LSP.2016.2582043
10.1109/TVT.2010.2040096
10.1109/TSP.2006.885744
10.1109/TSP.2021.3086360
10.1109/TVT.2005.861162
10.1109/ICASSP43922.2022.9746393
10.1109/TAES.2021.3098164
10.1109/7.599239
10.1109/ICASSP.2004.1326215
10.1109/TSP.2022.3147037
10.1109/TIE.2014.2362727
10.1109/TSP.2007.909342
10.1109/TWC.2021.3098000
10.1109/TSP.2012.2232664
10.1109/JPROC.2018.2819697
10.1109/TSP.2012.2187283
10.1017/CBO9780511804441
10.1080/10556789908805762
10.1145/1149283.1149286
10.1109/TASL.2007.903312
10.1109/TAES.2014.140482
10.1109/TSP.2014.2338835
10.1109/TSP.2013.2284758
10.1109/TSP.2020.2969048
10.1109/TSP.2019.2929960
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2023.3257277
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 18
ExternalDocumentID 10_1109_TAES_2023_3257277
10070814
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62222109
– fundername: Zhejiang Provincial Natural Science Funds for Distinguished Young Scholars
  grantid: LR20F010001
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACIWK
ACNCT
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
IFIPE
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RIG
RNS
TN5
41~
5VS
AAYOK
AAYXX
AETIX
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c294t-f779e94dd9e852271f079fe060b546ec590590ae772d65ed623c6e8cef79df6b3
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Thu Oct 10 18:58:45 EDT 2024
Fri Aug 23 01:45:05 EDT 2024
Mon Nov 04 12:04:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f779e94dd9e852271f079fe060b546ec590590ae772d65ed623c6e8cef79df6b3
ORCID 0000-0003-4534-7625
0000-0001-7018-9513
0000-0002-4883-2151
PQID 2875585269
PQPubID 85477
PageCount 18
ParticipantIDs proquest_journals_2875585269
crossref_primary_10_1109_TAES_2023_3257277
ieee_primary_10070814
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref49
ref8
ref7
kay (ref43) 1993
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
grant (ref50) 2018
moon (ref44) 2000
References_xml – ident: ref5
  doi: 10.1109/78.301830
– ident: ref12
  doi: 10.1109/TSP.2014.2314064
– ident: ref33
  doi: 10.1109/TWC.2020.3044217
– ident: ref17
  doi: 10.1109/TSP.2004.831921
– ident: ref35
  doi: 10.1109/TSP.2020.3008752
– ident: ref25
  doi: 10.1109/RADAR.2010.5494404
– ident: ref3
  doi: 10.1109/TWC.2014.2314640
– ident: ref19
  doi: 10.1109/TVT.2012.2225074
– ident: ref28
  doi: 10.1109/TIM.2010.2049185
– year: 2000
  ident: ref44
  publication-title: Mathematical Methods and Algorithms for Signal Processing
  contributor:
    fullname: moon
– ident: ref27
  doi: 10.1109/TAES.2012.6129656
– ident: ref39
  doi: 10.1109/TVT.2015.2508501
– ident: ref21
  doi: 10.1109/JOE.2008.927916
– ident: ref47
  doi: 10.1109/TVT.2014.2334397
– ident: ref20
  doi: 10.1109/JOE.2005.862117
– ident: ref48
  doi: 10.1109/MSP.2010.936019
– ident: ref7
  doi: 10.1109/TSP.2009.2016891
– ident: ref31
  doi: 10.1109/MIS.2015.18
– ident: ref6
  doi: 10.1109/TSP.2009.2014813
– ident: ref29
  doi: 10.1109/ICCW.2013.6649199
– ident: ref14
  doi: 10.1109/TSP.2020.2981773
– ident: ref13
  doi: 10.1109/TWC.2015.2456057
– ident: ref41
  doi: 10.1109/TASSP.1981.1163621
– ident: ref36
  doi: 10.1109/TMC.2021.3123330
– ident: ref22
  doi: 10.1109/LSP.2016.2582043
– ident: ref46
  doi: 10.1109/TVT.2010.2040096
– ident: ref18
  doi: 10.1109/TSP.2006.885744
– year: 1993
  ident: ref43
  publication-title: Fundamentals of Statistical Signal Processing Estimation Theory
  contributor:
    fullname: kay
– ident: ref15
  doi: 10.1109/TSP.2021.3086360
– ident: ref2
  doi: 10.1109/TVT.2005.861162
– ident: ref37
  doi: 10.1109/ICASSP43922.2022.9746393
– ident: ref38
  doi: 10.1109/TAES.2021.3098164
– ident: ref16
  doi: 10.1109/7.599239
– ident: ref1
  doi: 10.1109/ICASSP.2004.1326215
– year: 2018
  ident: ref50
  publication-title: CVX Matlab Software for Disciplined Convex Programmin
  contributor:
    fullname: grant
– ident: ref42
  doi: 10.1109/TSP.2022.3147037
– ident: ref40
  doi: 10.1109/TIE.2014.2362727
– ident: ref4
  doi: 10.1109/TSP.2007.909342
– ident: ref34
  doi: 10.1109/TWC.2021.3098000
– ident: ref10
  doi: 10.1109/TSP.2012.2232664
– ident: ref30
  doi: 10.1109/JPROC.2018.2819697
– ident: ref8
  doi: 10.1109/TSP.2012.2187283
– ident: ref49
  doi: 10.1017/CBO9780511804441
– ident: ref51
  doi: 10.1080/10556789908805762
– ident: ref45
  doi: 10.1145/1149283.1149286
– ident: ref9
  doi: 10.1109/TASL.2007.903312
– ident: ref24
  doi: 10.1109/TAES.2014.140482
– ident: ref23
  doi: 10.1109/TSP.2014.2338835
– ident: ref26
  doi: 10.1109/TSP.2013.2284758
– ident: ref11
  doi: 10.1109/TSP.2020.2969048
– ident: ref32
  doi: 10.1109/TSP.2019.2929960
SSID ssj0014843
Score 2.47099
Snippet Multistatic localization plays an important role in object localization. In this paper, we address the problem of multistatic localization of a moving object...
Multistatic localization plays an important role in object localization. In this article, we address the problem of multistatic localization of a moving object...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Approximation
Approximation error
Bias
Bias reduction
constrained weighted least squares
Constraints
Error analysis
Frequency estimation
Frequency shift
Localization
Location awareness
Lower bounds
Mathematical analysis
multistatic localization
Object motion
Position measurement
Radio transmitters
Receivers
semidefinite relaxation
time delay
Transmitters
Weight measurement
Title Reducing Bias for Multistatic Localization of a Moving Object by Transmitter At Unknown Position
URI https://ieeexplore.ieee.org/document/10070814
https://www.proquest.com/docview/2875585269
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FlEoyAMTUto87NgeC7TqwEu0ldiCY1-kDqSItgP_Hp8TqiLEwOYhiSyfL_fd47sj5FLqKEYcG8Q8NwFjEAW5To3TK6VBQmRSg3HI0Vg8vMjbAbbJCdZcGADwxWfQxaXP5du5WWGorIcZfWfCWIM0hJIVWWudMmCyLpGLnAY7q12nMKNQ9Sb9wbiLc8K7idtXLMQPI-Snqvz6FXv7Mtz75872yW4NJGm_kvwB2YLykOxstBc8Iq_P2JfVLen1TC-og6fU822RRDQz9A7NWE3DpPOCanrvwwv0McfgDM0_qbdkbzNk_ND-kk5LDMGV9Kmu9GqR6XAwuRkF9USFwMSKLYNCCAWKWatAOuAloiIUqoAwDXPOUjBcIRdVg4PcNuVgHTYyKUgDhVC2SPPkmDTLeQknhLIYHNThViUGWGSl1lbz2BrElInSvE2uvo84e68aZ2Te4QhVhvLIUB5ZLY82aeGZbjxYHWebdL6lktW6tcicj8edkxOn6vSP187INn69qrnrkObyYwXnpLGwqwt_Z74Apau-tQ
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4BPdAeSqGghga6B06VHGxnH95jgKCgJgGVIHFz17tjKYc6FUkO_Ht21k4UhHrgtgdbXu3seL55fDMAZ5lJUsKxUSoKG3GOSVQYab1eaYMZJlZaikMO7tX4MbvqU5ucaM2FQcRQfIYdWoZcvpvZJYXKzimj700Y34YPgiuparrWOmnAs6ZILvE67O12k8RMYn0-6fXvOzQpvNP1O0uVemWGwlyVNz_jYGGu9965ty_wuYGSrFfLfh-2sDqATxsNBr_Cn9_UmdUv2cXUzJkHqCwwbolGNLVsSIasIWKyWckMG4UAA7stKDzDimcWbNnfKXF-WG_BHioKwlXsrqn1OoSH6_7kchA1MxUim2q-iEqlNGrunMbMQy-VlLHSJcYyLgSXaIUmNqpBD7qdFOg8OrISM4ul0q6URfcIdqpZhd-A8RQ92BFOdy3yxGXGOCNSZwlVdrURLfi5OuL8X906Iw8uR6xzkkdO8sgbebTgkM5048H6OFvQXkklb7RrnnsvT3g3J5X6-D-v_YDdwWQ0zIc341_f4SN9qa7Aa8PO4mmJJ7A9d8vTcH9eANvVwgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+Bias+for+Multistatic+Localization+of+a+Moving+Object+by+Transmitter+At+Unknown+Position&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Pei%2C+Jian&rft.au=Wang%2C+Gang&rft.au=Ho%2C+K.+C.&rft.au=Huang%2C+Lei&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=0018-9251&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTAES.2023.3257277&rft.externalDocID=10070814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon