Lattice Structure Realization for The Design of 2-D Digital Allpass Filters With General Causality

This paper presents a lattice structure for the realization of two-dimensional (2-D) recursive digital allpass filters (DAFs) with general causality. We employ four basic lattice sections to realize 2-D recursive DAFs with wedge-shaped coefficient support region like a nonsymmetric half-plane (NSHP)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Vol. 64; no. 2; pp. 419 - 431
Main Authors: Lee, Ju-Hong, Du, Jiun-Shian
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a lattice structure for the realization of two-dimensional (2-D) recursive digital allpass filters (DAFs) with general causality. We employ four basic lattice sections to realize 2-D recursive DAFs with wedge-shaped coefficient support region like a nonsymmetric half-plane (NSHP) support region. The theory and transfer functions of the realized 2-D lattice DAFs are derived. Some variations of the 2-D lattice structure are also presented. We use the Roesser state space model to verify the minimal realization of the proposed 2-D recursive lattice DAF. We present a least-squares design technique and a minimax design technique to solve the nonlinear optimization problems of the proposed 2-D lattice DAF structure. The novelty of the presented lattice structure is that it not only inherits the desirable attributes of 1-D Gray-Markel lattice allpass structure but also possesses the advantage of better performance over the existing 2-D lattice allpass structures. Finally, several design examples are provided for conducting illustration and comparison.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2016.2604678