Enhanced Multi-Task Learning Architecture for Detecting Pedestrian at Far Distance
Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantl...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems Vol. 23; no. 9; pp. 15588 - 15604 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantly faster than state-of-the-art methods. The proposed framework incorporates semantic segmentation to confidence modules for RPN (Region Proposal Network) head and R-FCN (Region-based Fully Convolutional Networks) head, and a cascaded R-FCN head. The semantic segmentation confidence is extracted and utilized as auxiliary classification prior knowledge for RPN proposal selection and R-FCN head prediction. Finally, the cascaded R-FCN head progressively refine the pedestrian prediction accuracy with negligible computation overhead. The proposed framework is also capable of maintaining high detection performance on down-sampled input images, which leads to further reduction in overall computational complexity. Experiment results on CityPersons and MOT17Det datasets show that the proposed framework achieves competitive detection performance with about <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> speedup over state-of-the-art methods. |
---|---|
AbstractList | Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantly faster than state-of-the-art methods. The proposed framework incorporates semantic segmentation to confidence modules for RPN (Region Proposal Network) head and R-FCN (Region-based Fully Convolutional Networks) head, and a cascaded R-FCN head. The semantic segmentation confidence is extracted and utilized as auxiliary classification prior knowledge for RPN proposal selection and R-FCN head prediction. Finally, the cascaded R-FCN head progressively refine the pedestrian prediction accuracy with negligible computation overhead. The proposed framework is also capable of maintaining high detection performance on down-sampled input images, which leads to further reduction in overall computational complexity. Experiment results on CityPersons and MOT17Det datasets show that the proposed framework achieves competitive detection performance with about <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> speedup over state-of-the-art methods. Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantly faster than state-of-the-art methods. The proposed framework incorporates semantic segmentation to confidence modules for RPN (Region Proposal Network) head and R-FCN (Region-based Fully Convolutional Networks) head, and a cascaded R-FCN head. The semantic segmentation confidence is extracted and utilized as auxiliary classification prior knowledge for RPN proposal selection and R-FCN head prediction. Finally, the cascaded R-FCN head progressively refine the pedestrian prediction accuracy with negligible computation overhead. The proposed framework is also capable of maintaining high detection performance on down-sampled input images, which leads to further reduction in overall computational complexity. Experiment results on CityPersons and MOT17Det datasets show that the proposed framework achieves competitive detection performance with about [Formula Omitted] speedup over state-of-the-art methods. |
Author | Wu, Meiqing Lam, Siew-Kei Zhou, Chengju |
Author_xml | – sequence: 1 givenname: Chengju orcidid: 0000-0003-0795-4977 surname: Zhou fullname: Zhou, Chengju email: zhou0271@e.ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Meiqing surname: Wu fullname: Wu, Meiqing organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Siew-Kei orcidid: 0000-0002-8346-2635 surname: Lam fullname: Lam, Siew-Kei organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
BookMark | eNo9UFtPwjAUbgwmAvoDjC9LfB62Xdt1jwRBSTAanc9N153KEDtsuwf_PVsgPp3Ldzkn3wSNXOsAoVuCZ4Tg4qFclx8ziimdZYRRxvgFGhPOZYoxEaOhpywtMMdXaBLCrt8yTsgYvS_dVjsDdfLS7WOTljp8JxvQ3jXuK5l7s20imNh5SGzrk0cYpgF6gxpC9I12iY7JSvdYE-JgdY0urd4HuDnXKfpcLcvFc7p5fVov5pvU0CKLqa6wFZyLWlaCM6zrKrPS2qqmuZXacsF1LvKKsYxLIxgQw3QlC2Kt4RIozabo_uR78O1v1z-jdm3nXX9S0ZwwWcgMs55FTizj2xA8WHXwzY_2f4pgNUSnhujUEJ06R9dr7k6aBgD--YUocJ6T7AiQL2wZ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_TITS_2023_3327824 crossref_primary_10_1109_ACCESS_2024_3355034 crossref_primary_10_1016_j_array_2023_100318 crossref_primary_10_1007_s11760_023_02667_z |
Cites_doi | 10.1109/CVPR42600.2020.01223 10.1109/WACV45572.2020.9093477 10.1109/CVPR.2018.00255 10.1007/978-3-030-01240-3_45 10.1109/CVPR.2008.4587581 10.1007/978-3-030-01219-9_39 10.1109/ICCV.2017.530 10.1109/TPAMI.2019.2956516 10.1109/CVPR.2016.90 10.3390/app11136025 10.5244/C.31.34 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2019.00533 10.1109/CVPR.2016.350 10.1109/CVPR42600.2020.00252 10.1109/TPAMI.2021.3059968 10.1007/978-3-319-48881-3_3 10.1109/CVPR.2018.00811 10.l007/978-3-319-46448-0_2 10.1109/CVPR.2009.5206848 10.1109/TNNLS.2020.3039675 10.1109/CVPR42600.2020.01344 10.1109/TIP.2020.2966371 10.1109/TPAMI.2019.2897684 10.1109/TIP.2020.3040854 10.1007/978-3-030-01246-5_9 10.1109/TMM.2020.3020691 10.1109/CVPR.2016.234 10.1109/WACV.2017.111 10.1109/TITS.2020.3019390 10.1109/TMM.2017.2759508 10.3390/s20185250 10.1016/j.neucom.2020.03.037 10.1109/ICCV.2019.00140 10.1007/978-3-030-01264-9_38 10.1109/CVPR.2017.106 10.1007/978-3-319-46493-0_22 10.1109/CVPR46437.2021.01117 10.1109/TITS.2016.2614548 10.1109/ICCV.2019.00507 10.1109/CVPR42600.2020.01188 10.1109/CVPR.2017.474 10.1109/ICCV.2017.593 10.1109/CVPR.2012.6248074 10.3390/rs13010089 10.1609/aaai.v34i07.6690 10.1109/TPAMI.2011.155 10.1109/CVPR.2019.00662 10.1109/CVPR.2019.00740 10.1007/978-3-319-16181-5_47 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2022.3142445 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 15604 |
ExternalDocumentID | 10_1109_TITS_2022_3142445 9690771 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education, Singapore, under its Academic Research Fund Tier 1 grantid: RG78/21 – fundername: National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Program with the Technical University of Munich at TUMCREATE funderid: 10.13039/501100001381 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABTAH ACGFO ACGFS ACIWK ACNCT AENEX AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIG RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-ab0f6556d8b6540adb3f8ffbd27f8af565a767b44358c64e1c4ab891ffc58e223 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Thu Oct 10 18:36:42 EDT 2024 Fri Aug 23 03:47:09 EDT 2024 Mon Nov 04 11:49:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-ab0f6556d8b6540adb3f8ffbd27f8af565a767b44358c64e1c4ab891ffc58e223 |
ORCID | 0000-0003-0795-4977 0000-0002-8346-2635 |
PQID | 2714898304 |
PQPubID | 75735 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2714898304 crossref_primary_10_1109_TITS_2022_3142445 ieee_primary_9690771 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 (ref59) 2018 ref14 ref58 ref53 ref52 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 Dai (ref32) ref45 ref48 ref47 Du (ref27) 2018; abs/1805.08688 ref41 ref44 ref43 Milan (ref42) 2016; abs/1603.00831 ref49 ref8 ref7 ref9 ref4 ref3 Wang (ref40) 2019 ref6 ref5 Simonyan (ref33) ref34 ref37 ref36 ref31 ref30 ref2 ref1 Song (ref11) 2018; abs/1807.01438 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 Zhang (ref35) 2017; abs/1707.08114 (ref55) 2017 |
References_xml | – ident: ref16 doi: 10.1109/CVPR42600.2020.01223 – ident: ref28 doi: 10.1109/WACV45572.2020.9093477 – ident: ref58 doi: 10.1109/CVPR.2018.00255 – ident: ref12 doi: 10.1007/978-3-030-01240-3_45 – ident: ref56 doi: 10.1109/CVPR.2008.4587581 – ident: ref5 doi: 10.1007/978-3-030-01219-9_39 – ident: ref30 doi: 10.1109/ICCV.2017.530 – ident: ref47 doi: 10.1109/TPAMI.2019.2956516 – ident: ref34 doi: 10.1109/CVPR.2016.90 – ident: ref51 doi: 10.3390/app11136025 – ident: ref13 doi: 10.5244/C.31.34 – ident: ref3 doi: 10.1109/TPAMI.2016.2577031 – ident: ref9 doi: 10.1109/CVPR.2019.00533 – ident: ref43 doi: 10.1109/CVPR.2016.350 – ident: ref39 doi: 10.1109/CVPR42600.2020.00252 – ident: ref41 doi: 10.1109/TPAMI.2021.3059968 – ident: ref53 doi: 10.1007/978-3-319-48881-3_3 – ident: ref7 doi: 10.1109/CVPR.2018.00811 – volume-title: Mot17det Challange year: 2017 ident: ref55 – ident: ref4 doi: 10.l007/978-3-319-46448-0_2 – ident: ref45 doi: 10.1109/CVPR.2009.5206848 – ident: ref36 doi: 10.1109/TNNLS.2020.3039675 – volume: abs/1807.01438 start-page: 1 year: 2018 ident: ref11 article-title: Small-scale pedestrian detection based on somatic topology localization and temporal feature aggregation publication-title: CoRR contributor: fullname: Song – ident: ref15 doi: 10.1109/CVPR42600.2020.01344 – ident: ref25 doi: 10.1109/TIP.2020.2966371 – ident: ref44 doi: 10.1109/TPAMI.2019.2897684 – ident: ref50 doi: 10.1109/TIP.2020.3040854 – ident: ref6 doi: 10.1007/978-3-030-01246-5_9 – ident: ref19 doi: 10.1109/TMM.2020.3020691 – ident: ref23 doi: 10.1109/CVPR.2016.234 – ident: ref26 doi: 10.1109/WACV.2017.111 – ident: ref31 doi: 10.1109/TITS.2020.3019390 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref33 article-title: Very deep convolutional networks for large-scale image recognition contributor: fullname: Simonyan – ident: ref24 doi: 10.1109/TMM.2017.2759508 – ident: ref54 doi: 10.3390/s20185250 – ident: ref49 doi: 10.1016/j.neucom.2020.03.037 – ident: ref57 doi: 10.1109/ICCV.2019.00140 – ident: ref10 doi: 10.1007/978-3-030-01264-9_38 – ident: ref21 doi: 10.1109/CVPR.2017.106 – ident: ref22 doi: 10.1007/978-3-319-46493-0_22 – ident: ref17 doi: 10.1109/CVPR46437.2021.01117 – ident: ref37 doi: 10.1109/TITS.2016.2614548 – ident: ref29 doi: 10.1109/ICCV.2019.00507 – ident: ref52 doi: 10.1109/CVPR42600.2020.01188 – start-page: 379 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref32 article-title: R-FCN: Object detection via region-based fully convolutional networks contributor: fullname: Dai – ident: ref14 doi: 10.1109/CVPR.2017.474 – volume: abs/1603.00831 start-page: 1 year: 2016 ident: ref42 article-title: MOT16: A benchmark for multi-object tracking publication-title: CoRR contributor: fullname: Milan – ident: ref46 doi: 10.1109/ICCV.2017.593 – ident: ref1 doi: 10.1109/CVPR.2012.6248074 – year: 2019 ident: ref40 article-title: Deep high-resolution representation learning for visual recognition publication-title: arXiv:1908.07919 contributor: fullname: Wang – volume: abs/1805.08688 start-page: 1 year: 2018 ident: ref27 article-title: Fused deep neural networks for efficient pedestrian detection publication-title: CoRR contributor: fullname: Du – ident: ref38 doi: 10.3390/rs13010089 – volume-title: Optimize Layers Structure of Keras Model to Reduce Computation Time year: 2018 ident: ref59 – ident: ref18 doi: 10.1609/aaai.v34i07.6690 – volume: abs/1707.08114 start-page: 1 year: 2017 ident: ref35 article-title: A survey on multi-task learning publication-title: CoRR contributor: fullname: Zhang – ident: ref20 doi: 10.1109/TPAMI.2011.155 – ident: ref48 doi: 10.1109/CVPR.2019.00662 – ident: ref8 doi: 10.1109/CVPR.2019.00740 – ident: ref2 doi: 10.1007/978-3-319-16181-5_47 |
SSID | ssj0014511 |
Score | 2.4578357 |
Snippet | Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 15588 |
SubjectTerms | Annotations cascade detection Computational complexity Feature extraction Head Image segmentation Multi-task learning Multitasking pedestrian detection Pedestrians Performance degradation Proposals Semantic segmentation Semantics |
Title | Enhanced Multi-Task Learning Architecture for Detecting Pedestrian at Far Distance |
URI | https://ieeexplore.ieee.org/document/9690771 https://www.proquest.com/docview/2714898304 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FUShIA9MCNPEjWN7rGirsiBEg8QW-QkSUopo-_85O2lVBAtLFMuObfmc3Hc5f3cIXRsvMwUzJBo2C8ngSnRuGBRVqmliTOoDG3k644-vYjQOYXJuN1wY51w8fObuwm305du5WYVfZX0ZTLlAGG9xKWqu1sZjEOJsxdioNCMyYWsPZprIfvFQzMASpBQM1MDrYj90UEyq8utLHNXL5OB_EztE-w2MxMNa7kdox1XHaG8ruGAHPY-r9-jex5FkSwq1-MBNONU3PNxyIGAArnjkQilUPTnrYjaPCqslniioCyATujpBL5NxcT8lTQYFYkCNL4nSic8Zy63QOUAzZfXAC--1pdwL5QHMKZ5znQFmEibPXGoypYVMvTdMOEAOp6hdzSt3hjCnzGpAA0JDcxYYrBTGsNRz6qiWsotu1mtaftaBMspoYCSyDAIogwDKRgBd1AmLuGnYrF8X9dZSKJtXaVFSDhabFIMkO__7qQu0G_quD371UHv5tXKXqLWwq6u4Rb4Bm4i5mQ |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6D-rBX9M4ncrBk7GuZdDCcXFbtjgX42rirQEKmph0xm3_vw_aLTN68dKUQAt5j5bv8fjeQ-haW0EljDBQMFkCCtdAxZpBUUaKhFpH1rGRB5Nk_Mq7PRcm53bFhTHG-MNn5s7del9-PtULt1XWEs6Uc4TxLUaTOCnZWiufgYu05aOjEhqIkC19mFEoWukwnYAtSAiYqI7ZxX6sQj6tyq9_sV9g-vv_G9oB2quAJO6Umj9EG6Y4Qrtr4QXr6LlXvHsHP_Y02yCVsw9cBVR9w501FwIG6Iq7xpVc1ZPJjc_nUWA5x30JdQ5mwquO0Uu_l94PgiqHQqBhIZ8HUoU2ZizOuYoBnMlctS23VuUksVxagHMSJKkooCauY2oiTaXiIrJWM24AO5ygWjEtzCnCCWG5AjzAFTRnjsNKoI-c2IQYooRooJulTLPPMlRG5k2MUGROAZlTQFYpoIHqToirhpX8Gqi51EJWfUyzjCRgswneDunZ309doe1B-jjKRsPxwznacf2Ux8CaqDb_WpgLtDnLF5d-unwDjp286g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Multi-Task+Learning+Architecture+for+Detecting+Pedestrian+at+Far+Distance&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhou%2C+Chengju&rft.au=Wu%2C+Meiqing&rft.au=Lam%2C+Siew-Kei&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=9&rft.spage=15588&rft.epage=15604&rft_id=info:doi/10.1109%2FTITS.2022.3142445&rft.externalDocID=9690771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |