Enhanced Multi-Task Learning Architecture for Detecting Pedestrian at Far Distance

Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 23; no. 9; pp. 15588 - 15604
Main Authors: Zhou, Chengju, Wu, Meiqing, Lam, Siew-Kei
Format: Journal Article
Language:English
Published: New York IEEE 01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantly faster than state-of-the-art methods. The proposed framework incorporates semantic segmentation to confidence modules for RPN (Region Proposal Network) head and R-FCN (Region-based Fully Convolutional Networks) head, and a cascaded R-FCN head. The semantic segmentation confidence is extracted and utilized as auxiliary classification prior knowledge for RPN proposal selection and R-FCN head prediction. Finally, the cascaded R-FCN head progressively refine the pedestrian prediction accuracy with negligible computation overhead. The proposed framework is also capable of maintaining high detection performance on down-sampled input images, which leads to further reduction in overall computational complexity. Experiment results on CityPersons and MOT17Det datasets show that the proposed framework achieves competitive detection performance with about <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> speedup over state-of-the-art methods.
AbstractList Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantly faster than state-of-the-art methods. The proposed framework incorporates semantic segmentation to confidence modules for RPN (Region Proposal Network) head and R-FCN (Region-based Fully Convolutional Networks) head, and a cascaded R-FCN head. The semantic segmentation confidence is extracted and utilized as auxiliary classification prior knowledge for RPN proposal selection and R-FCN head prediction. Finally, the cascaded R-FCN head progressively refine the pedestrian prediction accuracy with negligible computation overhead. The proposed framework is also capable of maintaining high detection performance on down-sampled input images, which leads to further reduction in overall computational complexity. Experiment results on CityPersons and MOT17Det datasets show that the proposed framework achieves competitive detection performance with about <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> speedup over state-of-the-art methods.
Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from the camera. We present a pedestrian detection framework that is not only robust to small- and large-scale pedestrians, but is also significantly faster than state-of-the-art methods. The proposed framework incorporates semantic segmentation to confidence modules for RPN (Region Proposal Network) head and R-FCN (Region-based Fully Convolutional Networks) head, and a cascaded R-FCN head. The semantic segmentation confidence is extracted and utilized as auxiliary classification prior knowledge for RPN proposal selection and R-FCN head prediction. Finally, the cascaded R-FCN head progressively refine the pedestrian prediction accuracy with negligible computation overhead. The proposed framework is also capable of maintaining high detection performance on down-sampled input images, which leads to further reduction in overall computational complexity. Experiment results on CityPersons and MOT17Det datasets show that the proposed framework achieves competitive detection performance with about [Formula Omitted] speedup over state-of-the-art methods.
Author Wu, Meiqing
Lam, Siew-Kei
Zhou, Chengju
Author_xml – sequence: 1
  givenname: Chengju
  orcidid: 0000-0003-0795-4977
  surname: Zhou
  fullname: Zhou, Chengju
  email: zhou0271@e.ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Meiqing
  surname: Wu
  fullname: Wu, Meiqing
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Siew-Kei
  orcidid: 0000-0002-8346-2635
  surname: Lam
  fullname: Lam, Siew-Kei
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNo9UFtPwjAUbgwmAvoDjC9LfB62Xdt1jwRBSTAanc9N153KEDtsuwf_PVsgPp3Ldzkn3wSNXOsAoVuCZ4Tg4qFclx8ziimdZYRRxvgFGhPOZYoxEaOhpywtMMdXaBLCrt8yTsgYvS_dVjsDdfLS7WOTljp8JxvQ3jXuK5l7s20imNh5SGzrk0cYpgF6gxpC9I12iY7JSvdYE-JgdY0urd4HuDnXKfpcLcvFc7p5fVov5pvU0CKLqa6wFZyLWlaCM6zrKrPS2qqmuZXacsF1LvKKsYxLIxgQw3QlC2Kt4RIozabo_uR78O1v1z-jdm3nXX9S0ZwwWcgMs55FTizj2xA8WHXwzY_2f4pgNUSnhujUEJ06R9dr7k6aBgD--YUocJ6T7AiQL2wZ
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2023_3327824
crossref_primary_10_1109_ACCESS_2024_3355034
crossref_primary_10_1016_j_array_2023_100318
crossref_primary_10_1007_s11760_023_02667_z
Cites_doi 10.1109/CVPR42600.2020.01223
10.1109/WACV45572.2020.9093477
10.1109/CVPR.2018.00255
10.1007/978-3-030-01240-3_45
10.1109/CVPR.2008.4587581
10.1007/978-3-030-01219-9_39
10.1109/ICCV.2017.530
10.1109/TPAMI.2019.2956516
10.1109/CVPR.2016.90
10.3390/app11136025
10.5244/C.31.34
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2019.00533
10.1109/CVPR.2016.350
10.1109/CVPR42600.2020.00252
10.1109/TPAMI.2021.3059968
10.1007/978-3-319-48881-3_3
10.1109/CVPR.2018.00811
10.l007/978-3-319-46448-0_2
10.1109/CVPR.2009.5206848
10.1109/TNNLS.2020.3039675
10.1109/CVPR42600.2020.01344
10.1109/TIP.2020.2966371
10.1109/TPAMI.2019.2897684
10.1109/TIP.2020.3040854
10.1007/978-3-030-01246-5_9
10.1109/TMM.2020.3020691
10.1109/CVPR.2016.234
10.1109/WACV.2017.111
10.1109/TITS.2020.3019390
10.1109/TMM.2017.2759508
10.3390/s20185250
10.1016/j.neucom.2020.03.037
10.1109/ICCV.2019.00140
10.1007/978-3-030-01264-9_38
10.1109/CVPR.2017.106
10.1007/978-3-319-46493-0_22
10.1109/CVPR46437.2021.01117
10.1109/TITS.2016.2614548
10.1109/ICCV.2019.00507
10.1109/CVPR42600.2020.01188
10.1109/CVPR.2017.474
10.1109/ICCV.2017.593
10.1109/CVPR.2012.6248074
10.3390/rs13010089
10.1609/aaai.v34i07.6690
10.1109/TPAMI.2011.155
10.1109/CVPR.2019.00662
10.1109/CVPR.2019.00740
10.1007/978-3-319-16181-5_47
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3142445
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 15604
ExternalDocumentID 10_1109_TITS_2022_3142445
9690771
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education, Singapore, under its Academic Research Fund Tier 1
  grantid: RG78/21
– fundername: National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Program with the Technical University of Munich at TUMCREATE
  funderid: 10.13039/501100001381
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ab0f6556d8b6540adb3f8ffbd27f8af565a767b44358c64e1c4ab891ffc58e223
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Thu Oct 10 18:36:42 EDT 2024
Fri Aug 23 03:47:09 EDT 2024
Mon Nov 04 11:49:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ab0f6556d8b6540adb3f8ffbd27f8af565a767b44358c64e1c4ab891ffc58e223
ORCID 0000-0003-0795-4977
0000-0002-8346-2635
PQID 2714898304
PQPubID 75735
PageCount 17
ParticipantIDs proquest_journals_2714898304
crossref_primary_10_1109_TITS_2022_3142445
ieee_primary_9690771
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
(ref59) 2018
ref14
ref58
ref53
ref52
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
Dai (ref32)
ref45
ref48
ref47
Du (ref27) 2018; abs/1805.08688
ref41
ref44
ref43
Milan (ref42) 2016; abs/1603.00831
ref49
ref8
ref7
ref9
ref4
ref3
Wang (ref40) 2019
ref6
ref5
Simonyan (ref33)
ref34
ref37
ref36
ref31
ref30
ref2
ref1
Song (ref11) 2018; abs/1807.01438
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
Zhang (ref35) 2017; abs/1707.08114
(ref55) 2017
References_xml – ident: ref16
  doi: 10.1109/CVPR42600.2020.01223
– ident: ref28
  doi: 10.1109/WACV45572.2020.9093477
– ident: ref58
  doi: 10.1109/CVPR.2018.00255
– ident: ref12
  doi: 10.1007/978-3-030-01240-3_45
– ident: ref56
  doi: 10.1109/CVPR.2008.4587581
– ident: ref5
  doi: 10.1007/978-3-030-01219-9_39
– ident: ref30
  doi: 10.1109/ICCV.2017.530
– ident: ref47
  doi: 10.1109/TPAMI.2019.2956516
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref51
  doi: 10.3390/app11136025
– ident: ref13
  doi: 10.5244/C.31.34
– ident: ref3
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref9
  doi: 10.1109/CVPR.2019.00533
– ident: ref43
  doi: 10.1109/CVPR.2016.350
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00252
– ident: ref41
  doi: 10.1109/TPAMI.2021.3059968
– ident: ref53
  doi: 10.1007/978-3-319-48881-3_3
– ident: ref7
  doi: 10.1109/CVPR.2018.00811
– volume-title: Mot17det Challange
  year: 2017
  ident: ref55
– ident: ref4
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref45
  doi: 10.1109/CVPR.2009.5206848
– ident: ref36
  doi: 10.1109/TNNLS.2020.3039675
– volume: abs/1807.01438
  start-page: 1
  year: 2018
  ident: ref11
  article-title: Small-scale pedestrian detection based on somatic topology localization and temporal feature aggregation
  publication-title: CoRR
  contributor:
    fullname: Song
– ident: ref15
  doi: 10.1109/CVPR42600.2020.01344
– ident: ref25
  doi: 10.1109/TIP.2020.2966371
– ident: ref44
  doi: 10.1109/TPAMI.2019.2897684
– ident: ref50
  doi: 10.1109/TIP.2020.3040854
– ident: ref6
  doi: 10.1007/978-3-030-01246-5_9
– ident: ref19
  doi: 10.1109/TMM.2020.3020691
– ident: ref23
  doi: 10.1109/CVPR.2016.234
– ident: ref26
  doi: 10.1109/WACV.2017.111
– ident: ref31
  doi: 10.1109/TITS.2020.3019390
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref33
  article-title: Very deep convolutional networks for large-scale image recognition
  contributor:
    fullname: Simonyan
– ident: ref24
  doi: 10.1109/TMM.2017.2759508
– ident: ref54
  doi: 10.3390/s20185250
– ident: ref49
  doi: 10.1016/j.neucom.2020.03.037
– ident: ref57
  doi: 10.1109/ICCV.2019.00140
– ident: ref10
  doi: 10.1007/978-3-030-01264-9_38
– ident: ref21
  doi: 10.1109/CVPR.2017.106
– ident: ref22
  doi: 10.1007/978-3-319-46493-0_22
– ident: ref17
  doi: 10.1109/CVPR46437.2021.01117
– ident: ref37
  doi: 10.1109/TITS.2016.2614548
– ident: ref29
  doi: 10.1109/ICCV.2019.00507
– ident: ref52
  doi: 10.1109/CVPR42600.2020.01188
– start-page: 379
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref32
  article-title: R-FCN: Object detection via region-based fully convolutional networks
  contributor:
    fullname: Dai
– ident: ref14
  doi: 10.1109/CVPR.2017.474
– volume: abs/1603.00831
  start-page: 1
  year: 2016
  ident: ref42
  article-title: MOT16: A benchmark for multi-object tracking
  publication-title: CoRR
  contributor:
    fullname: Milan
– ident: ref46
  doi: 10.1109/ICCV.2017.593
– ident: ref1
  doi: 10.1109/CVPR.2012.6248074
– year: 2019
  ident: ref40
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: arXiv:1908.07919
  contributor:
    fullname: Wang
– volume: abs/1805.08688
  start-page: 1
  year: 2018
  ident: ref27
  article-title: Fused deep neural networks for efficient pedestrian detection
  publication-title: CoRR
  contributor:
    fullname: Du
– ident: ref38
  doi: 10.3390/rs13010089
– volume-title: Optimize Layers Structure of Keras Model to Reduce Computation Time
  year: 2018
  ident: ref59
– ident: ref18
  doi: 10.1609/aaai.v34i07.6690
– volume: abs/1707.08114
  start-page: 1
  year: 2017
  ident: ref35
  article-title: A survey on multi-task learning
  publication-title: CoRR
  contributor:
    fullname: Zhang
– ident: ref20
  doi: 10.1109/TPAMI.2011.155
– ident: ref48
  doi: 10.1109/CVPR.2019.00662
– ident: ref8
  doi: 10.1109/CVPR.2019.00740
– ident: ref2
  doi: 10.1007/978-3-319-16181-5_47
SSID ssj0014511
Score 2.4578357
Snippet Existing pedestrian detection methods suffer from performance degradation in the presence of small-scale pedestrians who are positioned at far distance from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 15588
SubjectTerms Annotations
cascade detection
Computational complexity
Feature extraction
Head
Image segmentation
Multi-task learning
Multitasking
pedestrian detection
Pedestrians
Performance degradation
Proposals
Semantic segmentation
Semantics
Title Enhanced Multi-Task Learning Architecture for Detecting Pedestrian at Far Distance
URI https://ieeexplore.ieee.org/document/9690771
https://www.proquest.com/docview/2714898304
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FUShIA9MCNPEjWN7rGirsiBEg8QW-QkSUopo-_85O2lVBAtLFMuObfmc3Hc5f3cIXRsvMwUzJBo2C8ngSnRuGBRVqmliTOoDG3k644-vYjQOYXJuN1wY51w8fObuwm305du5WYVfZX0ZTLlAGG9xKWqu1sZjEOJsxdioNCMyYWsPZprIfvFQzMASpBQM1MDrYj90UEyq8utLHNXL5OB_EztE-w2MxMNa7kdox1XHaG8ruGAHPY-r9-jex5FkSwq1-MBNONU3PNxyIGAArnjkQilUPTnrYjaPCqslniioCyATujpBL5NxcT8lTQYFYkCNL4nSic8Zy63QOUAzZfXAC--1pdwL5QHMKZ5znQFmEibPXGoypYVMvTdMOEAOp6hdzSt3hjCnzGpAA0JDcxYYrBTGsNRz6qiWsotu1mtaftaBMspoYCSyDAIogwDKRgBd1AmLuGnYrF8X9dZSKJtXaVFSDhabFIMkO__7qQu0G_quD371UHv5tXKXqLWwq6u4Rb4Bm4i5mQ
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6D-rBX9M4ncrBk7GuZdDCcXFbtjgX42rirQEKmph0xm3_vw_aLTN68dKUQAt5j5bv8fjeQ-haW0EljDBQMFkCCtdAxZpBUUaKhFpH1rGRB5Nk_Mq7PRcm53bFhTHG-MNn5s7del9-PtULt1XWEs6Uc4TxLUaTOCnZWiufgYu05aOjEhqIkC19mFEoWukwnYAtSAiYqI7ZxX6sQj6tyq9_sV9g-vv_G9oB2quAJO6Umj9EG6Y4Qrtr4QXr6LlXvHsHP_Y02yCVsw9cBVR9w501FwIG6Iq7xpVc1ZPJjc_nUWA5x30JdQ5mwquO0Uu_l94PgiqHQqBhIZ8HUoU2ZizOuYoBnMlctS23VuUksVxagHMSJKkooCauY2oiTaXiIrJWM24AO5ygWjEtzCnCCWG5AjzAFTRnjsNKoI-c2IQYooRooJulTLPPMlRG5k2MUGROAZlTQFYpoIHqToirhpX8Gqi51EJWfUyzjCRgswneDunZ309doe1B-jjKRsPxwznacf2Ux8CaqDb_WpgLtDnLF5d-unwDjp286g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Multi-Task+Learning+Architecture+for+Detecting+Pedestrian+at+Far+Distance&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhou%2C+Chengju&rft.au=Wu%2C+Meiqing&rft.au=Lam%2C+Siew-Kei&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=9&rft.spage=15588&rft.epage=15604&rft_id=info:doi/10.1109%2FTITS.2022.3142445&rft.externalDocID=9690771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon