Diffusion LMS Strategies in Sensor Networks With Noisy Input Data
We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will...
Saved in:
Published in: | IEEE/ACM transactions on networking Vol. 24; no. 1; pp. 3 - 14 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-02-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will be biased if the regression noise is excluded from consideration. We propose a bias-elimination technique and develop a novel class of diffusion LMS algorithms that can mitigate the effect of regression noise and obtain an unbiased estimate of the unknown parameter vector over the network. In our development, we first assume that the variances of the regression noises are known a priori. Later, we relax this assumption by estimating these variances in real time. We analyze the stability and convergence of the proposed algorithms and derive closed-form expressions to characterize their mean-square error performance in transient and steady-state regimes. We further provide computer experiment results that illustrate the efficiency of the proposed algorithms and support the analytical findings. |
---|---|
AbstractList | We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will be biased if the regression noise is excluded from consideration. We propose a bias-elimination technique and develop a novel class of diffusion LMS algorithms that can mitigate the effect of regression noise and obtain an unbiased estimate of the unknown parameter vector over the network. In our development, we first assume that the variances of the regression noises are known a priori. Later, we relax this assumption by estimating these variances in real time. We analyze the stability and convergence of the proposed algorithms and derive closed-form expressions to characterize their mean-square error performance in transient and steady-state regimes. We further provide computer experiment results that illustrate the efficiency of the proposed algorithms and support the analytical findings. |
Author | Abdolee, Reza Champagne, Benoit |
Author_xml | – sequence: 1 givenname: Reza surname: Abdolee fullname: Abdolee, Reza email: reza.abdolee@mail.mcgill.ca organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada – sequence: 2 givenname: Benoit surname: Champagne fullname: Champagne, Benoit email: benoit.champagne@mcgill.ca organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada |
BookMark | eNo9kE1PAjEQhhuDiYj-AOOliefFfu_2SACVBPEAxmNTlqkWdYttN4Z_7xKIp5nD876TeS5RrwkNIHRDyZBSou9Xi-lqyAgVQ8YlIZSfoT6VsiqYVKrX7UTxQinNLtBlStsDQZjqo9HEO9cmHxo8f17iZY42w7uHhH2Dl9CkEPEC8m-Inwm_-fyBF8GnPZ41uzbjic32Cp07-5Xg-jQH6PVhuho_FfOXx9l4NC9qpnkuBIDmmhGomKjXSlOlBKXacaeEEJaAdEra0pXU8tpu-LrU9aZyQlbOSV5KPkB3x95dDD8tpGy2oY1Nd9LQsiq7t0ulO4oeqTqGlCI4s4v-28a9ocQcTJmDKXMwZU6musztMeMB4J9XlRaKc_4HiVFktw |
CODEN | IEANEP |
CitedBy_id | crossref_primary_10_1109_LCSYS_2023_3334548 crossref_primary_10_1109_TNSE_2017_2742360 crossref_primary_10_1109_TSP_2019_2919412 crossref_primary_10_1007_s11045_022_00837_9 crossref_primary_10_1109_TSP_2020_3008592 crossref_primary_10_1049_el_2017_1812 crossref_primary_10_1109_LCOMM_2021_3057085 crossref_primary_10_1016_j_automatica_2023_110958 crossref_primary_10_1109_ACCESS_2018_2871555 crossref_primary_10_1109_TSMC_2021_3071880 crossref_primary_10_1109_LSP_2018_2835763 crossref_primary_10_1016_j_sigpro_2019_01_015 crossref_primary_10_1016_j_sigpro_2020_107954 crossref_primary_10_1109_TMC_2015_2460251 crossref_primary_10_2528_PIERM18042302 crossref_primary_10_1109_ACCESS_2019_2904084 crossref_primary_10_1137_21M1421362 crossref_primary_10_1109_TCYB_2020_3011819 crossref_primary_10_1109_ACCESS_2018_2800278 crossref_primary_10_1177_1550147719841496 crossref_primary_10_1109_TCSII_2018_2878951 crossref_primary_10_1109_TCOMM_2021_3100624 crossref_primary_10_1109_TAES_2022_3215948 crossref_primary_10_1109_TSP_2020_3014801 crossref_primary_10_1016_j_sigpro_2020_107660 crossref_primary_10_1109_LWC_2017_2710044 crossref_primary_10_1016_j_dsp_2024_104395 crossref_primary_10_1109_ACCESS_2021_3066559 crossref_primary_10_1109_TSP_2015_2450193 crossref_primary_10_1016_j_sigpro_2018_03_019 crossref_primary_10_1016_j_sigpro_2018_07_025 crossref_primary_10_1016_j_sigpro_2021_108150 crossref_primary_10_1007_s11227_019_03129_5 crossref_primary_10_3390_s17040824 crossref_primary_10_1016_j_sigpro_2017_05_015 crossref_primary_10_1109_TAC_2018_2799567 crossref_primary_10_1016_j_ifacol_2023_10_1335 crossref_primary_10_1016_j_sigpro_2022_108672 crossref_primary_10_1109_TSIPN_2023_3313810 crossref_primary_10_1109_ACCESS_2017_2733766 |
Cites_doi | 10.1109/TSP.2012.2192928 10.1109/78.286956 10.1007/s11432-009-0086-9 10.1137/S1052623495287022 10.1109/78.365285 10.1109/78.275601 10.1017/CBO9780511804441 10.1002/9780470374122 10.1109/TSP.2012.2204985 10.1137/S1052623499362111 10.1109/TSP.2012.2198470 10.1049/el:20000251 10.1109/TSP.2007.896034 10.1109/JSAC.2005.843546 10.1049/el:20010955 10.1109/TAC.2008.2009515 10.1002/acs.4480030303 10.2307/2690437 10.1109/IPSN.2006.244160 10.1109/TSP.2011.2163631 10.1109/TSP.2007.913164 10.1109/TSP.2010.2051429 10.1109/TSP.2008.917383 10.1137/0717073 10.1109/TSP.1993.193165 10.1109/TSP.2011.2166549 10.1109/MSP.2012.2231991 10.1109/TSP.2012.2232663 10.1109/JPROC.2010.2052531 10.1016/0024-3795(91)90332-Q 10.1109/78.705421 10.1109/TSP.2011.2108651 10.1109/JSTSP.2011.2127446 10.1137/1.9781611971002 10.1109/TAC.1986.1104412 10.1109/TSP.2012.2197208 10.1109/TSP.2011.2161474 10.1080/00207177708922235 10.1109/TSP.2012.2217338 10.1109/TSP.2013.2296271 10.1109/TSP.2009.2033729 10.1049/el:19990523 10.1049/el.2013.0246 10.1109/TSP.2005.847845 10.1109/TSP.2009.2032030 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNET.2014.2350013 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2566 |
EndPage | 14 |
ExternalDocumentID | 4047606411 10_1109_TNET_2014_2350013 6894633 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada; Natural Sciences and Engineering Research Council (NSERC) of Canada funderid: 10.13039/501100000038 |
GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E 9M8 AAJGR AAKMM AALFJ AASAJ AAWTV AAYOK ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL ADPZR AEBYY AENSD AETEA AETIX AFWIH AFWXC AI. AIBXA AIKLT AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS EJD FEDTE GUFHI HF~ HGAVV HZ~ H~9 I07 ICLAB IEDLZ IES IFIPE IFJZH IPLJI JAVBF LAI LHSKQ M43 MVM O9- OCL P1C P2P PQQKQ RIA RIC RIE RIG RNS ROL TN5 UPT UQL VH1 W7O XFK XOL YR2 ZCA AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-4ee93920e824cb691664119f3f6444a0e5f65a7f71a3cad3b79cd8f458ff53753 |
IEDL.DBID | RIE |
ISSN | 1063-6692 |
IngestDate | Thu Oct 10 19:25:39 EDT 2024 Thu Sep 26 15:55:00 EDT 2024 Wed Jun 26 19:22:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-4ee93920e824cb691664119f3f6444a0e5f65a7f71a3cad3b79cd8f458ff53753 |
PQID | 1787235769 |
PQPubID | 32020 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TNET_2014_2350013 ieee_primary_6894633 proquest_journals_1787235769 |
PublicationCentury | 2000 |
PublicationDate | 2016-Feb. 2016-2-00 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-Feb. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ACM transactions on networking |
PublicationTitleAbbrev | TNET |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref52 ref11 ref10 ref17 ref19 ref18 ref50 abdolee (ref1) 2012 ref46 ref45 ref47 ref41 ref44 ref43 tu (ref38) 2012; 60 sayed (ref49) 2013 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 zheng (ref16) 1989; 3 ref30 ref33 ref32 ref2 ref39 shin (ref7) 2001; 84 bertsekas (ref48) 1989 jia (ref14) 2001 ref24 ref23 ref25 ref20 zheng (ref51) 2003; 4 ref22 ref21 braca (ref26) 2008 ref28 ref27 ref29 tu (ref42) 2014; 62 |
References_xml | – ident: ref50 doi: 10.1109/TSP.2012.2192928 – ident: ref5 doi: 10.1109/78.286956 – ident: ref52 doi: 10.1007/s11432-009-0086-9 – ident: ref20 doi: 10.1137/S1052623495287022 – ident: ref6 doi: 10.1109/78.365285 – ident: ref9 doi: 10.1109/78.275601 – ident: ref47 doi: 10.1017/CBO9780511804441 – ident: ref45 doi: 10.1002/9780470374122 – volume: 84 start-page: 1273 year: 2001 ident: ref7 article-title: Bias-free adaptive IIR filtering publication-title: IEICE Trans Fund Elect Commun and Comput Sci contributor: fullname: shin – ident: ref39 doi: 10.1109/TSP.2012.2204985 – ident: ref21 doi: 10.1137/S1052623499362111 – ident: ref37 doi: 10.1109/TSP.2012.2198470 – volume: 4 start-page: 444 year: 2003 ident: ref51 article-title: A least-squares based algorithm for FIR filtering with noisy data publication-title: Proc ISCAS contributor: fullname: zheng – ident: ref15 doi: 10.1049/el:20000251 – ident: ref23 doi: 10.1109/TSP.2007.896034 – ident: ref22 doi: 10.1109/JSAC.2005.843546 – ident: ref11 doi: 10.1049/el:20010955 – ident: ref29 doi: 10.1109/TAC.2008.2009515 – volume: 3 start-page: 231 year: 1989 ident: ref16 article-title: Unbiased parameter estimation of linear systems in the presence of input and output noise publication-title: Int J Adaptive Control Signal Process doi: 10.1002/acs.4480030303 contributor: fullname: zheng – ident: ref46 doi: 10.2307/2690437 – ident: ref25 doi: 10.1109/IPSN.2006.244160 – start-page: 749 year: 2012 ident: ref1 article-title: A diffusion LMS strategy for parameter estimation in noisy regressor applications publication-title: Proc 20th EUSIPCO contributor: fullname: abdolee – ident: ref43 doi: 10.1109/TSP.2011.2163631 – ident: ref32 doi: 10.1109/TSP.2007.913164 – ident: ref35 doi: 10.1109/TSP.2010.2051429 – ident: ref31 doi: 10.1109/TSP.2008.917383 – ident: ref2 doi: 10.1137/0717073 – ident: ref4 doi: 10.1109/TSP.1993.193165 – start-page: 3332 year: 2001 ident: ref14 article-title: On bias compensated least squares method for noisy input-output system identification publication-title: Proc 40th IEEE Conf Decision Control contributor: fullname: jia – ident: ref34 doi: 10.1109/TSP.2011.2166549 – ident: ref40 doi: 10.1109/MSP.2012.2231991 – year: 2013 ident: ref49 publication-title: E-Reference Signal Processing contributor: fullname: sayed – ident: ref41 doi: 10.1109/TSP.2012.2232663 – ident: ref28 doi: 10.1109/JPROC.2010.2052531 – ident: ref44 doi: 10.1016/0024-3795(91)90332-Q – start-page: 1 year: 2008 ident: ref26 article-title: Running consensus in wireless sensor networks publication-title: Proc Int Conf Inf Fusion contributor: fullname: braca – ident: ref10 doi: 10.1109/78.705421 – ident: ref18 doi: 10.1109/TSP.2011.2108651 – ident: ref30 doi: 10.1109/JSTSP.2011.2127446 – ident: ref3 doi: 10.1137/1.9781611971002 – ident: ref24 doi: 10.1109/TAC.1986.1104412 – ident: ref19 doi: 10.1109/TSP.2012.2197208 – ident: ref36 doi: 10.1109/TSP.2011.2161474 – ident: ref13 doi: 10.1080/00207177708922235 – volume: 60 start-page: 6127 year: 2012 ident: ref38 article-title: Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2012.2217338 contributor: fullname: tu – volume: 62 start-page: 1054 year: 2014 ident: ref42 article-title: Distributed decision-making over adaptive networks publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2296271 contributor: fullname: tu – ident: ref33 doi: 10.1109/TSP.2009.2033729 – ident: ref8 doi: 10.1049/el:19990523 – ident: ref17 doi: 10.1049/el.2013.0246 – ident: ref12 doi: 10.1109/TSP.2005.847845 – ident: ref27 doi: 10.1109/TSP.2009.2032030 – year: 1989 ident: ref48 publication-title: Parallel and Distributed Computation contributor: fullname: bertsekas |
SSID | ssj0013026 |
Score | 2.4783504 |
Snippet | We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 3 |
SubjectTerms | Algorithm design and analysis Algorithms Bias-compensated least-mean square (LMS) diffusion adaptation distributed parameter estimation Estimation Least squares approximations network optimization Noise Noise measurement Parameter estimation Signal processing algorithms Vectors |
Title | Diffusion LMS Strategies in Sensor Networks With Noisy Input Data |
URI | https://ieeexplore.ieee.org/document/6894633 https://www.proquest.com/docview/1787235769 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJxj4KohCQR6YEGmT2PHHWNFWRYIsLYItchxbdEmqJhn499hOWkCwsGVwLOs5ubvnO78D4NYw_5CrCHlpILSHiU89zgxxJSIKeap1lDkxnfmCxm9sMrUyOfe7uzBKKVd8pob20eXys0LW9qhsRBjHBKEO6FDOmrtaXxkD37VWMwwHeYTwsM1gBj4fLePp0hZx4WGIIjv0hw9yTVV-WWLnXmZH_1vYMThsw0g4bvb9BOyp_BQcfBMX7IHxZKV1bQ_D4NPzAm5laFUJVzlcGPZabGDcFIGX8HVVvcO4WJUf8DFf1xWciEqcgZfZdPkw99qGCZ40XrvysFLcxDu-YiGWKTGRH8FBwDXSJurBwleRJpGgmgYCSZGhlHKZMY0jZjYFGeJyDrp5kasLAJWW0kRaGUs1xZmhNcKYNqGpkJKrMEN9cLeFMFk3uhiJ4xM-TyzeicU7afHug57FbDewhasPBlvQk_bPKZPAWBArwUP45d9vXYF9M3dbOT0A3WpTq2vQKbP6xn0RnyQsshs |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGICBN6I8PTAhAkns2PFY0aJWtFlaBFvkOLboklRNMvDvsZO0gGBhy-DI1ufk7j7f-TuAG8P8fa4C7CSe0A6hLnN4aIgrFYHPE62DtBbTGUxY9Bb2-lYm5251F0YpVRefqXv7WOfy01xW9qjsgYacUIzXYTMgjLLmttZXzsCtm6sZjoMdSrnf5jA9lz9Mo_7UlnGRex8HdugPL1S3Vflli2sH87T3v6Xtw24bSKJus_MHsKayQ9j5Ji94BN3eTOvKHoeh0XiClkK0qkCzDE0Mf80XKGrKwAv0OivfUZTPig80zOZViXqiFMfw8tSfPg6ctmWCI43fLh2iFDcRj6tCn8iEmtiPEs_jGmsT9xDhqkDTQDDNPIGlSHHCuExDTYLQbAs21OUENrI8U6eAlJbSxFppmGhGUkNshDFuQjMhJVd-ijtwu4QwnjfKGHHNKFweW7xji3fc4t2BI4vZamALVwculqDH7b9TxJ6xIVaEh_Kzv9-6hq3BdDyKR8Po-Ry2zTxtHfUFbJSLSl3CepFWV_XX8Qm0A7Vs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+LMS+Strategies+in+Sensor+Networks+With+Noisy+Input+Data&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Abdolee%2C+Reza&rft.au=Champagne%2C+Benoit&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=24&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1109%2FTNET.2014.2350013&rft.externalDocID=6894633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |