Diffusion LMS Strategies in Sensor Networks With Noisy Input Data

We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking Vol. 24; no. 1; pp. 3 - 14
Main Authors: Abdolee, Reza, Champagne, Benoit
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will be biased if the regression noise is excluded from consideration. We propose a bias-elimination technique and develop a novel class of diffusion LMS algorithms that can mitigate the effect of regression noise and obtain an unbiased estimate of the unknown parameter vector over the network. In our development, we first assume that the variances of the regression noises are known a priori. Later, we relax this assumption by estimating these variances in real time. We analyze the stability and convergence of the proposed algorithms and derive closed-form expressions to characterize their mean-square error performance in transient and steady-state regimes. We further provide computer experiment results that illustrate the efficiency of the proposed algorithms and support the analytical findings.
AbstractList We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will be biased if the regression noise is excluded from consideration. We propose a bias-elimination technique and develop a novel class of diffusion LMS algorithms that can mitigate the effect of regression noise and obtain an unbiased estimate of the unknown parameter vector over the network. In our development, we first assume that the variances of the regression noises are known a priori. Later, we relax this assumption by estimating these variances in real time. We analyze the stability and convergence of the proposed algorithms and derive closed-form expressions to characterize their mean-square error performance in transient and steady-state regimes. We further provide computer experiment results that illustrate the efficiency of the proposed algorithms and support the analytical findings.
Author Abdolee, Reza
Champagne, Benoit
Author_xml – sequence: 1
  givenname: Reza
  surname: Abdolee
  fullname: Abdolee, Reza
  email: reza.abdolee@mail.mcgill.ca
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
– sequence: 2
  givenname: Benoit
  surname: Champagne
  fullname: Champagne, Benoit
  email: benoit.champagne@mcgill.ca
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
BookMark eNo9kE1PAjEQhhuDiYj-AOOliefFfu_2SACVBPEAxmNTlqkWdYttN4Z_7xKIp5nD876TeS5RrwkNIHRDyZBSou9Xi-lqyAgVQ8YlIZSfoT6VsiqYVKrX7UTxQinNLtBlStsDQZjqo9HEO9cmHxo8f17iZY42w7uHhH2Dl9CkEPEC8m-Inwm_-fyBF8GnPZ41uzbjic32Cp07-5Xg-jQH6PVhuho_FfOXx9l4NC9qpnkuBIDmmhGomKjXSlOlBKXacaeEEJaAdEra0pXU8tpu-LrU9aZyQlbOSV5KPkB3x95dDD8tpGy2oY1Nd9LQsiq7t0ulO4oeqTqGlCI4s4v-28a9ocQcTJmDKXMwZU6musztMeMB4J9XlRaKc_4HiVFktw
CODEN IEANEP
CitedBy_id crossref_primary_10_1109_LCSYS_2023_3334548
crossref_primary_10_1109_TNSE_2017_2742360
crossref_primary_10_1109_TSP_2019_2919412
crossref_primary_10_1007_s11045_022_00837_9
crossref_primary_10_1109_TSP_2020_3008592
crossref_primary_10_1049_el_2017_1812
crossref_primary_10_1109_LCOMM_2021_3057085
crossref_primary_10_1016_j_automatica_2023_110958
crossref_primary_10_1109_ACCESS_2018_2871555
crossref_primary_10_1109_TSMC_2021_3071880
crossref_primary_10_1109_LSP_2018_2835763
crossref_primary_10_1016_j_sigpro_2019_01_015
crossref_primary_10_1016_j_sigpro_2020_107954
crossref_primary_10_1109_TMC_2015_2460251
crossref_primary_10_2528_PIERM18042302
crossref_primary_10_1109_ACCESS_2019_2904084
crossref_primary_10_1137_21M1421362
crossref_primary_10_1109_TCYB_2020_3011819
crossref_primary_10_1109_ACCESS_2018_2800278
crossref_primary_10_1177_1550147719841496
crossref_primary_10_1109_TCSII_2018_2878951
crossref_primary_10_1109_TCOMM_2021_3100624
crossref_primary_10_1109_TAES_2022_3215948
crossref_primary_10_1109_TSP_2020_3014801
crossref_primary_10_1016_j_sigpro_2020_107660
crossref_primary_10_1109_LWC_2017_2710044
crossref_primary_10_1016_j_dsp_2024_104395
crossref_primary_10_1109_ACCESS_2021_3066559
crossref_primary_10_1109_TSP_2015_2450193
crossref_primary_10_1016_j_sigpro_2018_03_019
crossref_primary_10_1016_j_sigpro_2018_07_025
crossref_primary_10_1016_j_sigpro_2021_108150
crossref_primary_10_1007_s11227_019_03129_5
crossref_primary_10_3390_s17040824
crossref_primary_10_1016_j_sigpro_2017_05_015
crossref_primary_10_1109_TAC_2018_2799567
crossref_primary_10_1016_j_ifacol_2023_10_1335
crossref_primary_10_1016_j_sigpro_2022_108672
crossref_primary_10_1109_TSIPN_2023_3313810
crossref_primary_10_1109_ACCESS_2017_2733766
Cites_doi 10.1109/TSP.2012.2192928
10.1109/78.286956
10.1007/s11432-009-0086-9
10.1137/S1052623495287022
10.1109/78.365285
10.1109/78.275601
10.1017/CBO9780511804441
10.1002/9780470374122
10.1109/TSP.2012.2204985
10.1137/S1052623499362111
10.1109/TSP.2012.2198470
10.1049/el:20000251
10.1109/TSP.2007.896034
10.1109/JSAC.2005.843546
10.1049/el:20010955
10.1109/TAC.2008.2009515
10.1002/acs.4480030303
10.2307/2690437
10.1109/IPSN.2006.244160
10.1109/TSP.2011.2163631
10.1109/TSP.2007.913164
10.1109/TSP.2010.2051429
10.1109/TSP.2008.917383
10.1137/0717073
10.1109/TSP.1993.193165
10.1109/TSP.2011.2166549
10.1109/MSP.2012.2231991
10.1109/TSP.2012.2232663
10.1109/JPROC.2010.2052531
10.1016/0024-3795(91)90332-Q
10.1109/78.705421
10.1109/TSP.2011.2108651
10.1109/JSTSP.2011.2127446
10.1137/1.9781611971002
10.1109/TAC.1986.1104412
10.1109/TSP.2012.2197208
10.1109/TSP.2011.2161474
10.1080/00207177708922235
10.1109/TSP.2012.2217338
10.1109/TSP.2013.2296271
10.1109/TSP.2009.2033729
10.1049/el:19990523
10.1049/el.2013.0246
10.1109/TSP.2005.847845
10.1109/TSP.2009.2032030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNET.2014.2350013
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 14
ExternalDocumentID 4047606411
10_1109_TNET_2014_2350013
6894633
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada; Natural Sciences and Engineering Research Council (NSERC) of Canada
  funderid: 10.13039/501100000038
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
9M8
AAJGR
AAKMM
AALFJ
AASAJ
AAWTV
AAYOK
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
ADPZR
AEBYY
AENSD
AETEA
AETIX
AFWIH
AFWXC
AI.
AIBXA
AIKLT
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
HZ~
H~9
I07
ICLAB
IEDLZ
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
LHSKQ
M43
MVM
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNS
ROL
TN5
UPT
UQL
VH1
W7O
XFK
XOL
YR2
ZCA
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-4ee93920e824cb691664119f3f6444a0e5f65a7f71a3cad3b79cd8f458ff53753
IEDL.DBID RIE
ISSN 1063-6692
IngestDate Thu Oct 10 19:25:39 EDT 2024
Thu Sep 26 15:55:00 EDT 2024
Wed Jun 26 19:22:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-4ee93920e824cb691664119f3f6444a0e5f65a7f71a3cad3b79cd8f458ff53753
PQID 1787235769
PQPubID 32020
PageCount 12
ParticipantIDs crossref_primary_10_1109_TNET_2014_2350013
ieee_primary_6894633
proquest_journals_1787235769
PublicationCentury 2000
PublicationDate 2016-Feb.
2016-2-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref52
ref11
ref10
ref17
ref19
ref18
ref50
abdolee (ref1) 2012
ref46
ref45
ref47
ref41
ref44
ref43
tu (ref38) 2012; 60
sayed (ref49) 2013
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
zheng (ref16) 1989; 3
ref30
ref33
ref32
ref2
ref39
shin (ref7) 2001; 84
bertsekas (ref48) 1989
jia (ref14) 2001
ref24
ref23
ref25
ref20
zheng (ref51) 2003; 4
ref22
ref21
braca (ref26) 2008
ref28
ref27
ref29
tu (ref42) 2014; 62
References_xml – ident: ref50
  doi: 10.1109/TSP.2012.2192928
– ident: ref5
  doi: 10.1109/78.286956
– ident: ref52
  doi: 10.1007/s11432-009-0086-9
– ident: ref20
  doi: 10.1137/S1052623495287022
– ident: ref6
  doi: 10.1109/78.365285
– ident: ref9
  doi: 10.1109/78.275601
– ident: ref47
  doi: 10.1017/CBO9780511804441
– ident: ref45
  doi: 10.1002/9780470374122
– volume: 84
  start-page: 1273
  year: 2001
  ident: ref7
  article-title: Bias-free adaptive IIR filtering
  publication-title: IEICE Trans Fund Elect Commun and Comput Sci
  contributor:
    fullname: shin
– ident: ref39
  doi: 10.1109/TSP.2012.2204985
– ident: ref21
  doi: 10.1137/S1052623499362111
– ident: ref37
  doi: 10.1109/TSP.2012.2198470
– volume: 4
  start-page: 444
  year: 2003
  ident: ref51
  article-title: A least-squares based algorithm for FIR filtering with noisy data
  publication-title: Proc ISCAS
  contributor:
    fullname: zheng
– ident: ref15
  doi: 10.1049/el:20000251
– ident: ref23
  doi: 10.1109/TSP.2007.896034
– ident: ref22
  doi: 10.1109/JSAC.2005.843546
– ident: ref11
  doi: 10.1049/el:20010955
– ident: ref29
  doi: 10.1109/TAC.2008.2009515
– volume: 3
  start-page: 231
  year: 1989
  ident: ref16
  article-title: Unbiased parameter estimation of linear systems in the presence of input and output noise
  publication-title: Int J Adaptive Control Signal Process
  doi: 10.1002/acs.4480030303
  contributor:
    fullname: zheng
– ident: ref46
  doi: 10.2307/2690437
– ident: ref25
  doi: 10.1109/IPSN.2006.244160
– start-page: 749
  year: 2012
  ident: ref1
  article-title: A diffusion LMS strategy for parameter estimation in noisy regressor applications
  publication-title: Proc 20th EUSIPCO
  contributor:
    fullname: abdolee
– ident: ref43
  doi: 10.1109/TSP.2011.2163631
– ident: ref32
  doi: 10.1109/TSP.2007.913164
– ident: ref35
  doi: 10.1109/TSP.2010.2051429
– ident: ref31
  doi: 10.1109/TSP.2008.917383
– ident: ref2
  doi: 10.1137/0717073
– ident: ref4
  doi: 10.1109/TSP.1993.193165
– start-page: 3332
  year: 2001
  ident: ref14
  article-title: On bias compensated least squares method for noisy input-output system identification
  publication-title: Proc 40th IEEE Conf Decision Control
  contributor:
    fullname: jia
– ident: ref34
  doi: 10.1109/TSP.2011.2166549
– ident: ref40
  doi: 10.1109/MSP.2012.2231991
– year: 2013
  ident: ref49
  publication-title: E-Reference Signal Processing
  contributor:
    fullname: sayed
– ident: ref41
  doi: 10.1109/TSP.2012.2232663
– ident: ref28
  doi: 10.1109/JPROC.2010.2052531
– ident: ref44
  doi: 10.1016/0024-3795(91)90332-Q
– start-page: 1
  year: 2008
  ident: ref26
  article-title: Running consensus in wireless sensor networks
  publication-title: Proc Int Conf Inf Fusion
  contributor:
    fullname: braca
– ident: ref10
  doi: 10.1109/78.705421
– ident: ref18
  doi: 10.1109/TSP.2011.2108651
– ident: ref30
  doi: 10.1109/JSTSP.2011.2127446
– ident: ref3
  doi: 10.1137/1.9781611971002
– ident: ref24
  doi: 10.1109/TAC.1986.1104412
– ident: ref19
  doi: 10.1109/TSP.2012.2197208
– ident: ref36
  doi: 10.1109/TSP.2011.2161474
– ident: ref13
  doi: 10.1080/00207177708922235
– volume: 60
  start-page: 6127
  year: 2012
  ident: ref38
  article-title: Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2012.2217338
  contributor:
    fullname: tu
– volume: 62
  start-page: 1054
  year: 2014
  ident: ref42
  article-title: Distributed decision-making over adaptive networks
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2296271
  contributor:
    fullname: tu
– ident: ref33
  doi: 10.1109/TSP.2009.2033729
– ident: ref8
  doi: 10.1049/el:19990523
– ident: ref17
  doi: 10.1049/el.2013.0246
– ident: ref12
  doi: 10.1109/TSP.2005.847845
– ident: ref27
  doi: 10.1109/TSP.2009.2032030
– year: 1989
  ident: ref48
  publication-title: Parallel and Distributed Computation
  contributor:
    fullname: bertsekas
SSID ssj0013026
Score 2.4783504
Snippet We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 3
SubjectTerms Algorithm design and analysis
Algorithms
Bias-compensated least-mean square (LMS)
diffusion adaptation
distributed parameter estimation
Estimation
Least squares approximations
network optimization
Noise
Noise measurement
Parameter estimation
Signal processing algorithms
Vectors
Title Diffusion LMS Strategies in Sensor Networks With Noisy Input Data
URI https://ieeexplore.ieee.org/document/6894633
https://www.proquest.com/docview/1787235769
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJxj4KohCQR6YEGmT2PHHWNFWRYIsLYItchxbdEmqJhn499hOWkCwsGVwLOs5ubvnO78D4NYw_5CrCHlpILSHiU89zgxxJSIKeap1lDkxnfmCxm9sMrUyOfe7uzBKKVd8pob20eXys0LW9qhsRBjHBKEO6FDOmrtaXxkD37VWMwwHeYTwsM1gBj4fLePp0hZx4WGIIjv0hw9yTVV-WWLnXmZH_1vYMThsw0g4bvb9BOyp_BQcfBMX7IHxZKV1bQ_D4NPzAm5laFUJVzlcGPZabGDcFIGX8HVVvcO4WJUf8DFf1xWciEqcgZfZdPkw99qGCZ40XrvysFLcxDu-YiGWKTGRH8FBwDXSJurBwleRJpGgmgYCSZGhlHKZMY0jZjYFGeJyDrp5kasLAJWW0kRaGUs1xZmhNcKYNqGpkJKrMEN9cLeFMFk3uhiJ4xM-TyzeicU7afHug57FbDewhasPBlvQk_bPKZPAWBArwUP45d9vXYF9M3dbOT0A3WpTq2vQKbP6xn0RnyQsshs
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGICBN6I8PTAhAkns2PFY0aJWtFlaBFvkOLboklRNMvDvsZO0gGBhy-DI1ufk7j7f-TuAG8P8fa4C7CSe0A6hLnN4aIgrFYHPE62DtBbTGUxY9Bb2-lYm5251F0YpVRefqXv7WOfy01xW9qjsgYacUIzXYTMgjLLmttZXzsCtm6sZjoMdSrnf5jA9lz9Mo_7UlnGRex8HdugPL1S3Vflli2sH87T3v6Xtw24bSKJus_MHsKayQ9j5Ji94BN3eTOvKHoeh0XiClkK0qkCzDE0Mf80XKGrKwAv0OivfUZTPig80zOZViXqiFMfw8tSfPg6ctmWCI43fLh2iFDcRj6tCn8iEmtiPEs_jGmsT9xDhqkDTQDDNPIGlSHHCuExDTYLQbAs21OUENrI8U6eAlJbSxFppmGhGUkNshDFuQjMhJVd-ijtwu4QwnjfKGHHNKFweW7xji3fc4t2BI4vZamALVwculqDH7b9TxJ6xIVaEh_Kzv9-6hq3BdDyKR8Po-Ry2zTxtHfUFbJSLSl3CepFWV_XX8Qm0A7Vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+LMS+Strategies+in+Sensor+Networks+With+Noisy+Input+Data&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Abdolee%2C+Reza&rft.au=Champagne%2C+Benoit&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=24&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1109%2FTNET.2014.2350013&rft.externalDocID=6894633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon