Developing a Liu‐type estimator in beta regression model
The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML...
Saved in:
Published in: | Concurrency and computation Vol. 34; no. 5 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
28-02-2022
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu‐type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu‐type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators. |
---|---|
AbstractList | The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu‐type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu‐type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators. Abstract The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu‐type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu‐type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators. |
Author | Abonazel, Mohamed R. Algamal, Zakariya Yahya |
Author_xml | – sequence: 1 givenname: Zakariya Yahya orcidid: 0000-0002-0229-7958 surname: Algamal fullname: Algamal, Zakariya Yahya email: zakariya.algamal@uomosul.edu.iq organization: University of Mosul – sequence: 2 givenname: Mohamed R. orcidid: 0000-0001-6010-001X surname: Abonazel fullname: Abonazel, Mohamed R. email: mabonazel@cu.edu.eg organization: Cairo University |
BookMark | eNp1kM1KAzEQgINUsK2CjxDw4mVr_km8SW1VKOhBzyGbnZYt282abJXefASf0ScxteLN0wwzH_PzjdCgDS0gdE7JhBLCrnwHE6W0PEJDKjkriOJi8JczdYJGKa0JoZRwOkTXt_AGTejqdoUdXtTbr4_PftcBhtTXG9eHiOsWl9A7HGEVIaU6tHgTKmhO0fHSNQnOfuMYvcxnz9P7YvF49zC9WRSeGS4LwxmUSjDQWmhSguTVUjHvhSu9p1Qb72hVeelAk9zmcl_UghqjqFSi5GN0cZjbxfC6zXfZddjGNq-0TDFmDGGCZuryQPkYUoqwtF3MD8SdpcTuzdhsxu7NZLQ4oO91A7t_OTt9mv3w312PZdc |
CitedBy_id | crossref_primary_10_3389_fams_2022_775068 crossref_primary_10_3390_sym15122107 crossref_primary_10_1080_03610926_2023_2273206 crossref_primary_10_15672_hujms_1145607 crossref_primary_10_1038_s41598_024_62627_6 crossref_primary_10_15672_hujms_1122207 crossref_primary_10_3389_fams_2022_880086 crossref_primary_10_3389_fams_2022_952142 crossref_primary_10_1080_00949655_2023_2166046 crossref_primary_10_1155_2024_6694880 crossref_primary_10_3389_fams_2023_956963 crossref_primary_10_1016_j_envsci_2023_103578 crossref_primary_10_46481_jnsps_2022_664 crossref_primary_10_1016_j_jrras_2024_100905 crossref_primary_10_1002_cpe_6779 crossref_primary_10_37394_23206_2022_21_48 crossref_primary_10_3390_axioms13010046 crossref_primary_10_37394_23206_2022_21_75 crossref_primary_10_3389_fams_2021_780322 |
Cites_doi | 10.1080/03610918.2014.977918 10.1016/j.csda.2017.08.002 10.1007/s40995-017-0174-4 10.1088/1742-6596/1341/9/092021 10.1080/00949655.2012.696648 10.1080/03610918.2018.1510525 10.1080/03610920701386877 10.1007/s00362-014-0594-6 10.1016/j.jmva.2015.01.005 10.1037/1082-989X.11.1.54 10.1080/03610918.2021.1934023 10.18637/jss.v034.i02 10.1080/02664763.2021.1889998 10.1081/STA-200037930 10.3390/make1010026 10.1080/03610918.2014.995815 10.1016/j.chemolab.2018.10.014 10.1007/s40995-020-00851-1 10.1080/03610918.2021.1960373 10.1002/cem.3300 10.1080/00949655.2019.1628235 10.1007/s13571-018-0171-4 10.1007/s00362-010-0349-y 10.1007/978-3-642-34289-9_43 10.1007/978-3-319-73241-1_2 10.1080/02664760701834931 10.1525/9780520313880-018 10.1081/SAC-120017499 10.1080/03610918.2012.667480 10.1080/00949655.2020.1867549 10.1080/03610918.2015.1053925 10.1080/02331888.2018.1511715 10.1007/s00362-017-0893-9 10.1081/STA-120019959 10.1371/journal.pone.0245376 10.1007/s00362-006-0037-0 10.1080/00949655.2020.1718150 10.1080/0266476042000214501 10.1080/03610929308831027 10.1080/03610918.2018.1508704 10.1080/03610926.2021.1900254 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cpe.6685 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1532-0634 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cpe_6685 CPE6685 |
Genre | article |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION 7SC 8FD AAMNL JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2935-932eb642e88480be53df62cc4abcc1189ca1ddc5ae800be35c1188419961564b3 |
IEDL.DBID | 33P |
ISSN | 1532-0626 |
IngestDate | Tue Nov 19 07:05:35 EST 2024 Fri Aug 23 01:52:51 EDT 2024 Sat Aug 24 00:57:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-932eb642e88480be53df62cc4abcc1189ca1ddc5ae800be35c1188419961564b3 |
ORCID | 0000-0002-0229-7958 0000-0001-6010-001X |
PQID | 2622990241 |
PQPubID | 2045170 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2622990241 crossref_primary_10_1002_cpe_6685 wiley_primary_10_1002_cpe_6685_CPE6685 |
PublicationCentury | 2000 |
PublicationDate | 28 February 2022 |
PublicationDateYYYYMMDD | 2022-02-28 |
PublicationDate_xml | – month: 02 year: 2022 text: 28 February 2022 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Concurrency and computation |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 34 2015; 56 2006; 11 2019; 1 1993; 22 2013; 42 2017; 46 2008; 35 2020; 13 2020; 34 2014; 84 2021; 1‐13 2019; 1341 2018; 42 2003; 32 2007; 36 2012; 53 2021; 1‐15 2021; 1‐16 2021; 91 2021; 14 2004; 33 2021; 16 2004; 31 2019; 60 2019; 81 2018b; 183 2018a; 11 2018; 117 2021 1970a; 12 2015; 136 2019a 2019; 89 2008; 49 2020; 90 2020; 49 2018 2018; 52 2020; 44 1970b; 12 2021; 1‐26 2016; 45 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Hoerl AE (e_1_2_8_2_1) 1970; 12 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Hoerl AE (e_1_2_8_3_1) 1970; 12 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Rady EA (e_1_2_8_29_1) 2019 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_51_1 Noeel F (e_1_2_8_34_1) 2021; 14 e_1_2_8_30_1 e_1_2_8_25_1 Mahmood SW (e_1_2_8_37_1) 2020; 13 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Algamal ZY (e_1_2_8_24_1) 2018; 11 Dawoud I (e_1_2_8_48_1) 2021; 1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 42 start-page: 793 issue: 2 year: 2018 end-page: 803 article-title: A new two‐parameter estimator for the Poisson regression model publication-title: Iran J Sci Technol Trans A Sci – year: 2019a article-title: A new biased estimator for zero‐inflated count regression models publication-title: J Modern Appl Stat Methods – volume: 11 start-page: 54 issue: 1 year: 2006 end-page: 71 article-title: A better lemon squeezer? maximum‐likelihood regression with beta‐distributed dependent variables publication-title: Psychol Methods – volume: 56 start-page: 495 issue: 2 year: 2015 end-page: 517 article-title: A new Liu‐type estimator publication-title: Stat Pap – volume: 1341 issue: 9 year: 2019 article-title: Liu‐type regression in statistical downscaling models for forecasting monthly rainfall salt as producer regions in Pangkep regency publication-title: J Phys Conf Ser – volume: 90 start-page: 1153 issue: 7 year: 2020 end-page: 1172 article-title: A new Liu‐type estimator for the inverse Gaussian regression model publication-title: J Stat Comput Simul – volume: 60 start-page: 1717 issue: 5 year: 2019 end-page: 1739 article-title: Generalized difference‐based weighted mixed almost unbiased ridge estimator in partially linear models publication-title: Stat Pap – volume: 49 start-page: 1922 issue: 7 year: 2020 end-page: 1930 article-title: Shrinkage parameter selection via modified cross‐validation approach for ridge regression model publication-title: Commun Stat Simul Comput – volume: 44 start-page: 473 issue: 2 year: 2020 end-page: 485 article-title: Generalized cross‐validation for simultaneous optimization of tuning parameters in ridge regression publication-title: Iran J Sci Technol Trans A Sci – volume: 136 start-page: 26 year: 2015 end-page: 40 article-title: Optimal partial ridge estimation in restricted semiparametric regression models publication-title: J Multivar Anal – start-page: 1 year: 2021 end-page: 13 article-title: Modified ridge‐type for the Poisson regression model: simulation and application publication-title: J Appl Stat – volume: 46 start-page: 729 issue: 1 year: 2017 end-page: 746 article-title: Model selection criteria in beta regression with varying dispersion publication-title: Commun Stat Simul Comput – volume: 49 start-page: 669 issue: 4 year: 2008 end-page: 689 article-title: A new biased estimator based on ridge estimation publication-title: Stat Pap – volume: 84 start-page: 124 issue: 1 year: 2014 end-page: 134 article-title: A two‐parameter estimator in the negative binomial regression model publication-title: J Stat Comput Simul – volume: 91 start-page: 1699 issue: 9 year: 2021 end-page: 1712 article-title: On some beta ridge regression estimators: method, simulation and application publication-title: J Stat Comput Simul – volume: 49 start-page: 2035 issue: 8 year: 2020 end-page: 2048 article-title: Liu‐type estimator for the gamma regression model publication-title: Commun Stat Simul Comput – volume: 22 start-page: 393 issue: 2 year: 1993 end-page: 402 article-title: A new class of biased estimate in linear regression publication-title: Commun Stat Theory Methods – volume: 11 start-page: 253 issue: 1 year: 2018a end-page: 268 article-title: Shrinkage estimators for gamma regression model publication-title: Electron J Appl Stat Anal – volume: 12 start-page: 69 issue: 1 year: 1970b end-page: 82 article-title: Ridge regression: applications to non‐orthogonal problems publication-title: Dent Tech – volume: 33 start-page: 2723 issue: 11 year: 2004 end-page: 2733 article-title: More on Liu‐type estimator in linear regression publication-title: Commun Stat Theory Methods – volume: 1‐16 start-page: 1 year: 2021 end-page: 16 article-title: Generalized two‐parameter estimators in the multinomial logit regression model: methods, simulation and application publication-title: Commun Stat Simul Comput – volume: 34 start-page: 1 issue: 2 year: 2010 end-page: 24 article-title: Beta regression in R publication-title: J Stat Softw – volume: 89 start-page: 2645 issue: 14 year: 2019 end-page: 2660 article-title: Improved two‐parameter estimators for the negative binomial and Poisson regression models publication-title: J Stat Comput Simul – volume: 32 start-page: 419 issue: 2 year: 2003 end-page: 435 article-title: Performance of some new ridge regression estimators publication-title: Commun Stat Simul Comput – volume: 16 issue: 4 year: 2021 article-title: Ridge regression and its applications in genetic studies publication-title: Plos One – start-page: 23 year: 2018 end-page: 39 – volume: 1‐15 start-page: 1 year: 2021 end-page: 15 article-title: Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model publication-title: J Stat Comput Simul – volume: 81 start-page: 203 issue: 2 year: 2019 end-page: 225 article-title: Liu‐type multinomial logistic estimator publication-title: Sankhya B – volume: 12 start-page: 55 issue: 1 year: 1970a end-page: 67 article-title: Ridge regression: biased estimation for non‐orthogonal problems publication-title: Dent Tech – volume: 1‐13 start-page: 1 year: 2021 end-page: 13 article-title: Beta ridge regression estimators: simulation and application publication-title: Commun Stat Simul Comput – volume: 53 start-page: 427 issue: 2 year: 2012 end-page: 437 article-title: A new Liu‐type estimator in linear regression model publication-title: Stat Pap – volume: 34 issue: 10 year: 2020 article-title: A Liu estimator for the beta regression model and its application to chemical data publication-title: J Chemometr – volume: 45 start-page: 1094 issue: 3 year: 2016 end-page: 1103 article-title: New shrinkage parameters for the Liu‐type logistic estimators publication-title: Commun Stat Simul Comput – volume: 183 start-page: 96 year: 2018b end-page: 101 article-title: A new method for choosing the biasing parameter in ridge estimator for generalized linear model publication-title: Chemom Intel Lab Syst – volume: 1‐26 start-page: 1 year: 2021 end-page: 26 article-title: On the Liu estimator in the beta and Kumaraswamy regression models: a comparative study publication-title: Commun Stat Theory Methods – volume: 46 start-page: 2576 issue: 4 year: 2017 end-page: 2586 article-title: Some new methods to solve multicollinearity in logistic regression publication-title: Commun Stat Simul Comput – volume: 13 start-page: 350 issue: 2 year: 2020 end-page: 357 article-title: Adjusted R2‐type measures for beta regression model publication-title: Electron J Appl Stat Anal – volume: 1 start-page: 427 issue: 1 year: 2019 end-page: 449 article-title: Model selection criteria on beta regression for machine learning publication-title: Mach Learn Knowl Extract – volume: 42 start-page: 1578 issue: 7 year: 2013 end-page: 1586 article-title: Liu‐type logistic estimator publication-title: Commun Stat Simul Comput – volume: 32 start-page: 1009 issue: 5 year: 2003 end-page: 1020 article-title: Using Liu‐type estimator to combat collinearity publication-title: Commun Stat Theory Methods – volume: 31 start-page: 799 issue: 7 year: 2004 end-page: 815 article-title: Beta regression for modelling rates and proportions publication-title: Journal of Applied Statistics – volume: 14 start-page: 44 issue: 1 year: 2021 end-page: 57 article-title: Almost unbiased ridge estimator in the count data regression models publication-title: Electron J Appl Stat Anal – volume: 36 start-page: 2707 issue: 15 year: 2007 end-page: 2725 article-title: The restricted and unrestricted two‐parameter estimators publication-title: Commun Stat Theory Methods – volume: 52 start-page: 1309 issue: 6 year: 2018 end-page: 1327 article-title: A new difference‐based weighted mixed Liu estimator in partially linear models publication-title: Stat – volume: 35 start-page: 407 issue: 4 year: 2008 end-page: 419 article-title: On beta regression residuals publication-title: J Appl Stat – volume: 117 start-page: 45 year: 2018 end-page: 61 article-title: Optimal QR‐based estimation in partially linear regression models with correlated errors using GCV criterion publication-title: Comput Stat Data Anal – ident: e_1_2_8_40_1 doi: 10.1080/03610918.2014.977918 – ident: e_1_2_8_51_1 doi: 10.1016/j.csda.2017.08.002 – ident: e_1_2_8_26_1 doi: 10.1007/s40995-017-0174-4 – ident: e_1_2_8_18_1 doi: 10.1088/1742-6596/1341/9/092021 – ident: e_1_2_8_21_1 doi: 10.1080/00949655.2012.696648 – ident: e_1_2_8_47_1 doi: 10.1080/03610918.2018.1510525 – ident: e_1_2_8_14_1 doi: 10.1080/03610920701386877 – ident: e_1_2_8_17_1 doi: 10.1007/s00362-014-0594-6 – ident: e_1_2_8_50_1 doi: 10.1016/j.jmva.2015.01.005 – ident: e_1_2_8_38_1 doi: 10.1037/1082-989X.11.1.54 – ident: e_1_2_8_35_1 doi: 10.1080/03610918.2021.1934023 – ident: e_1_2_8_39_1 doi: 10.18637/jss.v034.i02 – ident: e_1_2_8_7_1 doi: 10.1080/02664763.2021.1889998 – volume: 13 start-page: 350 issue: 2 year: 2020 ident: e_1_2_8_37_1 article-title: Adjusted R2‐type measures for beta regression model publication-title: Electron J Appl Stat Anal contributor: fullname: Mahmood SW – ident: e_1_2_8_13_1 doi: 10.1081/STA-200037930 – year: 2019 ident: e_1_2_8_29_1 article-title: A new biased estimator for zero‐inflated count regression models publication-title: J Modern Appl Stat Methods contributor: fullname: Rady EA – ident: e_1_2_8_43_1 doi: 10.3390/make1010026 – ident: e_1_2_8_22_1 doi: 10.1080/03610918.2014.995815 – ident: e_1_2_8_33_1 doi: 10.1016/j.chemolab.2018.10.014 – ident: e_1_2_8_6_1 doi: 10.1007/s40995-020-00851-1 – ident: e_1_2_8_8_1 doi: 10.1080/03610918.2021.1960373 – ident: e_1_2_8_42_1 – ident: e_1_2_8_45_1 doi: 10.1002/cem.3300 – ident: e_1_2_8_28_1 doi: 10.1080/00949655.2019.1628235 – ident: e_1_2_8_27_1 doi: 10.1007/s13571-018-0171-4 – ident: e_1_2_8_16_1 doi: 10.1007/s00362-010-0349-y – volume: 11 start-page: 253 issue: 1 year: 2018 ident: e_1_2_8_24_1 article-title: Shrinkage estimators for gamma regression model publication-title: Electron J Appl Stat Anal contributor: fullname: Algamal ZY – volume: 12 start-page: 69 issue: 1 year: 1970 ident: e_1_2_8_3_1 article-title: Ridge regression: applications to non‐orthogonal problems publication-title: Dent Tech contributor: fullname: Hoerl AE – ident: e_1_2_8_19_1 doi: 10.1007/978-3-642-34289-9_43 – ident: e_1_2_8_25_1 doi: 10.1007/978-3-319-73241-1_2 – volume: 1 start-page: 1 year: 2021 ident: e_1_2_8_48_1 article-title: Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model publication-title: J Stat Comput Simul contributor: fullname: Dawoud I – ident: e_1_2_8_41_1 doi: 10.1080/02664760701834931 – ident: e_1_2_8_11_1 doi: 10.1525/9780520313880-018 – ident: e_1_2_8_49_1 doi: 10.1081/SAC-120017499 – ident: e_1_2_8_20_1 doi: 10.1080/03610918.2012.667480 – volume: 14 start-page: 44 issue: 1 year: 2021 ident: e_1_2_8_34_1 article-title: Almost unbiased ridge estimator in the count data regression models publication-title: Electron J Appl Stat Anal contributor: fullname: Noeel F – ident: e_1_2_8_44_1 doi: 10.1080/00949655.2020.1867549 – ident: e_1_2_8_23_1 doi: 10.1080/03610918.2015.1053925 – ident: e_1_2_8_4_1 doi: 10.1080/02331888.2018.1511715 – ident: e_1_2_8_5_1 doi: 10.1007/s00362-017-0893-9 – ident: e_1_2_8_12_1 doi: 10.1081/STA-120019959 – ident: e_1_2_8_9_1 doi: 10.1371/journal.pone.0245376 – ident: e_1_2_8_30_1 – volume: 12 start-page: 55 issue: 1 year: 1970 ident: e_1_2_8_2_1 article-title: Ridge regression: biased estimation for non‐orthogonal problems publication-title: Dent Tech contributor: fullname: Hoerl AE – ident: e_1_2_8_15_1 doi: 10.1007/s00362-006-0037-0 – ident: e_1_2_8_31_1 doi: 10.1080/00949655.2020.1718150 – ident: e_1_2_8_36_1 doi: 10.1080/0266476042000214501 – ident: e_1_2_8_10_1 doi: 10.1080/03610929308831027 – ident: e_1_2_8_32_1 doi: 10.1080/03610918.2018.1508704 – ident: e_1_2_8_46_1 doi: 10.1080/03610926.2021.1900254 |
SSID | ssj0011031 |
Score | 2.4507961 |
Snippet | The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used... Abstract The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML)... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | beta regression model biased estimation Liu‐type estimator Maximum likelihood estimators multicollinearity Regression coefficients Regression models Spanish football league |
Title | Developing a Liu‐type estimator in beta regression model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6685 https://www.proquest.com/docview/2622990241 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB20Jy_WT6xWiSDeYttks832Jv2gB5GCCt6W2WxWenAt_bj7E_yN_hIz2d1WD4LgaWHZwDJkMu8leW8ArmyUqciIjHeyjuGBQs0Rheaqi4F1BS7q-l6H44fu_bMeDMkmp1dpYQp_iPWGG2WGX68pwTFZtDamoWZmb8JQk77ckQSv3pCT9QECdS8orFIFbzvQXvnOtkWrGvizEm3g5XeQ6qvMqP6f_9uD3RJbsttiMuzDls0PoF71bWBlGh9Cb7BWSjFkd9PV5_sHbcUyctx4JRbOpjlL7BLZ3L4UF2Vz5nvmHMHTaPjYH_OyhwI3rpAr7uCZTRzHsFoHup1YJdMsFMYEmBjjyEVksJOmRqF1yDGxUtFLHdDdZLKRSeQx1PK33J4Ak1IhHaJ2AkwdqcscUTMYGYkydVkssAGXVTzjWWGVERemyCJ2wYgpGA1oVoGOy2RZxCIUVBQdlmjAtQ_pr-Pj_mRIz9O_fngGO4IEC16E3oTacr6y57C9SFcXfsJ8AQ0Jwfk |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sPejF-sRq1QjiLbabbLa7epI-qFhLwQreQjablR5cSx93f4K_0V9iZh-tHgTB00LYQBgymW8mme8DuDBBLALNYurEjqauUD5VivlUNJVrbIALmqnWYe-xOXj22x2kybkpemEyfohlwQ09Iz2v0cGxIF1fsYbqibnyPF-UYN313AB1GzgfLq8QUL8gI0tltGFhe8E822D1YubPWLQCmN9hahpnupV_rXAbtnJ4SW6z_bADaybZhUoh3UByT96D6_ayWYoo0h8vPt8_sBpLkHTjFRNxMk5IaOaKTM1L9lY2Ialszj48dTujVo_mMgpU21guqEVoJrRphvF912-ERvAo9pjWrgq1tvlFoJUTRVooY8FjaLjAQd_F58nIJBPyAygnb4k5BMK5UHiP6rgqsnldbHM1rQLNFY-sIzNVhfPCoHKSsWXIjBeZSWsMicaoQq2wtMz9ZSaZxzAuWjhRhcvUpr_Ol61hB79Hf_3xDDZ6o4e-7N8N7o9hk2H_QtqTXoPyfLowJ1CaRYvTdPd8AVP8xho |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24CeKL8xOnUyOIb3Fr0nTp3mQfTBxjoIJvIU1T2YN17OPdn-Bv9JeY266bPgiCT4XSQLnk5pyb5JwLcGXDRISGJdRLPEN9oSXVmkkqmtq3DuDCZtbrsP_QHD7LThdtclqFFib3h1htuGFmZOs1JvgkTupr01AzsTdBIEUJNn1k4Sjf4KPVCQK2L8i9UhltONZeGM82WL0Y-ROK1vzyO0vNYKZX-c8P7sLOklyS23w27MGGTfehUjRuIMs8PoBWZyWVIpoMxovP9w_ciyVoufGKZTgZpySyc02m9iW_KZuSrGnOITz1uo_tPl02UaDGIbmgjp_ZyBUZVkpfNiIreJwEzBhfR8a46iI02otjI7R11DGyXOBL6ePlZPSRifgRlNO31B4D4VxoPEX1fB27qi5xlZrRoeGaxy6Nma7CZRFPNcm9MlTuisyUC4bCYFShVgRaLbNlpljAEBUdmajCdRbSX8er9qiLz5O_fngBW6NOTw3uhvensM1QvJAJ0mtQnk8X9gxKs3hxns2dLzGdxMk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Liu%E2%80%90type+estimator+in+beta+regression+model&rft.jtitle=Concurrency+and+computation&rft.au=Algamal%2C+Zakariya+Yahya&rft.au=Abonazel%2C+Mohamed+R.&rft.date=2022-02-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6685&rft.externalDBID=10.1002%252Fcpe.6685&rft.externalDocID=CPE6685 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |