Developing a Liu‐type estimator in beta regression model

The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 34; no. 5
Main Authors: Algamal, Zakariya Yahya, Abonazel, Mohamed R.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 28-02-2022
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu‐type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu‐type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators.
AbstractList The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu‐type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu‐type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators.
Abstract The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu‐type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu‐type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators.
Author Abonazel, Mohamed R.
Algamal, Zakariya Yahya
Author_xml – sequence: 1
  givenname: Zakariya Yahya
  orcidid: 0000-0002-0229-7958
  surname: Algamal
  fullname: Algamal, Zakariya Yahya
  email: zakariya.algamal@uomosul.edu.iq
  organization: University of Mosul
– sequence: 2
  givenname: Mohamed R.
  orcidid: 0000-0001-6010-001X
  surname: Abonazel
  fullname: Abonazel, Mohamed R.
  email: mabonazel@cu.edu.eg
  organization: Cairo University
BookMark eNp1kM1KAzEQgINUsK2CjxDw4mVr_km8SW1VKOhBzyGbnZYt282abJXefASf0ScxteLN0wwzH_PzjdCgDS0gdE7JhBLCrnwHE6W0PEJDKjkriOJi8JczdYJGKa0JoZRwOkTXt_AGTejqdoUdXtTbr4_PftcBhtTXG9eHiOsWl9A7HGEVIaU6tHgTKmhO0fHSNQnOfuMYvcxnz9P7YvF49zC9WRSeGS4LwxmUSjDQWmhSguTVUjHvhSu9p1Qb72hVeelAk9zmcl_UghqjqFSi5GN0cZjbxfC6zXfZddjGNq-0TDFmDGGCZuryQPkYUoqwtF3MD8SdpcTuzdhsxu7NZLQ4oO91A7t_OTt9mv3w312PZdc
CitedBy_id crossref_primary_10_3389_fams_2022_775068
crossref_primary_10_3390_sym15122107
crossref_primary_10_1080_03610926_2023_2273206
crossref_primary_10_15672_hujms_1145607
crossref_primary_10_1038_s41598_024_62627_6
crossref_primary_10_15672_hujms_1122207
crossref_primary_10_3389_fams_2022_880086
crossref_primary_10_3389_fams_2022_952142
crossref_primary_10_1080_00949655_2023_2166046
crossref_primary_10_1155_2024_6694880
crossref_primary_10_3389_fams_2023_956963
crossref_primary_10_1016_j_envsci_2023_103578
crossref_primary_10_46481_jnsps_2022_664
crossref_primary_10_1016_j_jrras_2024_100905
crossref_primary_10_1002_cpe_6779
crossref_primary_10_37394_23206_2022_21_48
crossref_primary_10_3390_axioms13010046
crossref_primary_10_37394_23206_2022_21_75
crossref_primary_10_3389_fams_2021_780322
Cites_doi 10.1080/03610918.2014.977918
10.1016/j.csda.2017.08.002
10.1007/s40995-017-0174-4
10.1088/1742-6596/1341/9/092021
10.1080/00949655.2012.696648
10.1080/03610918.2018.1510525
10.1080/03610920701386877
10.1007/s00362-014-0594-6
10.1016/j.jmva.2015.01.005
10.1037/1082-989X.11.1.54
10.1080/03610918.2021.1934023
10.18637/jss.v034.i02
10.1080/02664763.2021.1889998
10.1081/STA-200037930
10.3390/make1010026
10.1080/03610918.2014.995815
10.1016/j.chemolab.2018.10.014
10.1007/s40995-020-00851-1
10.1080/03610918.2021.1960373
10.1002/cem.3300
10.1080/00949655.2019.1628235
10.1007/s13571-018-0171-4
10.1007/s00362-010-0349-y
10.1007/978-3-642-34289-9_43
10.1007/978-3-319-73241-1_2
10.1080/02664760701834931
10.1525/9780520313880-018
10.1081/SAC-120017499
10.1080/03610918.2012.667480
10.1080/00949655.2020.1867549
10.1080/03610918.2015.1053925
10.1080/02331888.2018.1511715
10.1007/s00362-017-0893-9
10.1081/STA-120019959
10.1371/journal.pone.0245376
10.1007/s00362-006-0037-0
10.1080/00949655.2020.1718150
10.1080/0266476042000214501
10.1080/03610929308831027
10.1080/03610918.2018.1508704
10.1080/03610926.2021.1900254
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6685
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6685
CPE6685
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SC
8FD
AAMNL
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-932eb642e88480be53df62cc4abcc1189ca1ddc5ae800be35c1188419961564b3
IEDL.DBID 33P
ISSN 1532-0626
IngestDate Tue Nov 19 07:05:35 EST 2024
Fri Aug 23 01:52:51 EDT 2024
Sat Aug 24 00:57:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-932eb642e88480be53df62cc4abcc1189ca1ddc5ae800be35c1188419961564b3
ORCID 0000-0002-0229-7958
0000-0001-6010-001X
PQID 2622990241
PQPubID 2045170
PageCount 11
ParticipantIDs proquest_journals_2622990241
crossref_primary_10_1002_cpe_6685
wiley_primary_10_1002_cpe_6685_CPE6685
PublicationCentury 2000
PublicationDate 28 February 2022
PublicationDateYYYYMMDD 2022-02-28
PublicationDate_xml – month: 02
  year: 2022
  text: 28 February 2022
  day: 28
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 34
2015; 56
2006; 11
2019; 1
1993; 22
2013; 42
2017; 46
2008; 35
2020; 13
2020; 34
2014; 84
2021; 1‐13
2019; 1341
2018; 42
2003; 32
2007; 36
2012; 53
2021; 1‐15
2021; 1‐16
2021; 91
2021; 14
2004; 33
2021; 16
2004; 31
2019; 60
2019; 81
2018b; 183
2018a; 11
2018; 117
2021
1970a; 12
2015; 136
2019a
2019; 89
2008; 49
2020; 90
2020; 49
2018
2018; 52
2020; 44
1970b; 12
2021; 1‐26
2016; 45
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Hoerl AE (e_1_2_8_2_1) 1970; 12
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Hoerl AE (e_1_2_8_3_1) 1970; 12
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Rady EA (e_1_2_8_29_1) 2019
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_51_1
Noeel F (e_1_2_8_34_1) 2021; 14
e_1_2_8_30_1
e_1_2_8_25_1
Mahmood SW (e_1_2_8_37_1) 2020; 13
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Algamal ZY (e_1_2_8_24_1) 2018; 11
Dawoud I (e_1_2_8_48_1) 2021; 1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 42
  start-page: 793
  issue: 2
  year: 2018
  end-page: 803
  article-title: A new two‐parameter estimator for the Poisson regression model
  publication-title: Iran J Sci Technol Trans A Sci
– year: 2019a
  article-title: A new biased estimator for zero‐inflated count regression models
  publication-title: J Modern Appl Stat Methods
– volume: 11
  start-page: 54
  issue: 1
  year: 2006
  end-page: 71
  article-title: A better lemon squeezer? maximum‐likelihood regression with beta‐distributed dependent variables
  publication-title: Psychol Methods
– volume: 56
  start-page: 495
  issue: 2
  year: 2015
  end-page: 517
  article-title: A new Liu‐type estimator
  publication-title: Stat Pap
– volume: 1341
  issue: 9
  year: 2019
  article-title: Liu‐type regression in statistical downscaling models for forecasting monthly rainfall salt as producer regions in Pangkep regency
  publication-title: J Phys Conf Ser
– volume: 90
  start-page: 1153
  issue: 7
  year: 2020
  end-page: 1172
  article-title: A new Liu‐type estimator for the inverse Gaussian regression model
  publication-title: J Stat Comput Simul
– volume: 60
  start-page: 1717
  issue: 5
  year: 2019
  end-page: 1739
  article-title: Generalized difference‐based weighted mixed almost unbiased ridge estimator in partially linear models
  publication-title: Stat Pap
– volume: 49
  start-page: 1922
  issue: 7
  year: 2020
  end-page: 1930
  article-title: Shrinkage parameter selection via modified cross‐validation approach for ridge regression model
  publication-title: Commun Stat Simul Comput
– volume: 44
  start-page: 473
  issue: 2
  year: 2020
  end-page: 485
  article-title: Generalized cross‐validation for simultaneous optimization of tuning parameters in ridge regression
  publication-title: Iran J Sci Technol Trans A Sci
– volume: 136
  start-page: 26
  year: 2015
  end-page: 40
  article-title: Optimal partial ridge estimation in restricted semiparametric regression models
  publication-title: J Multivar Anal
– start-page: 1
  year: 2021
  end-page: 13
  article-title: Modified ridge‐type for the Poisson regression model: simulation and application
  publication-title: J Appl Stat
– volume: 46
  start-page: 729
  issue: 1
  year: 2017
  end-page: 746
  article-title: Model selection criteria in beta regression with varying dispersion
  publication-title: Commun Stat Simul Comput
– volume: 49
  start-page: 669
  issue: 4
  year: 2008
  end-page: 689
  article-title: A new biased estimator based on ridge estimation
  publication-title: Stat Pap
– volume: 84
  start-page: 124
  issue: 1
  year: 2014
  end-page: 134
  article-title: A two‐parameter estimator in the negative binomial regression model
  publication-title: J Stat Comput Simul
– volume: 91
  start-page: 1699
  issue: 9
  year: 2021
  end-page: 1712
  article-title: On some beta ridge regression estimators: method, simulation and application
  publication-title: J Stat Comput Simul
– volume: 49
  start-page: 2035
  issue: 8
  year: 2020
  end-page: 2048
  article-title: Liu‐type estimator for the gamma regression model
  publication-title: Commun Stat Simul Comput
– volume: 22
  start-page: 393
  issue: 2
  year: 1993
  end-page: 402
  article-title: A new class of biased estimate in linear regression
  publication-title: Commun Stat Theory Methods
– volume: 11
  start-page: 253
  issue: 1
  year: 2018a
  end-page: 268
  article-title: Shrinkage estimators for gamma regression model
  publication-title: Electron J Appl Stat Anal
– volume: 12
  start-page: 69
  issue: 1
  year: 1970b
  end-page: 82
  article-title: Ridge regression: applications to non‐orthogonal problems
  publication-title: Dent Tech
– volume: 33
  start-page: 2723
  issue: 11
  year: 2004
  end-page: 2733
  article-title: More on Liu‐type estimator in linear regression
  publication-title: Commun Stat Theory Methods
– volume: 1‐16
  start-page: 1
  year: 2021
  end-page: 16
  article-title: Generalized two‐parameter estimators in the multinomial logit regression model: methods, simulation and application
  publication-title: Commun Stat Simul Comput
– volume: 34
  start-page: 1
  issue: 2
  year: 2010
  end-page: 24
  article-title: Beta regression in R
  publication-title: J Stat Softw
– volume: 89
  start-page: 2645
  issue: 14
  year: 2019
  end-page: 2660
  article-title: Improved two‐parameter estimators for the negative binomial and Poisson regression models
  publication-title: J Stat Comput Simul
– volume: 32
  start-page: 419
  issue: 2
  year: 2003
  end-page: 435
  article-title: Performance of some new ridge regression estimators
  publication-title: Commun Stat Simul Comput
– volume: 16
  issue: 4
  year: 2021
  article-title: Ridge regression and its applications in genetic studies
  publication-title: Plos One
– start-page: 23
  year: 2018
  end-page: 39
– volume: 1‐15
  start-page: 1
  year: 2021
  end-page: 15
  article-title: Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model
  publication-title: J Stat Comput Simul
– volume: 81
  start-page: 203
  issue: 2
  year: 2019
  end-page: 225
  article-title: Liu‐type multinomial logistic estimator
  publication-title: Sankhya B
– volume: 12
  start-page: 55
  issue: 1
  year: 1970a
  end-page: 67
  article-title: Ridge regression: biased estimation for non‐orthogonal problems
  publication-title: Dent Tech
– volume: 1‐13
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Beta ridge regression estimators: simulation and application
  publication-title: Commun Stat Simul Comput
– volume: 53
  start-page: 427
  issue: 2
  year: 2012
  end-page: 437
  article-title: A new Liu‐type estimator in linear regression model
  publication-title: Stat Pap
– volume: 34
  issue: 10
  year: 2020
  article-title: A Liu estimator for the beta regression model and its application to chemical data
  publication-title: J Chemometr
– volume: 45
  start-page: 1094
  issue: 3
  year: 2016
  end-page: 1103
  article-title: New shrinkage parameters for the Liu‐type logistic estimators
  publication-title: Commun Stat Simul Comput
– volume: 183
  start-page: 96
  year: 2018b
  end-page: 101
  article-title: A new method for choosing the biasing parameter in ridge estimator for generalized linear model
  publication-title: Chemom Intel Lab Syst
– volume: 1‐26
  start-page: 1
  year: 2021
  end-page: 26
  article-title: On the Liu estimator in the beta and Kumaraswamy regression models: a comparative study
  publication-title: Commun Stat Theory Methods
– volume: 46
  start-page: 2576
  issue: 4
  year: 2017
  end-page: 2586
  article-title: Some new methods to solve multicollinearity in logistic regression
  publication-title: Commun Stat Simul Comput
– volume: 13
  start-page: 350
  issue: 2
  year: 2020
  end-page: 357
  article-title: Adjusted R2‐type measures for beta regression model
  publication-title: Electron J Appl Stat Anal
– volume: 1
  start-page: 427
  issue: 1
  year: 2019
  end-page: 449
  article-title: Model selection criteria on beta regression for machine learning
  publication-title: Mach Learn Knowl Extract
– volume: 42
  start-page: 1578
  issue: 7
  year: 2013
  end-page: 1586
  article-title: Liu‐type logistic estimator
  publication-title: Commun Stat Simul Comput
– volume: 32
  start-page: 1009
  issue: 5
  year: 2003
  end-page: 1020
  article-title: Using Liu‐type estimator to combat collinearity
  publication-title: Commun Stat Theory Methods
– volume: 31
  start-page: 799
  issue: 7
  year: 2004
  end-page: 815
  article-title: Beta regression for modelling rates and proportions
  publication-title: Journal of Applied Statistics
– volume: 14
  start-page: 44
  issue: 1
  year: 2021
  end-page: 57
  article-title: Almost unbiased ridge estimator in the count data regression models
  publication-title: Electron J Appl Stat Anal
– volume: 36
  start-page: 2707
  issue: 15
  year: 2007
  end-page: 2725
  article-title: The restricted and unrestricted two‐parameter estimators
  publication-title: Commun Stat Theory Methods
– volume: 52
  start-page: 1309
  issue: 6
  year: 2018
  end-page: 1327
  article-title: A new difference‐based weighted mixed Liu estimator in partially linear models
  publication-title: Stat
– volume: 35
  start-page: 407
  issue: 4
  year: 2008
  end-page: 419
  article-title: On beta regression residuals
  publication-title: J Appl Stat
– volume: 117
  start-page: 45
  year: 2018
  end-page: 61
  article-title: Optimal QR‐based estimation in partially linear regression models with correlated errors using GCV criterion
  publication-title: Comput Stat Data Anal
– ident: e_1_2_8_40_1
  doi: 10.1080/03610918.2014.977918
– ident: e_1_2_8_51_1
  doi: 10.1016/j.csda.2017.08.002
– ident: e_1_2_8_26_1
  doi: 10.1007/s40995-017-0174-4
– ident: e_1_2_8_18_1
  doi: 10.1088/1742-6596/1341/9/092021
– ident: e_1_2_8_21_1
  doi: 10.1080/00949655.2012.696648
– ident: e_1_2_8_47_1
  doi: 10.1080/03610918.2018.1510525
– ident: e_1_2_8_14_1
  doi: 10.1080/03610920701386877
– ident: e_1_2_8_17_1
  doi: 10.1007/s00362-014-0594-6
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jmva.2015.01.005
– ident: e_1_2_8_38_1
  doi: 10.1037/1082-989X.11.1.54
– ident: e_1_2_8_35_1
  doi: 10.1080/03610918.2021.1934023
– ident: e_1_2_8_39_1
  doi: 10.18637/jss.v034.i02
– ident: e_1_2_8_7_1
  doi: 10.1080/02664763.2021.1889998
– volume: 13
  start-page: 350
  issue: 2
  year: 2020
  ident: e_1_2_8_37_1
  article-title: Adjusted R2‐type measures for beta regression model
  publication-title: Electron J Appl Stat Anal
  contributor:
    fullname: Mahmood SW
– ident: e_1_2_8_13_1
  doi: 10.1081/STA-200037930
– year: 2019
  ident: e_1_2_8_29_1
  article-title: A new biased estimator for zero‐inflated count regression models
  publication-title: J Modern Appl Stat Methods
  contributor:
    fullname: Rady EA
– ident: e_1_2_8_43_1
  doi: 10.3390/make1010026
– ident: e_1_2_8_22_1
  doi: 10.1080/03610918.2014.995815
– ident: e_1_2_8_33_1
  doi: 10.1016/j.chemolab.2018.10.014
– ident: e_1_2_8_6_1
  doi: 10.1007/s40995-020-00851-1
– ident: e_1_2_8_8_1
  doi: 10.1080/03610918.2021.1960373
– ident: e_1_2_8_42_1
– ident: e_1_2_8_45_1
  doi: 10.1002/cem.3300
– ident: e_1_2_8_28_1
  doi: 10.1080/00949655.2019.1628235
– ident: e_1_2_8_27_1
  doi: 10.1007/s13571-018-0171-4
– ident: e_1_2_8_16_1
  doi: 10.1007/s00362-010-0349-y
– volume: 11
  start-page: 253
  issue: 1
  year: 2018
  ident: e_1_2_8_24_1
  article-title: Shrinkage estimators for gamma regression model
  publication-title: Electron J Appl Stat Anal
  contributor:
    fullname: Algamal ZY
– volume: 12
  start-page: 69
  issue: 1
  year: 1970
  ident: e_1_2_8_3_1
  article-title: Ridge regression: applications to non‐orthogonal problems
  publication-title: Dent Tech
  contributor:
    fullname: Hoerl AE
– ident: e_1_2_8_19_1
  doi: 10.1007/978-3-642-34289-9_43
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-319-73241-1_2
– volume: 1
  start-page: 1
  year: 2021
  ident: e_1_2_8_48_1
  article-title: Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression model
  publication-title: J Stat Comput Simul
  contributor:
    fullname: Dawoud I
– ident: e_1_2_8_41_1
  doi: 10.1080/02664760701834931
– ident: e_1_2_8_11_1
  doi: 10.1525/9780520313880-018
– ident: e_1_2_8_49_1
  doi: 10.1081/SAC-120017499
– ident: e_1_2_8_20_1
  doi: 10.1080/03610918.2012.667480
– volume: 14
  start-page: 44
  issue: 1
  year: 2021
  ident: e_1_2_8_34_1
  article-title: Almost unbiased ridge estimator in the count data regression models
  publication-title: Electron J Appl Stat Anal
  contributor:
    fullname: Noeel F
– ident: e_1_2_8_44_1
  doi: 10.1080/00949655.2020.1867549
– ident: e_1_2_8_23_1
  doi: 10.1080/03610918.2015.1053925
– ident: e_1_2_8_4_1
  doi: 10.1080/02331888.2018.1511715
– ident: e_1_2_8_5_1
  doi: 10.1007/s00362-017-0893-9
– ident: e_1_2_8_12_1
  doi: 10.1081/STA-120019959
– ident: e_1_2_8_9_1
  doi: 10.1371/journal.pone.0245376
– ident: e_1_2_8_30_1
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: e_1_2_8_2_1
  article-title: Ridge regression: biased estimation for non‐orthogonal problems
  publication-title: Dent Tech
  contributor:
    fullname: Hoerl AE
– ident: e_1_2_8_15_1
  doi: 10.1007/s00362-006-0037-0
– ident: e_1_2_8_31_1
  doi: 10.1080/00949655.2020.1718150
– ident: e_1_2_8_36_1
  doi: 10.1080/0266476042000214501
– ident: e_1_2_8_10_1
  doi: 10.1080/03610929308831027
– ident: e_1_2_8_32_1
  doi: 10.1080/03610918.2018.1508704
– ident: e_1_2_8_46_1
  doi: 10.1080/03610926.2021.1900254
SSID ssj0011031
Score 2.4507961
Snippet The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used...
Abstract The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms beta regression model
biased estimation
Liu‐type estimator
Maximum likelihood estimators
multicollinearity
Regression coefficients
Regression models
Spanish football league
Title Developing a Liu‐type estimator in beta regression model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6685
https://www.proquest.com/docview/2622990241
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB20Jy_WT6xWiSDeYttks832Jv2gB5GCCt6W2WxWenAt_bj7E_yN_hIz2d1WD4LgaWHZwDJkMu8leW8ArmyUqciIjHeyjuGBQs0Rheaqi4F1BS7q-l6H44fu_bMeDMkmp1dpYQp_iPWGG2WGX68pwTFZtDamoWZmb8JQk77ckQSv3pCT9QECdS8orFIFbzvQXvnOtkWrGvizEm3g5XeQ6qvMqP6f_9uD3RJbsttiMuzDls0PoF71bWBlGh9Cb7BWSjFkd9PV5_sHbcUyctx4JRbOpjlL7BLZ3L4UF2Vz5nvmHMHTaPjYH_OyhwI3rpAr7uCZTRzHsFoHup1YJdMsFMYEmBjjyEVksJOmRqF1yDGxUtFLHdDdZLKRSeQx1PK33J4Ak1IhHaJ2AkwdqcscUTMYGYkydVkssAGXVTzjWWGVERemyCJ2wYgpGA1oVoGOy2RZxCIUVBQdlmjAtQ_pr-Pj_mRIz9O_fngGO4IEC16E3oTacr6y57C9SFcXfsJ8AQ0Jwfk
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sPejF-sRq1QjiLbabbLa7epI-qFhLwQreQjablR5cSx93f4K_0V9iZh-tHgTB00LYQBgymW8mme8DuDBBLALNYurEjqauUD5VivlUNJVrbIALmqnWYe-xOXj22x2kybkpemEyfohlwQ09Iz2v0cGxIF1fsYbqibnyPF-UYN313AB1GzgfLq8QUL8gI0tltGFhe8E822D1YubPWLQCmN9hahpnupV_rXAbtnJ4SW6z_bADaybZhUoh3UByT96D6_ayWYoo0h8vPt8_sBpLkHTjFRNxMk5IaOaKTM1L9lY2Ialszj48dTujVo_mMgpU21guqEVoJrRphvF912-ERvAo9pjWrgq1tvlFoJUTRVooY8FjaLjAQd_F58nIJBPyAygnb4k5BMK5UHiP6rgqsnldbHM1rQLNFY-sIzNVhfPCoHKSsWXIjBeZSWsMicaoQq2wtMz9ZSaZxzAuWjhRhcvUpr_Ol61hB79Hf_3xDDZ6o4e-7N8N7o9hk2H_QtqTXoPyfLowJ1CaRYvTdPd8AVP8xho
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24CeKL8xOnUyOIb3Fr0nTp3mQfTBxjoIJvIU1T2YN17OPdn-Bv9JeY266bPgiCT4XSQLnk5pyb5JwLcGXDRISGJdRLPEN9oSXVmkkqmtq3DuDCZtbrsP_QHD7LThdtclqFFib3h1htuGFmZOs1JvgkTupr01AzsTdBIEUJNn1k4Sjf4KPVCQK2L8i9UhltONZeGM82WL0Y-ROK1vzyO0vNYKZX-c8P7sLOklyS23w27MGGTfehUjRuIMs8PoBWZyWVIpoMxovP9w_ciyVoufGKZTgZpySyc02m9iW_KZuSrGnOITz1uo_tPl02UaDGIbmgjp_ZyBUZVkpfNiIreJwEzBhfR8a46iI02otjI7R11DGyXOBL6ePlZPSRifgRlNO31B4D4VxoPEX1fB27qi5xlZrRoeGaxy6Nma7CZRFPNcm9MlTuisyUC4bCYFShVgRaLbNlpljAEBUdmajCdRbSX8er9qiLz5O_fngBW6NOTw3uhvensM1QvJAJ0mtQnk8X9gxKs3hxns2dLzGdxMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Liu%E2%80%90type+estimator+in+beta+regression+model&rft.jtitle=Concurrency+and+computation&rft.au=Algamal%2C+Zakariya+Yahya&rft.au=Abonazel%2C+Mohamed+R.&rft.date=2022-02-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6685&rft.externalDBID=10.1002%252Fcpe.6685&rft.externalDocID=CPE6685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon