The KL estimator for the inverse Gaussian regression model

Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) o...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 33; no. 13
Main Authors: Lukman, Adewale F., Algamal, Zakariya Y., Kibria, B. M. Golam, Ayinde, Kayode
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 10-07-2021
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best.
AbstractList Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best.
Abstract Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best.
Author Lukman, Adewale F.
Ayinde, Kayode
Algamal, Zakariya Y.
Kibria, B. M. Golam
Author_xml – sequence: 1
  givenname: Adewale F.
  orcidid: 0000-0003-2881-1297
  surname: Lukman
  fullname: Lukman, Adewale F.
  email: adewale.folaranmi@lmu.edu.ng
  organization: Landmark University
– sequence: 2
  givenname: Zakariya Y.
  orcidid: 0000-0002-0229-7958
  surname: Algamal
  fullname: Algamal, Zakariya Y.
  organization: University of Mosul
– sequence: 3
  givenname: B. M. Golam
  surname: Kibria
  fullname: Kibria, B. M. Golam
  organization: Florida International University
– sequence: 4
  givenname: Kayode
  surname: Ayinde
  fullname: Ayinde, Kayode
  organization: Federal University of Technology
BookMark eNp1kEFLw0AQhRepYFsFf0LAi5fUmU2yTbxJqFUs6KGel83uRFPabNxtlP57t0a8eRjmMXzMvHkTNmptS4xdIswQgN_ojmaCc37CxpglPAaRpKM_zcUZm3i_AUCEBMfsdv1O0dMqIr9vdmpvXVSH2odh036S8xQtVe99o9rI0ZujIG0b7ayh7Tk7rdXW08Vvn7LX-8W6fIhXz8vH8m4Va16EoylmBistqsRUoKjOcoNY6_ncBJtKGwJNWmghUkPEYV7kRVWkqPKMCHUGyZRdDXs7Zz_6YFRubO_acFLyLAWBmAgeqOuB0s5676iWnQsfuYNEkMdkZEhGHpMJaDygX82WDv9ysnxZ_PDfkl5lXg
CitedBy_id crossref_primary_10_1016_j_sciaf_2023_e01553
crossref_primary_10_1080_03610926_2023_2273206
crossref_primary_10_3389_fams_2022_880086
crossref_primary_10_53570_jnt_1139885
crossref_primary_10_1155_2022_9503460
crossref_primary_10_46481_jnsps_2022_664
crossref_primary_10_1007_s40995_022_01354_x
crossref_primary_10_1080_00949655_2022_2032059
crossref_primary_10_1080_03610918_2023_2286436
crossref_primary_10_1016_j_sciaf_2022_e01386
crossref_primary_10_1080_03610918_2023_2252624
crossref_primary_10_1080_03610918_2022_2059088
crossref_primary_10_1080_03610926_2021_1970773
crossref_primary_10_1016_j_sciaf_2023_e01566
crossref_primary_10_1155_2021_5545356
crossref_primary_10_3390_math11020340
crossref_primary_10_1002_cpe_6780
crossref_primary_10_1080_03610918_2021_2007401
crossref_primary_10_3389_fams_2022_952142
crossref_primary_10_1080_00949655_2023_2166046
crossref_primary_10_3389_fams_2023_956963
crossref_primary_10_1002_cpe_6803
crossref_primary_10_1080_03610918_2023_2276052
crossref_primary_10_37394_23206_2022_21_75
crossref_primary_10_3390_mi15030292
Cites_doi 10.1080/03610929508831585
10.1080/03610918.2020.1797797
10.1002/cem.3125
10.59170/stattrans-2014-002
10.1081/STA-120019959
10.1080/03610926.2019.1595654
10.1007/s00362-006-0037-0
10.1080/03610929308831027
10.1002/cem.3203
10.1007/BF02595697
10.1080/03610926.2020.1791339
10.1002/0471458503
10.1080/02331888.2011.605891
10.1080/03610926.2018.1481977
10.1080/00949655.2020.1718150
10.1080/25765299.2019.1706799
10.1080/03610920902807911
10.1155/2019/6342702
10.1080/03610918.2012.735317
10.1081/SAC-120017499
10.1080/03610929208830909
10.1155/2020/9758378
10.22237/jmasm/1462075860
10.1080/03610918.2014.995815
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6222
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6222
CPE6222
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-415d1bc6b3db0aef58d11fc77d622acde0cec6c664dee207989b941a85ee1c503
IEDL.DBID 33P
ISSN 1532-0626
IngestDate Thu Oct 10 19:15:56 EDT 2024
Fri Aug 23 01:52:50 EDT 2024
Sat Aug 24 01:03:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-415d1bc6b3db0aef58d11fc77d622acde0cec6c664dee207989b941a85ee1c503
ORCID 0000-0002-0229-7958
0000-0003-2881-1297
PQID 2540611362
PQPubID 2045170
PageCount 9
ParticipantIDs proquest_journals_2540611362
crossref_primary_10_1002_cpe_6222
wiley_primary_10_1002_cpe_6222_CPE6222
PublicationCentury 2000
PublicationDate 10 July 2021
PublicationDateYYYYMMDD 2021-07-10
PublicationDate_xml – month: 07
  year: 2021
  text: 10 July 2021
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 5
2013; 47
2012
2010
2010; 39
1993; 22
2019; 12
2019; 34
2017; 46
1970; 12
1934; 45
2016; 15
2003; 474
2018; 48
2003; 32
2014; 43
2018; 9
2018; 17
2020
1995; 24
2008; 49
2019b; 2019
1965
2020; 27
2014; 15
2019; 49
2020a
2020b; 90
1992; 21
2019a; 33
2016; 45
2001; 10
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Lukman AF (e_1_2_6_15_1) 2017; 46
Malehi AS (e_1_2_6_7_1) 2015; 5
e_1_2_6_19_1
Dorugade AV (e_1_2_6_23_1) 2014; 15
Shamany E. R. (e_1_2_6_8_1) 2019; 12
Ahmad S (e_1_2_6_25_1) 2020
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
Imran M (e_1_2_6_30_1) 2019; 34
e_1_2_6_16_1
Hardin JW (e_1_2_6_29_1) 2012
Lukman AF (e_1_2_6_34_1) 2018; 17
e_1_2_6_21_1
e_1_2_6_20_1
Ayinde K (e_1_2_6_9_1) 2018; 9
Frisch R (e_1_2_6_12_1) 1934; 45
Lemeshko BY (e_1_2_6_6_1) 2010
Hoerl AE (e_1_2_6_14_1) 1970; 12
e_1_2_6_5_1
e_1_2_6_4_1
Brownlee KA (e_1_2_6_35_1) 1965
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – start-page: 1
  year: 2020
  end-page: 19
  article-title: Another proposal about the new two‐parameter estimator for linear regression model with correlated regressors
  publication-title: Commun Stat Simul Comput
– volume: 33
  year: 2019a
  article-title: Modified ridge‐type estimator to combat multicollinearity: application to chemical data
  publication-title: J Chemom
– volume: 27
  start-page: 45
  issue: 1
  year: 2020
  end-page: 55
  article-title: An unbiased estimator with prior information
  publication-title: Arab J Basic Appl Sci
– volume: 24
  start-page: 1789
  issue: 7
  year: 1995
  end-page: 1797
  article-title: On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE
  publication-title: Commun Stat Theory Meth
– volume: 47
  start-page: 535
  issue: 3
  year: 2013
  end-page: 545
  article-title: Efficiency of an almost unbiased two‐parameter estimator in linear regression model
  publication-title: Statistics
– volume: 45
  start-page: 741
  issue: 180
  year: 1934
  end-page: 742
  article-title: Statistical confluence analysis by means of complete regression systems
  publication-title: Econ J
– year: 2020
  article-title: A new ridge‐type estimator for the linear regression model: simulations and applications
  publication-title: Scientifica
– volume: 32
  start-page: 1009
  issue: 5
  year: 2003
  end-page: 1020
  article-title: Using Liu‐Type estimator to combat collinearity
  publication-title: Communications in Statistics Theory and Methods
– volume: 2019
  start-page: 1
  year: 2019b
  end-page: 10
  article-title: A modified new two‐parameter estimator in a linear regression model
  publication-title: Model Simul Eng
– volume: 39
  start-page: 923
  issue: 6
  year: 2010
  end-page: 934
  article-title: A new two‐parameter estimator in linear regression
  publication-title: Commun Stat Theory Methods
– volume: 17
  start-page: 369
  year: 2018
  end-page: 376
  article-title: Improved generalized ridge estimators and their comparisons
  publication-title: WSEAS Trans Math
– start-page: 1
  year: 2020a
  end-page: 19
  article-title: Two parameter estimator for the inverse Gaussian regression model
  publication-title: Commun Stat Simul Comput
– volume: 22
  start-page: 393
  issue: 2
  year: 1993
  end-page: 402
  article-title: A new class of biased estimate in linear regression
  publication-title: Commun Stat Theory Methods
– year: 2012
– volume: 48
  start-page: 3836
  year: 2018
  end-page: 3849
  article-title: Performance of ridge estimator in inverse Gaussian regression model
  publication-title: Commun Stat Theory Methods
– start-page: 433
  year: 2010
  end-page: 453
– volume: 12
  start-page: 453
  issue: 2
  year: 2019
  end-page: 464
  article-title: A new two‐parameter estimator for the inverse Gaussian regression model with application in chemometrics
  publication-title: Electron J Appl Stat Anal
– volume: 32
  start-page: 419
  issue: 2
  year: 2003
  end-page: 435
  article-title: Performance of some new ridge regression estimators
  publication-title: Commun Stat Simul Comput
– volume: 474
  year: 2003
– volume: 49
  start-page: 669
  issue: 4
  year: 2008
  end-page: 689
  article-title: A new biased estimator based on ridge estimation
  publication-title: Stat Papers
– year: 1965
– volume: 43
  start-page: 1442
  issue: 6
  year: 2014
  end-page: 1470
  article-title: A combined nonlinear programming model and Kibria method for choosing ridge parameter regression
  publication-title: Commun Stat Simul Comput
– volume: 46
  start-page: 953
  issue: 5
  year: 2017
  end-page: 967
  article-title: Review and classifications of the ridge parameter estimation techniques
  publication-title: Hacettepe J Math Stat
– volume: 15
  start-page: 23
  issue: 1
  year: 2014
  end-page: 36
  article-title: A modified two‐parameter estimator in linear regression
  publication-title: Stat Transit New Ser
– volume: 90
  start-page: 1153
  year: 2020b
  end-page: 1172
  article-title: A new Liu‐type estimator for the inverse Gaussian regression model
  publication-title: J Stat Comput Simul
– volume: 45
  start-page: 1094
  issue: 3
  year: 2016
  end-page: 1103
  article-title: New shrinkage parameters for the Liu‐type logistic estimators
  publication-title: Commun Stat Simul Comput
– volume: 21
  start-page: 2227
  issue: 8
  year: 1992
  end-page: 2246
  article-title: On ordinary ridge regression in generalized linear models
  publication-title: Commun Stat Theory Methods
– volume: 34
  year: 2019
  article-title: Diagnostics via partial residual plots in inverse Gaussian regression
  publication-title: J Chemom
– start-page: 1
  year: 2020
  end-page: 21
  article-title: New shrinkage parameters for the inverse Gaussian Liu regression
  publication-title: Commun Stat Theory Methods
– volume: 9
  start-page: 2838
  issue: 11
  year: 2018
  end-page: 2852
  article-title: Some new adjusted ridge estimators of linear regression model
  publication-title: Int J Civil Eng Technol
– volume: 10
  start-page: 271
  issue: 2
  year: 2001
  end-page: 290
  article-title: Goodness‐of‐fit tests for the inverse Gaussian and related distributions
  publication-title: Test
– volume: 5
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Statistical models for the analysis of skewed healthcare cost data: a simulation study
  publication-title: Heal Econ Rev
– volume: 49
  start-page: 4178
  year: 2019
  end-page: 4196
  article-title: Performance of some new Liu parameters for the linear regression model
  publication-title: Commun Stat Theory Methods
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  end-page: 67
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Dent Tech
– volume: 15
  start-page: 206
  issue: 1
  year: 2016
  end-page: 238
  article-title: Some ridge regression estimators and their performances
  publication-title: J Mod Appl Stat Methods
– ident: e_1_2_6_17_1
  doi: 10.1080/03610929508831585
– ident: e_1_2_6_2_1
  doi: 10.1080/03610918.2020.1797797
– ident: e_1_2_6_10_1
  doi: 10.1002/cem.3125
– volume: 15
  start-page: 23
  issue: 1
  year: 2014
  ident: e_1_2_6_23_1
  article-title: A modified two‐parameter estimator in linear regression
  publication-title: Stat Transit New Ser
  doi: 10.59170/stattrans-2014-002
  contributor:
    fullname: Dorugade AV
– volume: 12
  start-page: 453
  issue: 2
  year: 2019
  ident: e_1_2_6_8_1
  article-title: A new two‐parameter estimator for the inverse Gaussian regression model with application in chemometrics
  publication-title: Electron J Appl Stat Anal
  contributor:
    fullname: Shamany E. R.
– volume: 9
  start-page: 2838
  issue: 11
  year: 2018
  ident: e_1_2_6_9_1
  article-title: Some new adjusted ridge estimators of linear regression model
  publication-title: Int J Civil Eng Technol
  contributor:
    fullname: Ayinde K
– volume: 5
  start-page: 1
  year: 2015
  ident: e_1_2_6_7_1
  article-title: Statistical models for the analysis of skewed healthcare cost data: a simulation study
  publication-title: Heal Econ Rev
  contributor:
    fullname: Malehi AS
– ident: e_1_2_6_27_1
  doi: 10.1081/STA-120019959
– ident: e_1_2_6_24_1
  doi: 10.1080/03610926.2019.1595654
– ident: e_1_2_6_20_1
  doi: 10.1007/s00362-006-0037-0
– volume: 46
  start-page: 953
  issue: 5
  year: 2017
  ident: e_1_2_6_15_1
  article-title: Review and classifications of the ridge parameter estimation techniques
  publication-title: Hacettepe J Math Stat
  contributor:
    fullname: Lukman AF
– ident: e_1_2_6_16_1
  doi: 10.1080/03610929308831027
– volume: 34
  start-page: e3203
  year: 2019
  ident: e_1_2_6_30_1
  article-title: Diagnostics via partial residual plots in inverse Gaussian regression
  publication-title: J Chemom
  doi: 10.1002/cem.3203
  contributor:
    fullname: Imran M
– ident: e_1_2_6_5_1
  doi: 10.1007/BF02595697
– volume: 45
  start-page: 741
  issue: 180
  year: 1934
  ident: e_1_2_6_12_1
  article-title: Statistical confluence analysis by means of complete regression systems
  publication-title: Econ J
  contributor:
    fullname: Frisch R
– ident: e_1_2_6_28_1
  doi: 10.1080/03610926.2020.1791339
– ident: e_1_2_6_36_1
  doi: 10.1002/0471458503
– ident: e_1_2_6_22_1
  doi: 10.1080/02331888.2011.605891
– ident: e_1_2_6_4_1
  doi: 10.1080/03610926.2018.1481977
– start-page: 1
  year: 2020
  ident: e_1_2_6_25_1
  article-title: Another proposal about the new two‐parameter estimator for linear regression model with correlated regressors
  publication-title: Commun Stat Simul Comput
  contributor:
    fullname: Ahmad S
– volume-title: Statistical Theory and Methodology in Science and Engineering
  year: 1965
  ident: e_1_2_6_35_1
  contributor:
    fullname: Brownlee KA
– volume-title: Generalized Linear Models and Extensions
  year: 2012
  ident: e_1_2_6_29_1
  contributor:
    fullname: Hardin JW
– volume: 17
  start-page: 369
  year: 2018
  ident: e_1_2_6_34_1
  article-title: Improved generalized ridge estimators and their comparisons
  publication-title: WSEAS Trans Math
  contributor:
    fullname: Lukman AF
– ident: e_1_2_6_3_1
  doi: 10.1080/00949655.2020.1718150
– ident: e_1_2_6_13_1
  doi: 10.1080/25765299.2019.1706799
– ident: e_1_2_6_21_1
  doi: 10.1080/03610920902807911
– ident: e_1_2_6_11_1
  doi: 10.1155/2019/6342702
– ident: e_1_2_6_33_1
  doi: 10.1080/03610918.2012.735317
– start-page: 433
  volume-title: Inverse Gaussian Model and its Applications in Reliability and Survival Analysis
  year: 2010
  ident: e_1_2_6_6_1
  contributor:
    fullname: Lemeshko BY
– ident: e_1_2_6_18_1
  doi: 10.1081/SAC-120017499
– ident: e_1_2_6_32_1
  doi: 10.1080/03610929208830909
– ident: e_1_2_6_26_1
  doi: 10.1155/2020/9758378
– ident: e_1_2_6_19_1
  doi: 10.22237/jmasm/1462075860
– ident: e_1_2_6_31_1
  doi: 10.1080/03610918.2014.995815
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: e_1_2_6_14_1
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Dent Tech
  contributor:
    fullname: Hoerl AE
SSID ssj0011031
Score 2.4685817
Snippet Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models....
Abstract Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms efficiency
inverse Gaussian regression
KL estimator
Liu estimator
Maximum likelihood estimators
MLE
Regression models
ridge
Title The KL estimator for the inverse Gaussian regression model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6222
https://www.proquest.com/docview/2540611362
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20Jy_WT6xWWUG8xeZjk016k9paUKSggrewHxPxYCyN_f_ObpJWD4LgKZcsLI-ZfW-TmTcAF7FME6Fi6XHJ3QizzMviWHgSURJ_SFO4_orpo3h4SW_G1iZn2PbC1P4Qqw9uNjPceW0TXKpqsDYN1XO8Sojd6Pi1pk22eyOarX4g2OkFtVVq6Pkk2lvfWT8ctAt_MtFaXn4XqY5lJt3_7G8Hthttya7rYNiFDSz3oNvObWBNGu_DkGKD3d0za7Dxbi_djJQrIyXI3kpbpYHsVi4r213JFvhaF8qWzM3MOYDnyfhpNPWaGQqeJiIPPeJnEyidqMgoX2IRpyYICi2Eob1JbdDXqBOdJNwghr7I0kxlPJBpjBjo2I8OoVN-lHgEjBek9khPFFxxLjFThSH5EiileBSJIu3BeYtnPq-tMvLaFDnMCYzcgtGDfgt03iRLldMdlVRFQFTag0sH6a_r89FsbJ_Hf33xBLZCW4VirTD9PnQ-F0s8hc3KLM9cwHwBN5bBrQ
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sPejF-sRq1RXEW2wem5eepLZWWkvBCt7CPibiwVha-_-dzaPVgyB4yiULyzBfvm83M98AXPgiCkLpC4sLno8wi63Y90NLIAriD6HTvL-i_xSOXqK7rrHJual6YQp_iOWFm0FG_r02ADcX0u2Va6ia4lVA9FaDdR7w2KDS88bLXwhmfkFhlupaNsn2ynnWdtvVyp9ctBKY32VqzjO9xr92uA1bpbxkt0U-7MAaZrvQqEY3sBLJe3BN6cEGQ2Y8Nt7NuZuReGUkBtlbZgo1kN2Lxdw0WLIZvha1shnLx-bsw3OvO-n0rXKMgqWIy12LKFo7UgXS09IWmPqRdpxUhaGmvQml0VaoAhUEXCO6dhhHsYy5IyIf0VG-7R1APfvI8BAYT0nwkaRIueRcYCxTTQrGkVJyzwvTqAnnVUCTaeGWkRS-yG5CwUhMMJrQqiKdlHiZJ3RMJWHhEJs24TKP6a_rk864a55Hf33xDDb6k8dhMnwYDY5h0zVFKcYZ025B_XO2wBOozfXiNM-eL3sSxc4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60gnixPrFaNYJ4W7uP7Ks36cNKSymo4G3JYyIeXEtr_7-T3W6rB0HwtJcEwjCT75vszDcA16FIoliGwuGCFyPMUicNw9gRiILwQ2hT9FcMHuPxS9LtWZmcdtULU-pDrB7cbGQU97UN8Kk2rbVoqJribUTotglbnFi4TbyCYLL6g2DHF5Raqb7jEmuvhGddv1Xt_AlFa375naUWMNOv_-eAe7C7JJfsrvSGfdjA_ADq1eAGtozjQ2iTc7DhiFmFjXebdTOiroyoIHvLbZkGsnuxmNv2SjbD17JSNmfF0JwjeO73njoDZzlEwVGE5L5DAK09qSIZaOkKNGGiPc-oONZ0NqE0ugpVpKKIa0TfjdMklSn3RBIieip0g2Oo5R85ngDjhugeEQrDJecCU2k08RdPSsmDIDZJA64qe2bTUisjK1WR_YyMkVljNKBZGTpbRss8oySVaIVHWNqAm8Kkv-7POpOe_Z7-deElbE-6_Wz0MB6ewY5vK1KsLKbbhNrnbIHnsDnXi4vCd74AWRHEfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+KL+estimator+for+the+inverse+Gaussian+regression+model&rft.jtitle=Concurrency+and+computation&rft.au=Lukman%2C+Adewale+F.&rft.au=Algamal%2C+Zakariya+Y.&rft.au=Kibria%2C+B.+M.+Golam&rft.au=Ayinde%2C+Kayode&rft.date=2021-07-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6222&rft.externalDBID=10.1002%252Fcpe.6222&rft.externalDocID=CPE6222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon