The KL estimator for the inverse Gaussian regression model
Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) o...
Saved in:
Published in: | Concurrency and computation Vol. 33; no. 13 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
10-07-2021
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best. |
---|---|
AbstractList | Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best. Abstract Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best. |
Author | Lukman, Adewale F. Ayinde, Kayode Algamal, Zakariya Y. Kibria, B. M. Golam |
Author_xml | – sequence: 1 givenname: Adewale F. orcidid: 0000-0003-2881-1297 surname: Lukman fullname: Lukman, Adewale F. email: adewale.folaranmi@lmu.edu.ng organization: Landmark University – sequence: 2 givenname: Zakariya Y. orcidid: 0000-0002-0229-7958 surname: Algamal fullname: Algamal, Zakariya Y. organization: University of Mosul – sequence: 3 givenname: B. M. Golam surname: Kibria fullname: Kibria, B. M. Golam organization: Florida International University – sequence: 4 givenname: Kayode surname: Ayinde fullname: Ayinde, Kayode organization: Federal University of Technology |
BookMark | eNp1kEFLw0AQhRepYFsFf0LAi5fUmU2yTbxJqFUs6KGel83uRFPabNxtlP57t0a8eRjmMXzMvHkTNmptS4xdIswQgN_ojmaCc37CxpglPAaRpKM_zcUZm3i_AUCEBMfsdv1O0dMqIr9vdmpvXVSH2odh036S8xQtVe99o9rI0ZujIG0b7ayh7Tk7rdXW08Vvn7LX-8W6fIhXz8vH8m4Va16EoylmBistqsRUoKjOcoNY6_ncBJtKGwJNWmghUkPEYV7kRVWkqPKMCHUGyZRdDXs7Zz_6YFRubO_acFLyLAWBmAgeqOuB0s5676iWnQsfuYNEkMdkZEhGHpMJaDygX82WDv9ysnxZ_PDfkl5lXg |
CitedBy_id | crossref_primary_10_1016_j_sciaf_2023_e01553 crossref_primary_10_1080_03610926_2023_2273206 crossref_primary_10_3389_fams_2022_880086 crossref_primary_10_53570_jnt_1139885 crossref_primary_10_1155_2022_9503460 crossref_primary_10_46481_jnsps_2022_664 crossref_primary_10_1007_s40995_022_01354_x crossref_primary_10_1080_00949655_2022_2032059 crossref_primary_10_1080_03610918_2023_2286436 crossref_primary_10_1016_j_sciaf_2022_e01386 crossref_primary_10_1080_03610918_2023_2252624 crossref_primary_10_1080_03610918_2022_2059088 crossref_primary_10_1080_03610926_2021_1970773 crossref_primary_10_1016_j_sciaf_2023_e01566 crossref_primary_10_1155_2021_5545356 crossref_primary_10_3390_math11020340 crossref_primary_10_1002_cpe_6780 crossref_primary_10_1080_03610918_2021_2007401 crossref_primary_10_3389_fams_2022_952142 crossref_primary_10_1080_00949655_2023_2166046 crossref_primary_10_3389_fams_2023_956963 crossref_primary_10_1002_cpe_6803 crossref_primary_10_1080_03610918_2023_2276052 crossref_primary_10_37394_23206_2022_21_75 crossref_primary_10_3390_mi15030292 |
Cites_doi | 10.1080/03610929508831585 10.1080/03610918.2020.1797797 10.1002/cem.3125 10.59170/stattrans-2014-002 10.1081/STA-120019959 10.1080/03610926.2019.1595654 10.1007/s00362-006-0037-0 10.1080/03610929308831027 10.1002/cem.3203 10.1007/BF02595697 10.1080/03610926.2020.1791339 10.1002/0471458503 10.1080/02331888.2011.605891 10.1080/03610926.2018.1481977 10.1080/00949655.2020.1718150 10.1080/25765299.2019.1706799 10.1080/03610920902807911 10.1155/2019/6342702 10.1080/03610918.2012.735317 10.1081/SAC-120017499 10.1080/03610929208830909 10.1155/2020/9758378 10.22237/jmasm/1462075860 10.1080/03610918.2014.995815 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cpe.6222 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1532-0634 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cpe_6222 CPE6222 |
Genre | article |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2932-415d1bc6b3db0aef58d11fc77d622acde0cec6c664dee207989b941a85ee1c503 |
IEDL.DBID | 33P |
ISSN | 1532-0626 |
IngestDate | Thu Oct 10 19:15:56 EDT 2024 Fri Aug 23 01:52:50 EDT 2024 Sat Aug 24 01:03:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2932-415d1bc6b3db0aef58d11fc77d622acde0cec6c664dee207989b941a85ee1c503 |
ORCID | 0000-0002-0229-7958 0000-0003-2881-1297 |
PQID | 2540611362 |
PQPubID | 2045170 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2540611362 crossref_primary_10_1002_cpe_6222 wiley_primary_10_1002_cpe_6222_CPE6222 |
PublicationCentury | 2000 |
PublicationDate | 10 July 2021 |
PublicationDateYYYYMMDD | 2021-07-10 |
PublicationDate_xml | – month: 07 year: 2021 text: 10 July 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Concurrency and computation |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2015; 5 2013; 47 2012 2010 2010; 39 1993; 22 2019; 12 2019; 34 2017; 46 1970; 12 1934; 45 2016; 15 2003; 474 2018; 48 2003; 32 2014; 43 2018; 9 2018; 17 2020 1995; 24 2008; 49 2019b; 2019 1965 2020; 27 2014; 15 2019; 49 2020a 2020b; 90 1992; 21 2019a; 33 2016; 45 2001; 10 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 Lukman AF (e_1_2_6_15_1) 2017; 46 Malehi AS (e_1_2_6_7_1) 2015; 5 e_1_2_6_19_1 Dorugade AV (e_1_2_6_23_1) 2014; 15 Shamany E. R. (e_1_2_6_8_1) 2019; 12 Ahmad S (e_1_2_6_25_1) 2020 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 Imran M (e_1_2_6_30_1) 2019; 34 e_1_2_6_16_1 Hardin JW (e_1_2_6_29_1) 2012 Lukman AF (e_1_2_6_34_1) 2018; 17 e_1_2_6_21_1 e_1_2_6_20_1 Ayinde K (e_1_2_6_9_1) 2018; 9 Frisch R (e_1_2_6_12_1) 1934; 45 Lemeshko BY (e_1_2_6_6_1) 2010 Hoerl AE (e_1_2_6_14_1) 1970; 12 e_1_2_6_5_1 e_1_2_6_4_1 Brownlee KA (e_1_2_6_35_1) 1965 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – start-page: 1 year: 2020 end-page: 19 article-title: Another proposal about the new two‐parameter estimator for linear regression model with correlated regressors publication-title: Commun Stat Simul Comput – volume: 33 year: 2019a article-title: Modified ridge‐type estimator to combat multicollinearity: application to chemical data publication-title: J Chemom – volume: 27 start-page: 45 issue: 1 year: 2020 end-page: 55 article-title: An unbiased estimator with prior information publication-title: Arab J Basic Appl Sci – volume: 24 start-page: 1789 issue: 7 year: 1995 end-page: 1797 article-title: On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE publication-title: Commun Stat Theory Meth – volume: 47 start-page: 535 issue: 3 year: 2013 end-page: 545 article-title: Efficiency of an almost unbiased two‐parameter estimator in linear regression model publication-title: Statistics – volume: 45 start-page: 741 issue: 180 year: 1934 end-page: 742 article-title: Statistical confluence analysis by means of complete regression systems publication-title: Econ J – year: 2020 article-title: A new ridge‐type estimator for the linear regression model: simulations and applications publication-title: Scientifica – volume: 32 start-page: 1009 issue: 5 year: 2003 end-page: 1020 article-title: Using Liu‐Type estimator to combat collinearity publication-title: Communications in Statistics Theory and Methods – volume: 2019 start-page: 1 year: 2019b end-page: 10 article-title: A modified new two‐parameter estimator in a linear regression model publication-title: Model Simul Eng – volume: 39 start-page: 923 issue: 6 year: 2010 end-page: 934 article-title: A new two‐parameter estimator in linear regression publication-title: Commun Stat Theory Methods – volume: 17 start-page: 369 year: 2018 end-page: 376 article-title: Improved generalized ridge estimators and their comparisons publication-title: WSEAS Trans Math – start-page: 1 year: 2020a end-page: 19 article-title: Two parameter estimator for the inverse Gaussian regression model publication-title: Commun Stat Simul Comput – volume: 22 start-page: 393 issue: 2 year: 1993 end-page: 402 article-title: A new class of biased estimate in linear regression publication-title: Commun Stat Theory Methods – year: 2012 – volume: 48 start-page: 3836 year: 2018 end-page: 3849 article-title: Performance of ridge estimator in inverse Gaussian regression model publication-title: Commun Stat Theory Methods – start-page: 433 year: 2010 end-page: 453 – volume: 12 start-page: 453 issue: 2 year: 2019 end-page: 464 article-title: A new two‐parameter estimator for the inverse Gaussian regression model with application in chemometrics publication-title: Electron J Appl Stat Anal – volume: 32 start-page: 419 issue: 2 year: 2003 end-page: 435 article-title: Performance of some new ridge regression estimators publication-title: Commun Stat Simul Comput – volume: 474 year: 2003 – volume: 49 start-page: 669 issue: 4 year: 2008 end-page: 689 article-title: A new biased estimator based on ridge estimation publication-title: Stat Papers – year: 1965 – volume: 43 start-page: 1442 issue: 6 year: 2014 end-page: 1470 article-title: A combined nonlinear programming model and Kibria method for choosing ridge parameter regression publication-title: Commun Stat Simul Comput – volume: 46 start-page: 953 issue: 5 year: 2017 end-page: 967 article-title: Review and classifications of the ridge parameter estimation techniques publication-title: Hacettepe J Math Stat – volume: 15 start-page: 23 issue: 1 year: 2014 end-page: 36 article-title: A modified two‐parameter estimator in linear regression publication-title: Stat Transit New Ser – volume: 90 start-page: 1153 year: 2020b end-page: 1172 article-title: A new Liu‐type estimator for the inverse Gaussian regression model publication-title: J Stat Comput Simul – volume: 45 start-page: 1094 issue: 3 year: 2016 end-page: 1103 article-title: New shrinkage parameters for the Liu‐type logistic estimators publication-title: Commun Stat Simul Comput – volume: 21 start-page: 2227 issue: 8 year: 1992 end-page: 2246 article-title: On ordinary ridge regression in generalized linear models publication-title: Commun Stat Theory Methods – volume: 34 year: 2019 article-title: Diagnostics via partial residual plots in inverse Gaussian regression publication-title: J Chemom – start-page: 1 year: 2020 end-page: 21 article-title: New shrinkage parameters for the inverse Gaussian Liu regression publication-title: Commun Stat Theory Methods – volume: 9 start-page: 2838 issue: 11 year: 2018 end-page: 2852 article-title: Some new adjusted ridge estimators of linear regression model publication-title: Int J Civil Eng Technol – volume: 10 start-page: 271 issue: 2 year: 2001 end-page: 290 article-title: Goodness‐of‐fit tests for the inverse Gaussian and related distributions publication-title: Test – volume: 5 start-page: 1 year: 2015 end-page: 11 article-title: Statistical models for the analysis of skewed healthcare cost data: a simulation study publication-title: Heal Econ Rev – volume: 49 start-page: 4178 year: 2019 end-page: 4196 article-title: Performance of some new Liu parameters for the linear regression model publication-title: Commun Stat Theory Methods – volume: 12 start-page: 55 issue: 1 year: 1970 end-page: 67 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Dent Tech – volume: 15 start-page: 206 issue: 1 year: 2016 end-page: 238 article-title: Some ridge regression estimators and their performances publication-title: J Mod Appl Stat Methods – ident: e_1_2_6_17_1 doi: 10.1080/03610929508831585 – ident: e_1_2_6_2_1 doi: 10.1080/03610918.2020.1797797 – ident: e_1_2_6_10_1 doi: 10.1002/cem.3125 – volume: 15 start-page: 23 issue: 1 year: 2014 ident: e_1_2_6_23_1 article-title: A modified two‐parameter estimator in linear regression publication-title: Stat Transit New Ser doi: 10.59170/stattrans-2014-002 contributor: fullname: Dorugade AV – volume: 12 start-page: 453 issue: 2 year: 2019 ident: e_1_2_6_8_1 article-title: A new two‐parameter estimator for the inverse Gaussian regression model with application in chemometrics publication-title: Electron J Appl Stat Anal contributor: fullname: Shamany E. R. – volume: 9 start-page: 2838 issue: 11 year: 2018 ident: e_1_2_6_9_1 article-title: Some new adjusted ridge estimators of linear regression model publication-title: Int J Civil Eng Technol contributor: fullname: Ayinde K – volume: 5 start-page: 1 year: 2015 ident: e_1_2_6_7_1 article-title: Statistical models for the analysis of skewed healthcare cost data: a simulation study publication-title: Heal Econ Rev contributor: fullname: Malehi AS – ident: e_1_2_6_27_1 doi: 10.1081/STA-120019959 – ident: e_1_2_6_24_1 doi: 10.1080/03610926.2019.1595654 – ident: e_1_2_6_20_1 doi: 10.1007/s00362-006-0037-0 – volume: 46 start-page: 953 issue: 5 year: 2017 ident: e_1_2_6_15_1 article-title: Review and classifications of the ridge parameter estimation techniques publication-title: Hacettepe J Math Stat contributor: fullname: Lukman AF – ident: e_1_2_6_16_1 doi: 10.1080/03610929308831027 – volume: 34 start-page: e3203 year: 2019 ident: e_1_2_6_30_1 article-title: Diagnostics via partial residual plots in inverse Gaussian regression publication-title: J Chemom doi: 10.1002/cem.3203 contributor: fullname: Imran M – ident: e_1_2_6_5_1 doi: 10.1007/BF02595697 – volume: 45 start-page: 741 issue: 180 year: 1934 ident: e_1_2_6_12_1 article-title: Statistical confluence analysis by means of complete regression systems publication-title: Econ J contributor: fullname: Frisch R – ident: e_1_2_6_28_1 doi: 10.1080/03610926.2020.1791339 – ident: e_1_2_6_36_1 doi: 10.1002/0471458503 – ident: e_1_2_6_22_1 doi: 10.1080/02331888.2011.605891 – ident: e_1_2_6_4_1 doi: 10.1080/03610926.2018.1481977 – start-page: 1 year: 2020 ident: e_1_2_6_25_1 article-title: Another proposal about the new two‐parameter estimator for linear regression model with correlated regressors publication-title: Commun Stat Simul Comput contributor: fullname: Ahmad S – volume-title: Statistical Theory and Methodology in Science and Engineering year: 1965 ident: e_1_2_6_35_1 contributor: fullname: Brownlee KA – volume-title: Generalized Linear Models and Extensions year: 2012 ident: e_1_2_6_29_1 contributor: fullname: Hardin JW – volume: 17 start-page: 369 year: 2018 ident: e_1_2_6_34_1 article-title: Improved generalized ridge estimators and their comparisons publication-title: WSEAS Trans Math contributor: fullname: Lukman AF – ident: e_1_2_6_3_1 doi: 10.1080/00949655.2020.1718150 – ident: e_1_2_6_13_1 doi: 10.1080/25765299.2019.1706799 – ident: e_1_2_6_21_1 doi: 10.1080/03610920902807911 – ident: e_1_2_6_11_1 doi: 10.1155/2019/6342702 – ident: e_1_2_6_33_1 doi: 10.1080/03610918.2012.735317 – start-page: 433 volume-title: Inverse Gaussian Model and its Applications in Reliability and Survival Analysis year: 2010 ident: e_1_2_6_6_1 contributor: fullname: Lemeshko BY – ident: e_1_2_6_18_1 doi: 10.1081/SAC-120017499 – ident: e_1_2_6_32_1 doi: 10.1080/03610929208830909 – ident: e_1_2_6_26_1 doi: 10.1155/2020/9758378 – ident: e_1_2_6_19_1 doi: 10.22237/jmasm/1462075860 – ident: e_1_2_6_31_1 doi: 10.1080/03610918.2014.995815 – volume: 12 start-page: 55 issue: 1 year: 1970 ident: e_1_2_6_14_1 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Dent Tech contributor: fullname: Hoerl AE |
SSID | ssj0011031 |
Score | 2.4685817 |
Snippet | Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models.... Abstract Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | efficiency inverse Gaussian regression KL estimator Liu estimator Maximum likelihood estimators MLE Regression models ridge |
Title | The KL estimator for the inverse Gaussian regression model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6222 https://www.proquest.com/docview/2540611362 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20Jy_WT6xWWUG8xeZjk016k9paUKSggrewHxPxYCyN_f_ObpJWD4LgKZcsLI-ZfW-TmTcAF7FME6Fi6XHJ3QizzMviWHgSURJ_SFO4_orpo3h4SW_G1iZn2PbC1P4Qqw9uNjPceW0TXKpqsDYN1XO8Sojd6Pi1pk22eyOarX4g2OkFtVVq6Pkk2lvfWT8ctAt_MtFaXn4XqY5lJt3_7G8Hthttya7rYNiFDSz3oNvObWBNGu_DkGKD3d0za7Dxbi_djJQrIyXI3kpbpYHsVi4r213JFvhaF8qWzM3MOYDnyfhpNPWaGQqeJiIPPeJnEyidqMgoX2IRpyYICi2Eob1JbdDXqBOdJNwghr7I0kxlPJBpjBjo2I8OoVN-lHgEjBek9khPFFxxLjFThSH5EiileBSJIu3BeYtnPq-tMvLaFDnMCYzcgtGDfgt03iRLldMdlVRFQFTag0sH6a_r89FsbJ_Hf33xBLZCW4VirTD9PnQ-F0s8hc3KLM9cwHwBN5bBrQ |
link.rule.ids | 315,783,787,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sPejF-sRq1RXEW2wem5eepLZWWkvBCt7CPibiwVha-_-dzaPVgyB4yiULyzBfvm83M98AXPgiCkLpC4sLno8wi63Y90NLIAriD6HTvL-i_xSOXqK7rrHJual6YQp_iOWFm0FG_r02ADcX0u2Va6ia4lVA9FaDdR7w2KDS88bLXwhmfkFhlupaNsn2ynnWdtvVyp9ctBKY32VqzjO9xr92uA1bpbxkt0U-7MAaZrvQqEY3sBLJe3BN6cEGQ2Y8Nt7NuZuReGUkBtlbZgo1kN2Lxdw0WLIZvha1shnLx-bsw3OvO-n0rXKMgqWIy12LKFo7UgXS09IWmPqRdpxUhaGmvQml0VaoAhUEXCO6dhhHsYy5IyIf0VG-7R1APfvI8BAYT0nwkaRIueRcYCxTTQrGkVJyzwvTqAnnVUCTaeGWkRS-yG5CwUhMMJrQqiKdlHiZJ3RMJWHhEJs24TKP6a_rk864a55Hf33xDDb6k8dhMnwYDY5h0zVFKcYZ025B_XO2wBOozfXiNM-eL3sSxc4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60gnixPrFaNYJ4W7uP7Ks36cNKSymo4G3JYyIeXEtr_7-T3W6rB0HwtJcEwjCT75vszDcA16FIoliGwuGCFyPMUicNw9gRiILwQ2hT9FcMHuPxS9LtWZmcdtULU-pDrB7cbGQU97UN8Kk2rbVoqJribUTotglbnFi4TbyCYLL6g2DHF5Raqb7jEmuvhGddv1Xt_AlFa375naUWMNOv_-eAe7C7JJfsrvSGfdjA_ADq1eAGtozjQ2iTc7DhiFmFjXebdTOiroyoIHvLbZkGsnuxmNv2SjbD17JSNmfF0JwjeO73njoDZzlEwVGE5L5DAK09qSIZaOkKNGGiPc-oONZ0NqE0ugpVpKKIa0TfjdMklSn3RBIieip0g2Oo5R85ngDjhugeEQrDJecCU2k08RdPSsmDIDZJA64qe2bTUisjK1WR_YyMkVljNKBZGTpbRss8oySVaIVHWNqAm8Kkv-7POpOe_Z7-deElbE-6_Wz0MB6ewY5vK1KsLKbbhNrnbIHnsDnXi4vCd74AWRHEfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+KL+estimator+for+the+inverse+Gaussian+regression+model&rft.jtitle=Concurrency+and+computation&rft.au=Lukman%2C+Adewale+F.&rft.au=Algamal%2C+Zakariya+Y.&rft.au=Kibria%2C+B.+M.+Golam&rft.au=Ayinde%2C+Kayode&rft.date=2021-07-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6222&rft.externalDBID=10.1002%252Fcpe.6222&rft.externalDocID=CPE6222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |