Using the normality assumption to calculate probability‐based standardized drought indices: selection criteria with emphases on typical events
ABSTRACT Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding t...
Saved in:
Published in: | International journal of climatology Vol. 38; no. S1; pp. e418 - e436 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester, UK
John Wiley & Sons, Ltd
01-04-2018
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range.
MAEs between typical SPEI values [−2.0 : 2.0] calculated from candidate models and their corresponding theoretical values generated from the standard normal distribution. (a)–(k) represent SPEI values ranging from 0.0 to 2.0 (wet categories); (l)–(v) represent SPEI values ranging from values lower than 0.0 to −2.0 (dry categories).. |
---|---|
AbstractList | Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range. Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range. ABSTRACT Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range. MAEs between typical SPEI values [−2.0 : 2.0] calculated from candidate models and their corresponding theoretical values generated from the standard normal distribution. (a)–(k) represent SPEI values ranging from 0.0 to 2.0 (wet categories); (l)–(v) represent SPEI values ranging from values lower than 0.0 to −2.0 (dry categories).. |
Author | de Avila, Ana Maria H. Blain, Gabriel Constantino Pereira, Vânia Rosa |
Author_xml | – sequence: 1 givenname: Gabriel Constantino orcidid: 0000-0001-8832-7734 surname: Blain fullname: Blain, Gabriel Constantino email: gabriel@iac.sp.gov.br organization: Agronomic Institute – sequence: 2 givenname: Ana Maria H. surname: de Avila fullname: de Avila, Ana Maria H. organization: University of Campinas – sequence: 3 givenname: Vânia Rosa surname: Pereira fullname: Pereira, Vânia Rosa organization: University of Campinas |
BookMark | eNp1kE1OwzAQhS0EEqUgcQRLbNgE7CRNbHao4ldIbGAdTewJdZXawXZAZcUROCMnwaVsWc2M9L33NO-A7FpnkZBjzs44Y_n50qmzWSH4DplwJuuMMSF2yYQJKTNRcrFPDkJYMsak5NWEfD0HY19oXCC1zq-gN3FNIYRxNUTjLI2OKujV2ENEOnjXQms2zPfnVwsBNQ0RrAavzUc6tHfjyyJSY7VRGC5owB7Vr5HyJqI3QN9NXFBcDYskD3QTsR5MyqD4hjaGQ7LXQR_w6G9OyfP11dP8Nnt4vLmbXz5kKpcFzzRHVc1kCaAFzLCTqlR1XtVQtqIuOlnndYUdlkq0aW8ZQKtLzUUlC6yE7IopOdn6pqdeRwyxWbrR2xTZ5KxgXOQ8BU3J6ZZS3oXgsWsGb1bg1w1nzabvpFLNpu-EZlv03fS4_pdr7h_nv_wPgNqIeQ |
CitedBy_id | crossref_primary_10_5194_hess_24_4541_2020 crossref_primary_10_1002_joc_7550 crossref_primary_10_1016_j_jhydrol_2022_128385 crossref_primary_10_1007_s12145_023_01188_0 crossref_primary_10_3390_atmos10090558 crossref_primary_10_1017_S0014479718000340 crossref_primary_10_3390_w13060807 crossref_primary_10_1007_s00704_022_03989_7 crossref_primary_10_1590_1678_4499_20230260 crossref_primary_10_1590_0102_77863720019 crossref_primary_10_1155_2023_5142965 crossref_primary_10_1590_1678_4499_20240029 crossref_primary_10_3390_atmos14081292 crossref_primary_10_1080_02626667_2023_2232348 crossref_primary_10_1590_1678_4499_2018144 crossref_primary_10_1590_1678_4499_20230128 crossref_primary_10_1080_07011784_2023_2183143 crossref_primary_10_1590_1678_4499_20220061 |
Cites_doi | 10.1016/j.scitotenv.2016.06.031 10.1175/2008JCLI2249.1 10.1175/2010BAMS3103.1 10.1097/00010694-194807000-00007 10.1590/S0006-87052012005000004 10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2 10.1002/joc.3887 10.1002/joc.846 10.3923/ja.2015.80.86 10.1080/01621459.1967.10482916 10.1002/joc.4474 10.1002/joc.906 10.1590/1807-1929/agriambi.v19n12p1129-1135 10.1002/joc.4267 10.1007/s00477-011-0463-y 10.5194/hess-16-2143-2012 10.1080/01621459.1954.10501232 10.1061/(ASCE)HE.1943-5584.0000942 10.1590/S0006-87052012000100019 10.1175/JCLI3896.1 10.1002/joc.1371 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 10.1590/1678-4499.478 10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 10.1175/1520-0450(1975)014<1600:ANOTPM>2.0.CO;2 10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2 10.1175/JCLI-D-14-00707.1 10.1590/S0102-77862011000200001 10.1007/s00703-016-0461-1 10.5194/nhess-12-1481-2012 10.1175/2009JCLI2909.1 10.1590/brag.2014.015 10.1590/S0006-87052009000300030 10.18637/jss.v064.i04 10.1111/j.1752-1688.1999.tb03592.x 10.1175/MWR3326.1 10.1016/j.atmosres.2009.03.005 10.1016/B978-0-12-385022-5.00008-7 10.1002/joc.4564 10.1590/1678-4499.0127 10.1002/met.136 10.1590/S0006-87052000000200002 |
ContentType | Journal Article |
Copyright | 2017 Royal Meteorological Society 2018 Royal Meteorological Society |
Copyright_xml | – notice: 2017 Royal Meteorological Society – notice: 2018 Royal Meteorological Society |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/joc.5381 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1097-0088 |
EndPage | e436 |
ExternalDocumentID | 10_1002_joc_5381 JOC5381 |
Genre | article |
GrantInformation_xml | – fundername: Government of the State of São Paulo – fundername: FAPESP funderid: 2013/15434‐6 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VOH W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XJT XPP XV2 ZZTAW ~02 ~IA ~WT AAMNL AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c2931-d1ec6594aad8a5ef9c4c7267a4b873f97276efe4c8b972b0aabd4d18693e689f3 |
IEDL.DBID | 33P |
ISSN | 0899-8418 |
IngestDate | Tue Nov 19 05:54:36 EST 2024 Fri Nov 22 00:55:30 EST 2024 Sat Aug 24 00:47:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2931-d1ec6594aad8a5ef9c4c7267a4b873f97276efe4c8b972b0aabd4d18693e689f3 |
ORCID | 0000-0001-8832-7734 |
PQID | 2030182129 |
PQPubID | 996368 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2030182129 crossref_primary_10_1002_joc_5381 wiley_primary_10_1002_joc_5381_JOC5381 |
PublicationCentury | 2000 |
PublicationDate | April 2018 2018-04-00 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of climatology |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 35 2009; 68 2015; 14 2015; 19 2011 1967; 62 2009 2016; 75 1975; 14 2006; 19 1954; 49 1994 1993 2016; 566 2012; 16 2012; 12 1958 2016; 36 2010; 23 2007; 135 2015; 28 2000; 59 2012a; 71 2004; 17 2009; 93 2015; 64 2011; 92 2002; 22 1999; 35 1965 2017 2008; 21 2014; 19 2011; 26 2014 2013 2012b; 71 1948; 66 2014; 73 2005; 18 2014; 34 2009; 16 1998; 11 1994; 7 1967 2017; 129 2003; 23 2007; 27 e_1_2_5_27_1 Asquith WH (e_1_2_5_3_1) 2011 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 Panofsky HA (e_1_2_5_36_1) 1958 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 Cancelliere A (e_1_2_5_14_1) 2009 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 Kendall MG (e_1_2_5_28_1) 1967 e_1_2_5_51_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_43_1 Giddings L (e_1_2_5_22_1) 2005; 18 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 Glantz MH (e_1_2_5_23_1) 1994 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – year: 2011 – volume: 17 start-page: 47 issue: 1 year: 2004 end-page: 66 article-title: The South America monsoon circulation and its relationship to rainfall over west‐central Brazil publication-title: J. Clim. – volume: 135 start-page: 1151 issue: 3 year: 2007 end-page: 1157 article-title: A cautionary note on the use of the Kolmogorov–Smirnov test for normality publication-title: Mon. Weather Rev. – volume: 19 start-page: 4014010 issue: 9 year: 2014 article-title: Comparison between parametric and nonparametric approaches for the calculation of two drought indices: SPI and SSI publication-title: J. Hydrol. Eng. – volume: 21 start-page: 6227 year: 2008 end-page: 6246 article-title: The life cycle of the South American monsoon system publication-title: J. Clim. – volume: 18 start-page: 33 issue: 1 year: 2005 end-page: 56 article-title: Standardized precipitation index zones for México publication-title: Atmosfera – volume: 12 start-page: 1481 year: 2012 end-page: 1491 article-title: Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal publication-title: Nat. Hazards Earth Syst. – year: 1994 – year: 2014 – volume: 92 start-page: 485 issue: 4 year: 2011 end-page: 488 article-title: The Lincoln declaration on drought indices: universal meteorological drought index recommended publication-title: Bull. Am. Meteorol. Soc. – volume: 129 start-page: 157 issue: 2 year: 2017 end-page: 171 article-title: Rainfall variability over Alagoas under the influences of SST anomalies publication-title: Meteorol. Atmos. Phys. – volume: 71 start-page: 122 issue: 1 year: 2012a end-page: 131 article-title: Monthly values of the standardized precipitation index in the state of São Paulo, Brazil: trends and spectral features under the normality assumption publication-title: Bragantia – volume: 23 start-page: 679 issue: 6 year: 2003 end-page: 692 article-title: Homogeneity of 20th century European daily temperature and precipitation series publication-title: Int. J. Climatol. – volume: 62 start-page: 399 issue: 318 year: 1967 end-page: 402 article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. – volume: 75 start-page: 507 year: 2016 end-page: 521 article-title: Increasing the regional availability of the standardized precipitation index: an operational approach publication-title: Bragantia – year: 1965 – volume: 28 start-page: 5430 issue: 13 year: 2015 end-page: 5447 article-title: Changes in drought characteristics over China using the standardized precipitation evapotranspiration index publication-title: J. Clim. – volume: 11 start-page: 1020 issue: 5 year: 1998 end-page: 1040 article-title: Does a monsoon climate exist over South America? publication-title: J. Clim. – volume: 566 start-page: 1472 year: 2016 end-page: 1488 article-title: When every drop counts: analysis of droughts in Brazil for the 1901–2013 period publication-title: Sci. Total Environ. – volume: 71 start-page: 132 issue: 1 year: 2012b end-page: 141 article-title: Revisiting the probabilistic definition of drought: strengths, limitations and an agrometeorological adaptation publication-title: Bragantia – volume: 14 start-page: 80 issue: 2 year: 2015 end-page: 86 article-title: Analysis of the occurrence of wet and drought periods using standardized precipitation index in Mato Grosso Do Sul state, Brazil publication-title: J. Agron. – volume: 35 start-page: 311 issue: 2 year: 1999 end-page: 322 article-title: Accepting the standardized precipitation index: a calculation algorithm index publication-title: J. Am. Water Resour. Assoc. – volume: 19 start-page: 4977 issue: 20 year: 2006 end-page: 5000 article-title: Toward a unified view of the American monsoon systems publication-title: J. Clim. – volume: 14 start-page: 1600 issue: 8 year: 1975 end-page: 1603 article-title: A note on the possible misuse of the Kolmogorov–Smirnov test publication-title: J. Appl. Meteorol. – year: 1993 – start-page: 14 year: 2009 end-page: 26 – volume: 36 start-page: 2120 issue: 4 year: 2016 end-page: 2131 article-title: Comment on ‘candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge publication-title: Int. J. Climatol. – volume: 16 start-page: 381 issue: 3 year: 2009 end-page: 389 article-title: On the use of standardized precipitation index (SPI) for drought intensity assessment publication-title: Meteorol. Appl. – volume: 27 start-page: 65 issue: 1 year: 2007 end-page: 79 article-title: Appropriate application of the standardized precipitation index in arid locations and dry seasons publication-title: Int. J. Climatol. – volume: 49 start-page: 765 issue: 268 year: 1954 end-page: 769 article-title: A test of goodness of fit publication-title: J. Am. Stat. Assoc. – year: 1958 – volume: 23 start-page: 1696 issue: 7 year: 2010 end-page: 1718 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. – volume: 36 start-page: 2132 issue: 4 year: 2016 end-page: 2138 article-title: Response to comment on ‘candidate distributions for climatological drought indices (SPI and SPEI)’ publication-title: Int. J. Climatol. – volume: 22 start-page: 1571 issue: 13 year: 2002 end-page: 1592 article-title: A drought climatology for Europe publication-title: Int. J. Climatol. – volume: 66 start-page: 77 issue: 1 year: 1948 article-title: An approach toward a rational classification of climate publication-title: Soil Sci. – volume: 68 start-page: 807 issue: 3 year: 2009 end-page: 815 article-title: Análises estatísticas das tendências de elevação nas séries anuais de temperatura mínima do ar no estado de São Paulo publication-title: Bragantia – volume: 35 start-page: 4027 year: 2015 end-page: 4040 article-title: Candidate distributions for climatological drought indices (SPI and SPEI) publication-title: Int. J. Climatol. – volume: 34 start-page: 3001 issue: 10 year: 2014 end-page: 3023 article-title: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring publication-title: Int. J. Climatol. – volume: 59 start-page: 125 issue: 2 year: 2000 end-page: 137 article-title: Uma revisão analítica da evapotranspiração potencial publication-title: Bragantia – volume: 64 start-page: 1 issue: 4 year: 2015 end-page: 34 article-title: Fitdistrplus: an R package for fitting distributions publication-title: J. Stat. Software – volume: 73 start-page: 192 issue: 2 year: 2014 end-page: 202 article-title: Revisiting the critical values of the Lilliefors test: towards the correct agrometeorological use of the Kolmogorov–Smirnov framework publication-title: Bragantia – volume: 26 start-page: 105 issue: 1 year: 2011 end-page: 114 article-title: Assessment of modified Anderson–Darling test statistics for the generalized extreme value and generalized logistic distributions publication-title: Stochastic Environ. Res. Risk Assess. – year: 1967 – volume: 16 start-page: 2143 issue: 7 year: 2012 end-page: 2157 article-title: Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias publication-title: Hydrol. Earth Syst. Sci. – volume: 19 start-page: 1129 issue: 12 year: 2015 end-page: 1135 article-title: Inadequacy of the gamma distribution to calculate the standardized precipitation index publication-title: Rev. Bras. Eng. Agríc. Ambiental – volume: 73 start-page: 327 issue: 3 year: 2014 end-page: 334 article-title: Climate trends in a non‐traditional high quality wine producing region publication-title: Bragantia – volume: 93 start-page: 759 issue: 4 year: 2009 end-page: 766 article-title: Is daily precipitation gamma‐distributed?: adverse effects of an incorrect use of the Kolmogorov–Smirnov test publication-title: Atmos. Res. – volume: 26 start-page: 167 year: 2011 end-page: 180 article-title: Standardized precipitation index based on Pearson type III distribution publication-title: Rev. Bras. Meteorol. – year: 2017 – volume: 7 start-page: 1026 issue: 6 year: 1994 end-page: 1029 article-title: On the sensitivity of sample L moments to sample size publication-title: J. Clim. – volume: 17 start-page: 2335 issue: 12 year: 2004 end-page: 2351 article-title: A self‐calibrating palmer drought severity index publication-title: J. Clim. – volume: 17 start-page: 88 issue: 1 year: 2004 end-page: 108 article-title: The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall publication-title: J. Clim. – year: 2013 – ident: e_1_2_5_4_1 doi: 10.1016/j.scitotenv.2016.06.031 – ident: e_1_2_5_38_1 doi: 10.1175/2008JCLI2249.1 – ident: e_1_2_5_27_1 doi: 10.1175/2010BAMS3103.1 – ident: e_1_2_5_46_1 doi: 10.1097/00010694-194807000-00007 – volume-title: Drought Follows the Plow: Cultivating Marginal Areas year: 1994 ident: e_1_2_5_23_1 contributor: fullname: Glantz MH – ident: e_1_2_5_9_1 doi: 10.1590/S0006-87052012005000004 – ident: e_1_2_5_25_1 doi: 10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2 – ident: e_1_2_5_7_1 doi: 10.1002/joc.3887 – ident: e_1_2_5_31_1 doi: 10.1002/joc.846 – ident: e_1_2_5_45_1 doi: 10.3923/ja.2015.80.86 – volume-title: Distributional Analysis With L‐Moment Statistics Using the R Environment for Statistical Computing year: 2011 ident: e_1_2_5_3_1 contributor: fullname: Asquith WH – ident: e_1_2_5_30_1 doi: 10.1080/01621459.1967.10482916 – ident: e_1_2_5_16_1 – ident: e_1_2_5_48_1 doi: 10.1002/joc.4474 – ident: e_1_2_5_52_1 doi: 10.1002/joc.906 – ident: e_1_2_5_12_1 doi: 10.1590/1807-1929/agriambi.v19n12p1129-1135 – volume: 18 start-page: 33 issue: 1 year: 2005 ident: e_1_2_5_22_1 article-title: Standardized precipitation index zones for México publication-title: Atmosfera contributor: fullname: Giddings L – ident: e_1_2_5_42_1 doi: 10.1002/joc.4267 – ident: e_1_2_5_39_1 doi: 10.1007/s00477-011-0463-y – ident: e_1_2_5_35_1 – ident: e_1_2_5_40_1 doi: 10.5194/hess-16-2143-2012 – ident: e_1_2_5_24_1 – ident: e_1_2_5_2_1 doi: 10.1080/01621459.1954.10501232 – ident: e_1_2_5_41_1 doi: 10.1061/(ASCE)HE.1943-5584.0000942 – ident: e_1_2_5_10_1 doi: 10.1590/S0006-87052012000100019 – ident: e_1_2_5_47_1 doi: 10.1175/JCLI3896.1 – ident: e_1_2_5_54_1 doi: 10.1002/joc.1371 – volume-title: The Advanced Theory of Statistics year: 1967 ident: e_1_2_5_28_1 contributor: fullname: Kendall MG – ident: e_1_2_5_15_1 doi: 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 – ident: e_1_2_5_34_1 doi: 10.1590/1678-4499.478 – ident: e_1_2_5_21_1 doi: 10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2 – ident: e_1_2_5_51_1 doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 – ident: e_1_2_5_18_1 doi: 10.1175/1520-0450(1975)014<1600:ANOTPM>2.0.CO;2 – ident: e_1_2_5_55_1 doi: 10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2 – ident: e_1_2_5_17_1 doi: 10.1175/JCLI-D-14-00707.1 – ident: e_1_2_5_8_1 doi: 10.1590/S0102-77862011000200001 – ident: e_1_2_5_32_1 doi: 10.1007/s00703-016-0461-1 – ident: e_1_2_5_37_1 doi: 10.5194/nhess-12-1481-2012 – ident: e_1_2_5_49_1 doi: 10.1175/2009JCLI2909.1 – ident: e_1_2_5_11_1 doi: 10.1590/brag.2014.015 – ident: e_1_2_5_13_1 doi: 10.1590/S0006-87052009000300030 – ident: e_1_2_5_20_1 doi: 10.18637/jss.v064.i04 – ident: e_1_2_5_33_1 – ident: e_1_2_5_26_1 doi: 10.1111/j.1752-1688.1999.tb03592.x – ident: e_1_2_5_44_1 doi: 10.1175/MWR3326.1 – ident: e_1_2_5_50_1 doi: 10.1016/j.atmosres.2009.03.005 – volume-title: Some Applications of Statistics to Meteorology year: 1958 ident: e_1_2_5_36_1 contributor: fullname: Panofsky HA – ident: e_1_2_5_6_1 – ident: e_1_2_5_53_1 doi: 10.1016/B978-0-12-385022-5.00008-7 – start-page: 14 volume-title: Proceedings of the 29th Annual American Geophysical Union Hydrology Days 2009 year: 2009 ident: e_1_2_5_14_1 contributor: fullname: Cancelliere A – ident: e_1_2_5_43_1 doi: 10.1002/joc.4564 – ident: e_1_2_5_5_1 doi: 10.1590/1678-4499.0127 – ident: e_1_2_5_29_1 doi: 10.1002/met.136 – ident: e_1_2_5_19_1 doi: 10.1590/S0006-87052000000200002 |
SSID | ssj0009916 |
Score | 2.3804195 |
Snippet | ABSTRACT
Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying... Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | e418 |
SubjectTerms | Algorithms Climatic conditions Distribution Drought Drought and floods Drought index Errors Evapotranspiration Evapotranspiration-precipitation relationships Extreme values Methods Normal distribution Normality Parameter estimation Parameters Precipitation Probability theory Rainfall standardized precipitation evapotranspiration index Standardized precipitation index Statistical analysis Test procedures trade‐off Tropical climate Weather stations |
Title | Using the normality assumption to calculate probability‐based standardized drought indices: selection criteria with emphases on typical events |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.5381 https://www.proquest.com/docview/2030182129 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UkxffYrXKCOIttkk2ycabVIsIPkAFb2GfoEhbmnjQkz-hv9Ff4symsXoQBE9JILsJOzM738zufsPYgeWZjpPQBc7EKiDCrkCkOQ9cV4Uu55kLLQWK57fZ1YM4PSOanOPmLEzND_GVcCPL8PM1GbhUZWdGGvo01EdorRT5YJDgT2_ENzO-3dxXPaVFrUDwUDS8s92o0zT86Ylm8PI7SPVepr_8n_9bYUtTbAkntTKssjk7WGOtS4TFw7HPnsMh9J4fEaP6p3U28RsGADEgDAi7EiQHRNMoYpIXVENAEdJO1coClZ6pSb1fP94n5P0MNImIxzd8ML7iTwW0Co6zzzGUvsYOdYRTE3FCS6C0L1jUIGxeAn3idURqAp5Iqtxg9_2zu955MC3REGjECWFgQqvTJOdSGiET63LNdRalmeRKZLHLER2l1lmuhcJ71ZVSGW6oDFZsU5G7eJMtDIYDu8UAI1GrEtmNLMZ4WitCEs5gPzaMZMRNi-034ipGNRNHUXMuRwWOdUFj3WLtRo7F1BbLIqKoT6CLzlvs0Evs1_bFxXWPrtt_fXGHLSKCEvVWnjZbqMYvdpfNl-Zlz-vjJ3ZA6FA |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58HPTiW6xWHUG8RZtkm2z0JNVStVXBCt7CZh-gSCumHvTkT-hv9Jc4s2msHgTBUxLIbsLOzM43s7vfMLZreKzCum89q8PMI8IuT0QJ92wt823CY-sbChRbN_HlnTg5JZqco_IsTMEP8ZVwI8tw8zUZOCWkD8asoQ99tY_miqHPNI9QD-n8Rng9ZtxNXN1TWtbyBPdFyTxbCw7Klj990Rhgfoepzs805__1hwtsbgQv4bjQh0U2YXpLrNJBZNx_dgl02IPG4z3CVPe0zIZuzwAgDIQewVdC5YCAGqVMIoNBH1CKtFl1YICqzxS83q8f70NygBrKXMT9Gz5oV_RnALQQjhPQIeSuzA51hLMT0UJLoMwvGFQibJ4DfeL1iTQFHJdUvsJum6fdRssbVWnwFEIF39O-UVE94VJqIevGJoqrOIhiyTMRhzZBgBQZa7gSGd5nNSkzzTVVwgpNJBIbrrKpXr9n1hhgMGqyuqwFBsM8pTICE1ZjP8YPZMB1he2U8kqfCjKOtKBdDlIc65TGusKqpSDTkTnmaUCBn0AvnVTYnhPZr-3T86sGXdf_-uI2m2l1O-20fXZ5scFmEVCJYmdPlU0Nnl_MJpvM9cuWU85PD4rseA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58gHjxLdbnCNJbbJNsk403qZb6qoIK3sJmH6BIW0x7qCd_gr_RX-LMprF6EARPyUJ2E3Zmdr6Z3XzD2IHhsQobvvWsDjOPCLs8ESXcs_XMtwmPrW8oUGzfxp0HcXJKNDlH5b8wBT_EV8KNLMOt12TgfW1rE9LQp546RGvFyGeWIwon3vwwvJkQ7iau7CntanmC-6Iknq0HtbLnT1c0wZffUapzM63F_3zgElsYg0s4LrRhmU2Z7gqrXCEu7r249DlUofn8iCDVtVbZuzsxAAgCoUvglTA5IJxGGZPAYNADlCEdVR0YoNozBav36OPtndyfhjIT8fiKDe1K_gyAtsFx-TmC3BXZoYFwbSJSaAmU9wWDKoTdc6BXjPqkJ-CYpPI1dt86vWu2vXGNBk8hUPA97RsVNRIupRayYWyiuIqDKJY8E3FoE4RHkbGGK5HhfVaXMtNcUx2s0EQiseE6m-n2umaDAYaiJmvIemAwyFMqIyhhNY5j_EAGXFfYfimutF9QcaQF6XKQ4lynNNcVtl3KMR0bY54GFPYJ9NFJhVWdxH7tn55fN-m6-dcH99jczUkrvTzrXGyxeURTojjWs81mBi9Ds8Omcz3cdar5CVP66x4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+normality+assumption+to+calculate+probability%E2%80%90based+standardized+drought+indices%3A+selection+criteria+with+emphases+on+typical+events&rft.jtitle=International+journal+of+climatology&rft.au=Blain%2C+Gabriel+Constantino&rft.au=de+Avila%2C+Ana+Maria+H.&rft.au=Pereira%2C+V%C3%A2nia+Rosa&rft.date=2018-04-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=38&rft.spage=e418&rft.epage=e436&rft_id=info:doi/10.1002%2Fjoc.5381&rft.externalDBID=10.1002%252Fjoc.5381&rft.externalDocID=JOC5381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |