Using the normality assumption to calculate probability‐based standardized drought indices: selection criteria with emphases on typical events

ABSTRACT Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of climatology Vol. 38; no. S1; pp. e418 - e436
Main Authors: Blain, Gabriel Constantino, de Avila, Ana Maria H., Pereira, Vânia Rosa
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01-04-2018
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range. MAEs between typical SPEI values [−2.0 : 2.0] calculated from candidate models and their corresponding theoretical values generated from the standard normal distribution. (a)–(k) represent SPEI values ranging from 0.0 to 2.0 (wet categories); (l)–(v) represent SPEI values ranging from values lower than 0.0 to −2.0 (dry categories)..
AbstractList Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range.
Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range.
ABSTRACT Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and dry events under distinct climate conditions is of paramount importance. The different recommendations of recent studies regarding the best distribution to calculate the SPEI and the lack of studies addressing the effect of different parameters estimation methods on the SPI motivated us to apply and adapt distinct testing methodologies to select candidate models for calculating these standardized drought indices (SDI). The study is based on two data sets. The first represents a tropical–subtropical region of Brazil. The second comprises the same weather stations that were used for developing the original version of the SPEI. The study also emphasized the performance of the models within the range of typical SDI values [−2.0 : 2.0]. Along with goodness‐of‐fit tests, we calculated the mean absolute errors between the indices values estimated from the candidate distributions, and their corresponding theoretical values derived from the standard normal distribution. The two‐parameter gamma and the generalized extreme value distributions are, respectively, recommended for general use in SPI and SPEI algorithms (1–12‐month timescales). The unbiased probability weighted moments are recommended to estimate the distributions parameters. The study also described a trade‐off between choosing the best model for the central part and for the tails of the distributions. This trade‐off suggests that the methodologies used to select models for the SDI algorithms may have to decide which part of the distribution (central or tails) should be emphasized. The behaviour of the errors among different wet/dry categories showed that both indices were only capable of representing drought and floods in a similar probabilistic way within the range [−2.0 : 2.0]. This feature supports our decision to emphasize model performances within such range. MAEs between typical SPEI values [−2.0 : 2.0] calculated from candidate models and their corresponding theoretical values generated from the standard normal distribution. (a)–(k) represent SPEI values ranging from 0.0 to 2.0 (wet categories); (l)–(v) represent SPEI values ranging from values lower than 0.0 to −2.0 (dry categories)..
Author de Avila, Ana Maria H.
Blain, Gabriel Constantino
Pereira, Vânia Rosa
Author_xml – sequence: 1
  givenname: Gabriel Constantino
  orcidid: 0000-0001-8832-7734
  surname: Blain
  fullname: Blain, Gabriel Constantino
  email: gabriel@iac.sp.gov.br
  organization: Agronomic Institute
– sequence: 2
  givenname: Ana Maria H.
  surname: de Avila
  fullname: de Avila, Ana Maria H.
  organization: University of Campinas
– sequence: 3
  givenname: Vânia Rosa
  surname: Pereira
  fullname: Pereira, Vânia Rosa
  organization: University of Campinas
BookMark eNp1kE1OwzAQhS0EEqUgcQRLbNgE7CRNbHao4ldIbGAdTewJdZXawXZAZcUROCMnwaVsWc2M9L33NO-A7FpnkZBjzs44Y_n50qmzWSH4DplwJuuMMSF2yYQJKTNRcrFPDkJYMsak5NWEfD0HY19oXCC1zq-gN3FNIYRxNUTjLI2OKujV2ENEOnjXQms2zPfnVwsBNQ0RrAavzUc6tHfjyyJSY7VRGC5owB7Vr5HyJqI3QN9NXFBcDYskD3QTsR5MyqD4hjaGQ7LXQR_w6G9OyfP11dP8Nnt4vLmbXz5kKpcFzzRHVc1kCaAFzLCTqlR1XtVQtqIuOlnndYUdlkq0aW8ZQKtLzUUlC6yE7IopOdn6pqdeRwyxWbrR2xTZ5KxgXOQ8BU3J6ZZS3oXgsWsGb1bg1w1nzabvpFLNpu-EZlv03fS4_pdr7h_nv_wPgNqIeQ
CitedBy_id crossref_primary_10_5194_hess_24_4541_2020
crossref_primary_10_1002_joc_7550
crossref_primary_10_1016_j_jhydrol_2022_128385
crossref_primary_10_1007_s12145_023_01188_0
crossref_primary_10_3390_atmos10090558
crossref_primary_10_1017_S0014479718000340
crossref_primary_10_3390_w13060807
crossref_primary_10_1007_s00704_022_03989_7
crossref_primary_10_1590_1678_4499_20230260
crossref_primary_10_1590_0102_77863720019
crossref_primary_10_1155_2023_5142965
crossref_primary_10_1590_1678_4499_20240029
crossref_primary_10_3390_atmos14081292
crossref_primary_10_1080_02626667_2023_2232348
crossref_primary_10_1590_1678_4499_2018144
crossref_primary_10_1590_1678_4499_20230128
crossref_primary_10_1080_07011784_2023_2183143
crossref_primary_10_1590_1678_4499_20220061
Cites_doi 10.1016/j.scitotenv.2016.06.031
10.1175/2008JCLI2249.1
10.1175/2010BAMS3103.1
10.1097/00010694-194807000-00007
10.1590/S0006-87052012005000004
10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2
10.1002/joc.3887
10.1002/joc.846
10.3923/ja.2015.80.86
10.1080/01621459.1967.10482916
10.1002/joc.4474
10.1002/joc.906
10.1590/1807-1929/agriambi.v19n12p1129-1135
10.1002/joc.4267
10.1007/s00477-011-0463-y
10.5194/hess-16-2143-2012
10.1080/01621459.1954.10501232
10.1061/(ASCE)HE.1943-5584.0000942
10.1590/S0006-87052012000100019
10.1175/JCLI3896.1
10.1002/joc.1371
10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
10.1590/1678-4499.478
10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2
10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2
10.1175/1520-0450(1975)014<1600:ANOTPM>2.0.CO;2
10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2
10.1175/JCLI-D-14-00707.1
10.1590/S0102-77862011000200001
10.1007/s00703-016-0461-1
10.5194/nhess-12-1481-2012
10.1175/2009JCLI2909.1
10.1590/brag.2014.015
10.1590/S0006-87052009000300030
10.18637/jss.v064.i04
10.1111/j.1752-1688.1999.tb03592.x
10.1175/MWR3326.1
10.1016/j.atmosres.2009.03.005
10.1016/B978-0-12-385022-5.00008-7
10.1002/joc.4564
10.1590/1678-4499.0127
10.1002/met.136
10.1590/S0006-87052000000200002
ContentType Journal Article
Copyright 2017 Royal Meteorological Society
2018 Royal Meteorological Society
Copyright_xml – notice: 2017 Royal Meteorological Society
– notice: 2018 Royal Meteorological Society
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/joc.5381
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1097-0088
EndPage e436
ExternalDocumentID 10_1002_joc_5381
JOC5381
Genre article
GrantInformation_xml – fundername: Government of the State of São Paulo
– fundername: FAPESP
  funderid: 2013/15434‐6
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c2931-d1ec6594aad8a5ef9c4c7267a4b873f97276efe4c8b972b0aabd4d18693e689f3
IEDL.DBID 33P
ISSN 0899-8418
IngestDate Tue Nov 19 05:54:36 EST 2024
Fri Nov 22 00:55:30 EST 2024
Sat Aug 24 00:47:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2931-d1ec6594aad8a5ef9c4c7267a4b873f97276efe4c8b972b0aabd4d18693e689f3
ORCID 0000-0001-8832-7734
PQID 2030182129
PQPubID 996368
PageCount 19
ParticipantIDs proquest_journals_2030182129
crossref_primary_10_1002_joc_5381
wiley_primary_10_1002_joc_5381_JOC5381
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of climatology
PublicationYear 2018
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2015; 35
2009; 68
2015; 14
2015; 19
2011
1967; 62
2009
2016; 75
1975; 14
2006; 19
1954; 49
1994
1993
2016; 566
2012; 16
2012; 12
1958
2016; 36
2010; 23
2007; 135
2015; 28
2000; 59
2012a; 71
2004; 17
2009; 93
2015; 64
2011; 92
2002; 22
1999; 35
1965
2017
2008; 21
2014; 19
2011; 26
2014
2013
2012b; 71
1948; 66
2014; 73
2005; 18
2014; 34
2009; 16
1998; 11
1994; 7
1967
2017; 129
2003; 23
2007; 27
e_1_2_5_27_1
Asquith WH (e_1_2_5_3_1) 2011
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
Panofsky HA (e_1_2_5_36_1) 1958
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
Cancelliere A (e_1_2_5_14_1) 2009
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
Kendall MG (e_1_2_5_28_1) 1967
e_1_2_5_51_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_43_1
Giddings L (e_1_2_5_22_1) 2005; 18
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Glantz MH (e_1_2_5_23_1) 1994
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – year: 2011
– volume: 17
  start-page: 47
  issue: 1
  year: 2004
  end-page: 66
  article-title: The South America monsoon circulation and its relationship to rainfall over west‐central Brazil
  publication-title: J. Clim.
– volume: 135
  start-page: 1151
  issue: 3
  year: 2007
  end-page: 1157
  article-title: A cautionary note on the use of the Kolmogorov–Smirnov test for normality
  publication-title: Mon. Weather Rev.
– volume: 19
  start-page: 4014010
  issue: 9
  year: 2014
  article-title: Comparison between parametric and nonparametric approaches for the calculation of two drought indices: SPI and SSI
  publication-title: J. Hydrol. Eng.
– volume: 21
  start-page: 6227
  year: 2008
  end-page: 6246
  article-title: The life cycle of the South American monsoon system
  publication-title: J. Clim.
– volume: 18
  start-page: 33
  issue: 1
  year: 2005
  end-page: 56
  article-title: Standardized precipitation index zones for México
  publication-title: Atmosfera
– volume: 12
  start-page: 1481
  year: 2012
  end-page: 1491
  article-title: Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal
  publication-title: Nat. Hazards Earth Syst.
– year: 1994
– year: 2014
– volume: 92
  start-page: 485
  issue: 4
  year: 2011
  end-page: 488
  article-title: The Lincoln declaration on drought indices: universal meteorological drought index recommended
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 129
  start-page: 157
  issue: 2
  year: 2017
  end-page: 171
  article-title: Rainfall variability over Alagoas under the influences of SST anomalies
  publication-title: Meteorol. Atmos. Phys.
– volume: 71
  start-page: 122
  issue: 1
  year: 2012a
  end-page: 131
  article-title: Monthly values of the standardized precipitation index in the state of São Paulo, Brazil: trends and spectral features under the normality assumption
  publication-title: Bragantia
– volume: 23
  start-page: 679
  issue: 6
  year: 2003
  end-page: 692
  article-title: Homogeneity of 20th century European daily temperature and precipitation series
  publication-title: Int. J. Climatol.
– volume: 62
  start-page: 399
  issue: 318
  year: 1967
  end-page: 402
  article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
– volume: 75
  start-page: 507
  year: 2016
  end-page: 521
  article-title: Increasing the regional availability of the standardized precipitation index: an operational approach
  publication-title: Bragantia
– year: 1965
– volume: 28
  start-page: 5430
  issue: 13
  year: 2015
  end-page: 5447
  article-title: Changes in drought characteristics over China using the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
– volume: 11
  start-page: 1020
  issue: 5
  year: 1998
  end-page: 1040
  article-title: Does a monsoon climate exist over South America?
  publication-title: J. Clim.
– volume: 566
  start-page: 1472
  year: 2016
  end-page: 1488
  article-title: When every drop counts: analysis of droughts in Brazil for the 1901–2013 period
  publication-title: Sci. Total Environ.
– volume: 71
  start-page: 132
  issue: 1
  year: 2012b
  end-page: 141
  article-title: Revisiting the probabilistic definition of drought: strengths, limitations and an agrometeorological adaptation
  publication-title: Bragantia
– volume: 14
  start-page: 80
  issue: 2
  year: 2015
  end-page: 86
  article-title: Analysis of the occurrence of wet and drought periods using standardized precipitation index in Mato Grosso Do Sul state, Brazil
  publication-title: J. Agron.
– volume: 35
  start-page: 311
  issue: 2
  year: 1999
  end-page: 322
  article-title: Accepting the standardized precipitation index: a calculation algorithm index
  publication-title: J. Am. Water Resour. Assoc.
– volume: 19
  start-page: 4977
  issue: 20
  year: 2006
  end-page: 5000
  article-title: Toward a unified view of the American monsoon systems
  publication-title: J. Clim.
– volume: 14
  start-page: 1600
  issue: 8
  year: 1975
  end-page: 1603
  article-title: A note on the possible misuse of the Kolmogorov–Smirnov test
  publication-title: J. Appl. Meteorol.
– year: 1993
– start-page: 14
  year: 2009
  end-page: 26
– volume: 36
  start-page: 2120
  issue: 4
  year: 2016
  end-page: 2131
  article-title: Comment on ‘candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge
  publication-title: Int. J. Climatol.
– volume: 16
  start-page: 381
  issue: 3
  year: 2009
  end-page: 389
  article-title: On the use of standardized precipitation index (SPI) for drought intensity assessment
  publication-title: Meteorol. Appl.
– volume: 27
  start-page: 65
  issue: 1
  year: 2007
  end-page: 79
  article-title: Appropriate application of the standardized precipitation index in arid locations and dry seasons
  publication-title: Int. J. Climatol.
– volume: 49
  start-page: 765
  issue: 268
  year: 1954
  end-page: 769
  article-title: A test of goodness of fit
  publication-title: J. Am. Stat. Assoc.
– year: 1958
– volume: 23
  start-page: 1696
  issue: 7
  year: 2010
  end-page: 1718
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
– volume: 36
  start-page: 2132
  issue: 4
  year: 2016
  end-page: 2138
  article-title: Response to comment on ‘candidate distributions for climatological drought indices (SPI and SPEI)’
  publication-title: Int. J. Climatol.
– volume: 22
  start-page: 1571
  issue: 13
  year: 2002
  end-page: 1592
  article-title: A drought climatology for Europe
  publication-title: Int. J. Climatol.
– volume: 66
  start-page: 77
  issue: 1
  year: 1948
  article-title: An approach toward a rational classification of climate
  publication-title: Soil Sci.
– volume: 68
  start-page: 807
  issue: 3
  year: 2009
  end-page: 815
  article-title: Análises estatísticas das tendências de elevação nas séries anuais de temperatura mínima do ar no estado de São Paulo
  publication-title: Bragantia
– volume: 35
  start-page: 4027
  year: 2015
  end-page: 4040
  article-title: Candidate distributions for climatological drought indices (SPI and SPEI)
  publication-title: Int. J. Climatol.
– volume: 34
  start-page: 3001
  issue: 10
  year: 2014
  end-page: 3023
  article-title: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring
  publication-title: Int. J. Climatol.
– volume: 59
  start-page: 125
  issue: 2
  year: 2000
  end-page: 137
  article-title: Uma revisão analítica da evapotranspiração potencial
  publication-title: Bragantia
– volume: 64
  start-page: 1
  issue: 4
  year: 2015
  end-page: 34
  article-title: Fitdistrplus: an R package for fitting distributions
  publication-title: J. Stat. Software
– volume: 73
  start-page: 192
  issue: 2
  year: 2014
  end-page: 202
  article-title: Revisiting the critical values of the Lilliefors test: towards the correct agrometeorological use of the Kolmogorov–Smirnov framework
  publication-title: Bragantia
– volume: 26
  start-page: 105
  issue: 1
  year: 2011
  end-page: 114
  article-title: Assessment of modified Anderson–Darling test statistics for the generalized extreme value and generalized logistic distributions
  publication-title: Stochastic Environ. Res. Risk Assess.
– year: 1967
– volume: 16
  start-page: 2143
  issue: 7
  year: 2012
  end-page: 2157
  article-title: Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 19
  start-page: 1129
  issue: 12
  year: 2015
  end-page: 1135
  article-title: Inadequacy of the gamma distribution to calculate the standardized precipitation index
  publication-title: Rev. Bras. Eng. Agríc. Ambiental
– volume: 73
  start-page: 327
  issue: 3
  year: 2014
  end-page: 334
  article-title: Climate trends in a non‐traditional high quality wine producing region
  publication-title: Bragantia
– volume: 93
  start-page: 759
  issue: 4
  year: 2009
  end-page: 766
  article-title: Is daily precipitation gamma‐distributed?: adverse effects of an incorrect use of the Kolmogorov–Smirnov test
  publication-title: Atmos. Res.
– volume: 26
  start-page: 167
  year: 2011
  end-page: 180
  article-title: Standardized precipitation index based on Pearson type III distribution
  publication-title: Rev. Bras. Meteorol.
– year: 2017
– volume: 7
  start-page: 1026
  issue: 6
  year: 1994
  end-page: 1029
  article-title: On the sensitivity of sample L moments to sample size
  publication-title: J. Clim.
– volume: 17
  start-page: 2335
  issue: 12
  year: 2004
  end-page: 2351
  article-title: A self‐calibrating palmer drought severity index
  publication-title: J. Clim.
– volume: 17
  start-page: 88
  issue: 1
  year: 2004
  end-page: 108
  article-title: The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall
  publication-title: J. Clim.
– year: 2013
– ident: e_1_2_5_4_1
  doi: 10.1016/j.scitotenv.2016.06.031
– ident: e_1_2_5_38_1
  doi: 10.1175/2008JCLI2249.1
– ident: e_1_2_5_27_1
  doi: 10.1175/2010BAMS3103.1
– ident: e_1_2_5_46_1
  doi: 10.1097/00010694-194807000-00007
– volume-title: Drought Follows the Plow: Cultivating Marginal Areas
  year: 1994
  ident: e_1_2_5_23_1
  contributor:
    fullname: Glantz MH
– ident: e_1_2_5_9_1
  doi: 10.1590/S0006-87052012005000004
– ident: e_1_2_5_25_1
  doi: 10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2
– ident: e_1_2_5_7_1
  doi: 10.1002/joc.3887
– ident: e_1_2_5_31_1
  doi: 10.1002/joc.846
– ident: e_1_2_5_45_1
  doi: 10.3923/ja.2015.80.86
– volume-title: Distributional Analysis With L‐Moment Statistics Using the R Environment for Statistical Computing
  year: 2011
  ident: e_1_2_5_3_1
  contributor:
    fullname: Asquith WH
– ident: e_1_2_5_30_1
  doi: 10.1080/01621459.1967.10482916
– ident: e_1_2_5_16_1
– ident: e_1_2_5_48_1
  doi: 10.1002/joc.4474
– ident: e_1_2_5_52_1
  doi: 10.1002/joc.906
– ident: e_1_2_5_12_1
  doi: 10.1590/1807-1929/agriambi.v19n12p1129-1135
– volume: 18
  start-page: 33
  issue: 1
  year: 2005
  ident: e_1_2_5_22_1
  article-title: Standardized precipitation index zones for México
  publication-title: Atmosfera
  contributor:
    fullname: Giddings L
– ident: e_1_2_5_42_1
  doi: 10.1002/joc.4267
– ident: e_1_2_5_39_1
  doi: 10.1007/s00477-011-0463-y
– ident: e_1_2_5_35_1
– ident: e_1_2_5_40_1
  doi: 10.5194/hess-16-2143-2012
– ident: e_1_2_5_24_1
– ident: e_1_2_5_2_1
  doi: 10.1080/01621459.1954.10501232
– ident: e_1_2_5_41_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000942
– ident: e_1_2_5_10_1
  doi: 10.1590/S0006-87052012000100019
– ident: e_1_2_5_47_1
  doi: 10.1175/JCLI3896.1
– ident: e_1_2_5_54_1
  doi: 10.1002/joc.1371
– volume-title: The Advanced Theory of Statistics
  year: 1967
  ident: e_1_2_5_28_1
  contributor:
    fullname: Kendall MG
– ident: e_1_2_5_15_1
  doi: 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
– ident: e_1_2_5_34_1
  doi: 10.1590/1678-4499.478
– ident: e_1_2_5_21_1
  doi: 10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2
– ident: e_1_2_5_51_1
  doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2
– ident: e_1_2_5_18_1
  doi: 10.1175/1520-0450(1975)014<1600:ANOTPM>2.0.CO;2
– ident: e_1_2_5_55_1
  doi: 10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2
– ident: e_1_2_5_17_1
  doi: 10.1175/JCLI-D-14-00707.1
– ident: e_1_2_5_8_1
  doi: 10.1590/S0102-77862011000200001
– ident: e_1_2_5_32_1
  doi: 10.1007/s00703-016-0461-1
– ident: e_1_2_5_37_1
  doi: 10.5194/nhess-12-1481-2012
– ident: e_1_2_5_49_1
  doi: 10.1175/2009JCLI2909.1
– ident: e_1_2_5_11_1
  doi: 10.1590/brag.2014.015
– ident: e_1_2_5_13_1
  doi: 10.1590/S0006-87052009000300030
– ident: e_1_2_5_20_1
  doi: 10.18637/jss.v064.i04
– ident: e_1_2_5_33_1
– ident: e_1_2_5_26_1
  doi: 10.1111/j.1752-1688.1999.tb03592.x
– ident: e_1_2_5_44_1
  doi: 10.1175/MWR3326.1
– ident: e_1_2_5_50_1
  doi: 10.1016/j.atmosres.2009.03.005
– volume-title: Some Applications of Statistics to Meteorology
  year: 1958
  ident: e_1_2_5_36_1
  contributor:
    fullname: Panofsky HA
– ident: e_1_2_5_6_1
– ident: e_1_2_5_53_1
  doi: 10.1016/B978-0-12-385022-5.00008-7
– start-page: 14
  volume-title: Proceedings of the 29th Annual American Geophysical Union Hydrology Days 2009
  year: 2009
  ident: e_1_2_5_14_1
  contributor:
    fullname: Cancelliere A
– ident: e_1_2_5_43_1
  doi: 10.1002/joc.4564
– ident: e_1_2_5_5_1
  doi: 10.1590/1678-4499.0127
– ident: e_1_2_5_29_1
  doi: 10.1002/met.136
– ident: e_1_2_5_19_1
  doi: 10.1590/S0006-87052000000200002
SSID ssj0009916
Score 2.3804195
Snippet ABSTRACT Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying...
Enhancing the capability of both standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for quantifying wet and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e418
SubjectTerms Algorithms
Climatic conditions
Distribution
Drought
Drought and floods
Drought index
Errors
Evapotranspiration
Evapotranspiration-precipitation relationships
Extreme values
Methods
Normal distribution
Normality
Parameter estimation
Parameters
Precipitation
Probability theory
Rainfall
standardized precipitation evapotranspiration index
Standardized precipitation index
Statistical analysis
Test procedures
trade‐off
Tropical climate
Weather stations
Title Using the normality assumption to calculate probability‐based standardized drought indices: selection criteria with emphases on typical events
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.5381
https://www.proquest.com/docview/2030182129
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UkxffYrXKCOIttkk2ycabVIsIPkAFb2GfoEhbmnjQkz-hv9Ff4symsXoQBE9JILsJOzM738zufsPYgeWZjpPQBc7EKiDCrkCkOQ9cV4Uu55kLLQWK57fZ1YM4PSOanOPmLEzND_GVcCPL8PM1GbhUZWdGGvo01EdorRT5YJDgT2_ENzO-3dxXPaVFrUDwUDS8s92o0zT86Ylm8PI7SPVepr_8n_9bYUtTbAkntTKssjk7WGOtS4TFw7HPnsMh9J4fEaP6p3U28RsGADEgDAi7EiQHRNMoYpIXVENAEdJO1coClZ6pSb1fP94n5P0MNImIxzd8ML7iTwW0Co6zzzGUvsYOdYRTE3FCS6C0L1jUIGxeAn3idURqAp5Iqtxg9_2zu955MC3REGjECWFgQqvTJOdSGiET63LNdRalmeRKZLHLER2l1lmuhcJ71ZVSGW6oDFZsU5G7eJMtDIYDu8UAI1GrEtmNLMZ4WitCEs5gPzaMZMRNi-034ipGNRNHUXMuRwWOdUFj3WLtRo7F1BbLIqKoT6CLzlvs0Evs1_bFxXWPrtt_fXGHLSKCEvVWnjZbqMYvdpfNl-Zlz-vjJ3ZA6FA
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58HPTiW6xWHUG8RZtkm2z0JNVStVXBCt7CZh-gSCumHvTkT-hv9Jc4s2msHgTBUxLIbsLOzM43s7vfMLZreKzCum89q8PMI8IuT0QJ92wt823CY-sbChRbN_HlnTg5JZqco_IsTMEP8ZVwI8tw8zUZOCWkD8asoQ99tY_miqHPNI9QD-n8Rng9ZtxNXN1TWtbyBPdFyTxbCw7Klj990Rhgfoepzs805__1hwtsbgQv4bjQh0U2YXpLrNJBZNx_dgl02IPG4z3CVPe0zIZuzwAgDIQewVdC5YCAGqVMIoNBH1CKtFl1YICqzxS83q8f70NygBrKXMT9Gz5oV_RnALQQjhPQIeSuzA51hLMT0UJLoMwvGFQibJ4DfeL1iTQFHJdUvsJum6fdRssbVWnwFEIF39O-UVE94VJqIevGJoqrOIhiyTMRhzZBgBQZa7gSGd5nNSkzzTVVwgpNJBIbrrKpXr9n1hhgMGqyuqwFBsM8pTICE1ZjP8YPZMB1he2U8kqfCjKOtKBdDlIc65TGusKqpSDTkTnmaUCBn0AvnVTYnhPZr-3T86sGXdf_-uI2m2l1O-20fXZ5scFmEVCJYmdPlU0Nnl_MJpvM9cuWU85PD4rseA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58gHjxLdbnCNJbbJNsk403qZb6qoIK3sJmH6BIW0x7qCd_gr_RX-LMprF6EARPyUJ2E3Zmdr6Z3XzD2IHhsQobvvWsDjOPCLs8ESXcs_XMtwmPrW8oUGzfxp0HcXJKNDlH5b8wBT_EV8KNLMOt12TgfW1rE9LQp546RGvFyGeWIwon3vwwvJkQ7iau7CntanmC-6Iknq0HtbLnT1c0wZffUapzM63F_3zgElsYg0s4LrRhmU2Z7gqrXCEu7r249DlUofn8iCDVtVbZuzsxAAgCoUvglTA5IJxGGZPAYNADlCEdVR0YoNozBav36OPtndyfhjIT8fiKDe1K_gyAtsFx-TmC3BXZoYFwbSJSaAmU9wWDKoTdc6BXjPqkJ-CYpPI1dt86vWu2vXGNBk8hUPA97RsVNRIupRayYWyiuIqDKJY8E3FoE4RHkbGGK5HhfVaXMtNcUx2s0EQiseE6m-n2umaDAYaiJmvIemAwyFMqIyhhNY5j_EAGXFfYfimutF9QcaQF6XKQ4lynNNcVtl3KMR0bY54GFPYJ9NFJhVWdxH7tn55fN-m6-dcH99jczUkrvTzrXGyxeURTojjWs81mBi9Ds8Omcz3cdar5CVP66x4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+normality+assumption+to+calculate+probability%E2%80%90based+standardized+drought+indices%3A+selection+criteria+with+emphases+on+typical+events&rft.jtitle=International+journal+of+climatology&rft.au=Blain%2C+Gabriel+Constantino&rft.au=de+Avila%2C+Ana+Maria+H.&rft.au=Pereira%2C+V%C3%A2nia+Rosa&rft.date=2018-04-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=38&rft.spage=e418&rft.epage=e436&rft_id=info:doi/10.1002%2Fjoc.5381&rft.externalDBID=10.1002%252Fjoc.5381&rft.externalDocID=JOC5381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon