Enhancing vinyl ester properties with eco‐friendly sustainable biochar filler

Biomass and other biogenic wastes can be used in polymeric materials, allowing for effective waste utilization. Thus, these materials can be converted into biochar and used in composite fabrication. Biochar was used in the current study to improve the mechanical and thermal properties of vinyl ester...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites Vol. 44; no. 12; pp. 8344 - 8352
Main Authors: Rajamani, Pradeep, Veerasimman, Arumugaprabu, Palani, Geetha, Shanmugam, Vigneshwaran, Rajendran, Sundarakannan, Subbaiah, Ajith, G B, Rameshkumar
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-12-2023
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biomass and other biogenic wastes can be used in polymeric materials, allowing for effective waste utilization. Thus, these materials can be converted into biochar and used in composite fabrication. Biochar was used in the current study to improve the mechanical and thermal properties of vinyl ester‐based composites. Waste cashew nut shells were converted into biochar via a slow pyrolysis method. Biochar was added at three different levels (5, 10 and 15 wt.%). Composite with 10 wt.% biochar showed ca.72% and ca.54% higher tensile strength and hardness than the neat vinyl ester. The composite containing 15 wt.% biochar showed the highest impact and flexural strength of ca.47 MPa and ca.13 kJ/m2 respectively. The thermo‐gravimetric study showed that the composites with 15 wt.% added biochar performed better than the others, with a yield percentage of ca.45%. This study provides a summary of biochar applications and highlights the advantages of biomass wastes with respect to energy and environmental sustainability for the production of strong and thermally stable composites. Processing of Cashew Nut Shell Biochar
AbstractList Biomass and other biogenic wastes can be used in polymeric materials, allowing for effective waste utilization. Thus, these materials can be converted into biochar and used in composite fabrication. Biochar was used in the current study to improve the mechanical and thermal properties of vinyl ester‐based composites. Waste cashew nut shells were converted into biochar via a slow pyrolysis method. Biochar was added at three different levels (5, 10 and 15 wt.%). Composite with 10 wt.% biochar showed ca.72% and ca.54% higher tensile strength and hardness than the neat vinyl ester. The composite containing 15 wt.% biochar showed the highest impact and flexural strength of ca.47 MPa and ca.13 kJ/m2 respectively. The thermo‐gravimetric study showed that the composites with 15 wt.% added biochar performed better than the others, with a yield percentage of ca.45%. This study provides a summary of biochar applications and highlights the advantages of biomass wastes with respect to energy and environmental sustainability for the production of strong and thermally stable composites. Processing of Cashew Nut Shell Biochar
Biomass and other biogenic wastes can be used in polymeric materials, allowing for effective waste utilization. Thus, these materials can be converted into biochar and used in composite fabrication. Biochar was used in the current study to improve the mechanical and thermal properties of vinyl ester‐based composites. Waste cashew nut shells were converted into biochar via a slow pyrolysis method. Biochar was added at three different levels (5, 10 and 15 wt.%). Composite with 10 wt.% biochar showed ca.72% and ca.54% higher tensile strength and hardness than the neat vinyl ester. The composite containing 15 wt.% biochar showed the highest impact and flexural strength of ca.47 MPa and ca.13 kJ/m2 respectively. The thermo‐gravimetric study showed that the composites with 15 wt.% added biochar performed better than the others, with a yield percentage of ca.45%. This study provides a summary of biochar applications and highlights the advantages of biomass wastes with respect to energy and environmental sustainability for the production of strong and thermally stable composites.
Biomass and other biogenic wastes can be used in polymeric materials, allowing for effective waste utilization. Thus, these materials can be converted into biochar and used in composite fabrication. Biochar was used in the current study to improve the mechanical and thermal properties of vinyl ester‐based composites. Waste cashew nut shells were converted into biochar via a slow pyrolysis method. Biochar was added at three different levels (5, 10 and 15 wt.%). Composite with 10 wt.% biochar showed ca.72% and ca.54% higher tensile strength and hardness than the neat vinyl ester. The composite containing 15 wt.% biochar showed the highest impact and flexural strength of ca.47 MPa and ca.13 kJ/m 2 respectively. The thermo‐gravimetric study showed that the composites with 15 wt.% added biochar performed better than the others, with a yield percentage of ca.45%. This study provides a summary of biochar applications and highlights the advantages of biomass wastes with respect to energy and environmental sustainability for the production of strong and thermally stable composites.
Author Subbaiah, Ajith
Rajendran, Sundarakannan
Rajamani, Pradeep
Palani, Geetha
Veerasimman, Arumugaprabu
G B, Rameshkumar
Shanmugam, Vigneshwaran
Author_xml – sequence: 1
  givenname: Pradeep
  surname: Rajamani
  fullname: Rajamani, Pradeep
  organization: Vaigai College of Engineering
– sequence: 2
  givenname: Arumugaprabu
  orcidid: 0000-0002-5124-1336
  surname: Veerasimman
  fullname: Veerasimman, Arumugaprabu
  email: v.arumugaprabu@klu.ac.in
  organization: Kalasalingam Academy of Research and Education
– sequence: 3
  givenname: Geetha
  surname: Palani
  fullname: Palani, Geetha
  organization: Saveetha Institute of Medical and Technical Sciences
– sequence: 4
  givenname: Vigneshwaran
  surname: Shanmugam
  fullname: Shanmugam, Vigneshwaran
  organization: Saveetha Institute of Medical and Technical Sciences
– sequence: 5
  givenname: Sundarakannan
  orcidid: 0000-0001-8580-411X
  surname: Rajendran
  fullname: Rajendran, Sundarakannan
  email: sundarakannan.r@gmail.com
  organization: Saveetha Institute of Medical and Technical Sciences
– sequence: 6
  givenname: Ajith
  surname: Subbaiah
  fullname: Subbaiah, Ajith
  organization: GSFC University
– sequence: 7
  givenname: Rameshkumar
  surname: G B
  fullname: G B, Rameshkumar
  organization: Saveetha Institute of Medical and Technical Sciences
BookMark eNp10MtKAzEUBuAgFWyr4CME3LiZmmRuyVJKvUChLnQdMpkTmxIzYzK1zM5H8Bl9EqeOWzmLs_k45-efoYlvPCB0ScmCEsJuWr1gZUnICZrSPOMJyQsxQVPCSpbwVJRnaBbjbpC0KNIp2qz8Vnlt_Sv-sL53GGIHAbehaSF0FiI-2G6LQTffn18mWPC163Hcx05ZryoHuLKN3qqAjXUOwjk6NcpFuPjbc_Ryt3pePiTrzf3j8nadaCZSkqRpXqhhqkJQXdGal0wJyo02lDFQGRG50FxVWaoqqGtTAXBuDDNGZUIUZTpHV-PdIen7fggtd80--OGlZFwIVtCcH9X1qHRoYgxgZBvsmwq9pEQe65Ktlr91DTQZ6cE66P918mk5-h_dc27r
CitedBy_id crossref_primary_10_1007_s13399_024_05695_y
crossref_primary_10_1016_j_clet_2023_100718
crossref_primary_10_1007_s10751_024_01928_8
Cites_doi 10.1016/j.jclepro.2020.124109
10.1080/10643389.2020.1713030
10.1016/j.scp.2019.100204
10.3390/polym12071518
10.1002/pc.25895
10.1016/j.polymertesting.2018.12.008
10.1002/mame.202100323
10.1007/s13399-023-04193-x
10.1039/c3ee42783h
10.1016/j.scitotenv.2016.01.062
10.1016/j.jcomc.2022.100274
10.1016/j.mtcomm.2021.102912
10.1515/pac-2015-0603
10.1016/j.polymertesting.2019.105987
10.1016/j.indcrop.2012.10.017
10.1016/j.rser.2021.112054
10.1007/s11104-009-0050-x
10.1080/1023666X.2016.1168602
10.4028/www.scientific.net/AMM.390.567
10.2174/1573411013666171003155624
10.1016/j.compositesb.2016.09.020
10.1007/s13399-022-03612-9
10.1002/ep.13116
10.1021/acsomega.9b01771
10.1007/s00289-019-02779-y
10.1016/j.compositesb.2021.109169
10.1016/j.dib.2019.104073
10.1088/2053-1591/ab6197
10.1016/j.compositesa.2018.08.006
10.1590/01047760201723042373
10.1007/s00289-019-02878-w
10.1016/j.scitotenv.2020.139910
ContentType Journal Article
Copyright 2023 Society of Plastics Engineers.
2023 Society of Plastics Engineers
Copyright_xml – notice: 2023 Society of Plastics Engineers.
– notice: 2023 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.27700
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 8352
ExternalDocumentID 10_1002_pc_27700
PC27700
Genre researchArticle
GroupedDBID .-4
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8AO
8FE
8FG
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHFT
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KB.
KC.
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2P
M2Q
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
S0X
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2930-3356a6a6b691cb1d872a918fcf122ea40959c8ab43abeddfbee88ff2ffa499673
IEDL.DBID 33P
ISSN 0272-8397
IngestDate Tue Nov 19 06:52:48 EST 2024
Thu Nov 21 22:46:23 EST 2024
Sat Aug 24 00:44:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-3356a6a6b691cb1d872a918fcf122ea40959c8ab43abeddfbee88ff2ffa499673
ORCID 0000-0002-5124-1336
0000-0001-8580-411X
PQID 2899261587
PQPubID 37365
PageCount 9
ParticipantIDs proquest_journals_2899261587
crossref_primary_10_1002_pc_27700
wiley_primary_10_1002_pc_27700_PC27700
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2019; 4
2010; 327
2013; 44
2020; 42
2019; 74
2021; 224
2021; 29
2019; 78
2021; 306
2017; 23
2019; 38
2020; 15
2016; 106
2020; 12
2020; 77
2021; 51
2022; 158
2020; 6
2023
2022
2022; 8
2018; 114
2019; 25
2016; 21
2016; 550
2020; 277
2013; 390
2014; 7
2021; 1051
2018; 14
2020; 738
2016; 88
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Bong CPC (e_1_2_9_23_1) 2021
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 25
  year: 2019
  article-title: Dataset on the effect of hardwood biochar on soil gravimetric moisture content and nitrate dynamics at different soil depths with FTIR analysis of fresh and aged biochar
  publication-title: Data Brief Aug
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 23
  start-page: 529
  issue: 4
  year: 2017
  end-page: 536
  article-title: Different plant biomass characterizations for biochar production
  publication-title: Cerne
– volume: 15
  year: 2020
  article-title: Effect of carbon‐rich biochar on mechanical properties of PLA‐biochar composites
  publication-title: Sustain Chem Pharm
– volume: 21
  start-page: 462
  issue: 6
  year: 2016
  end-page: 477
  article-title: Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate‐reinforced polymer nanocomposites
  publication-title: Int J Polym Anal Charact
– volume: 12
  start-page: 1518
  issue: 7
  year: 2020
  article-title: A review on the flammability properties of carbon‐based polymeric composites: state‐of‐the‐art and future trends
  publication-title: Polymers
– volume: 14
  start-page: 203
  issue: 3
  year: 2018
  end-page: 225
  article-title: Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review
  publication-title: Curr Anal Chem
– start-page: 1
  year: 2022
  end-page: 16
  article-title: Mechanical and erosion performance of sugarcane biochar‐reinforced polymer composites
  publication-title: Biomass Conv Bioref
– volume: 550
  start-page: 133
  year: 2016
  end-page: 142
  article-title: Characterisation of waste derived biochar added bio composites: chemical and thermal modifications
  publication-title: Sci Total Environ
– volume: 77
  start-page: 805
  year: 2020
  end-page: 821
  article-title: Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO particles
  publication-title: Polym Bull
– year: 2023
  article-title: The development and multifunctional characterization of cashew (Anacardiumoccidentale) nutshell biochar reinforced vinyl ester composites for sustainable management
  publication-title: Biomass Conv Bioref
– volume: 224
  year: 2021
  article-title: Multiscale collaborative coupling of wood‐derived porous carbon modified by three‐dimensional conductive magnetic networks for electromagnetic interference shielding
  publication-title: Compos Part B Eng
– volume: 277
  year: 2020
  article-title: Recent advancement in the natural fiber polymer composites: a comprehensive review
  publication-title: J Clean Prod
– volume: 74
  start-page: 7
  year: 2019
  end-page: 13
  article-title: Mechanical, structural, thermal and morphological properties of a protein (fish scale)‐based bisphenol‐a composites
  publication-title: Polym Test
– volume: 390
  start-page: 567
  year: 2013
  end-page: 573
– volume: 51
  start-page: 219
  issue: 3
  year: 2021
  end-page: 271
  article-title: Progress and future prospects in biochar composites: application and reflection in the soil environment
  publication-title: Crit Rev Environ Sci Technol
– volume: 29
  year: 2021
  article-title: The physicochemical properties of bio‐char and its applicability as a filler in rubber composites: a review
  publication-title: Mater Today Commun
– volume: 4
  start-page: 20476
  issue: 24
  year: 2019
  end-page: 20485
  article-title: Hybrid green nanocomposites of bio‐based poly (butylene succinate) reinforced with pyrolyzed perennial grass microparticles and graphene nanoplatelets
  publication-title: ACS Omega
– volume: 78
  year: 2019
  article-title: The effects of sintering on the properties of epoxy composites reinforced with chicken bone‐based hydroxyapatites
  publication-title: Polym Test
– volume: 738
  year: 2020
  article-title: Production of high‐density polyethylene bio composites from rice husk biochar: effects of varying pyrolysis temperature
  publication-title: Sci Total Environ
– volume: 8
  year: 2022
  article-title: Biochar from food waste is a sustainable replacement for carbon black in up‐cycled or compostable composites
  publication-title: Compos Part C: Open Access
– volume: 88
  start-page: 17
  issue: 1–2
  year: 2016
  end-page: 27
  article-title: From cashew nut shell wastes to high‐value chemicals
  publication-title: Pure Appl Chem
– volume: 7
  start-page: 1110
  year: 2014
  end-page: 1116
  article-title: A. K. an in situ graphite‐grafted alkaline iron electrode for iron‐based accumulators
  publication-title: Energ Environ Sci
– volume: 1051
  year: 2021
– volume: 44
  start-page: 18
  year: 2013
  end-page: 24
  article-title: Biochar production from waste rubber‐wood‐sawdust and its potential use in C sequestration: chemical and physical characterization
  publication-title: Ind Crops Products
– volume: 114
  start-page: 49
  year: 2018
  end-page: 71
  article-title: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review
  publication-title: Compos A: Appl Sci Manuf
– volume: 38
  issue: 4
  year: 2019
  article-title: Analytical characterization of the aeglemarmelos pyrolysis products and investigation on the suitability of bio‐oil as a third generation bio‐fuel for CI engine
  publication-title: Environ Prog Sustain Energy
– volume: 6
  issue: 12
  year: 2020
  article-title: Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix
  publication-title: Mater Res Exp
– volume: 77
  start-page: 2573
  year: 2020
  end-page: 2589
  article-title: Mechanical and thermal properties of snail shell particles‐reinforced bisphenol‐a bio‐composites
  publication-title: Polym Bull
– volume: 306
  issue: 11
  year: 2021
  article-title: Spent coffee grounds as property enhancing filler in a wholly bio‐based epoxy resin
  publication-title: Macromol Mater Eng
– volume: 106
  start-page: 120
  year: 2016
  end-page: 128
  article-title: Mechanical and flammability characterizations of biochar/polypropylene bio composites
  publication-title: Compos Part B Eng
– volume: 158
  year: 2022
  article-title: Natural and industrial wastes for sustainable and renewable polymer composites
  publication-title: Renew Sustain Energy Rev
– volume: 42
  start-page: 1224
  year: 2020
  end-page: 1234
  article-title: Mechanical and thermal properties of fishbone‐based epoxy composites: the effects of thermal treatment
  publication-title: Polym Compos
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jclepro.2020.124109
– ident: e_1_2_9_31_1
  doi: 10.1080/10643389.2020.1713030
– start-page: 12075
  volume-title: IOP Conference Series: Materials Science and Engineering
  year: 2021
  ident: e_1_2_9_23_1
  contributor:
    fullname: Bong CPC
– ident: e_1_2_9_10_1
  doi: 10.1016/j.scp.2019.100204
– ident: e_1_2_9_15_1
  doi: 10.3390/polym12071518
– ident: e_1_2_9_34_1
  doi: 10.1002/pc.25895
– ident: e_1_2_9_12_1
  doi: 10.1016/j.polymertesting.2018.12.008
– ident: e_1_2_9_29_1
  doi: 10.1002/mame.202100323
– ident: e_1_2_9_18_1
  doi: 10.1007/s13399-023-04193-x
– ident: e_1_2_9_24_1
  doi: 10.1039/c3ee42783h
– ident: e_1_2_9_21_1
  doi: 10.1016/j.scitotenv.2016.01.062
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jcomc.2022.100274
– ident: e_1_2_9_11_1
  doi: 10.1016/j.mtcomm.2021.102912
– ident: e_1_2_9_9_1
  doi: 10.1515/pac-2015-0603
– ident: e_1_2_9_8_1
  doi: 10.1016/j.polymertesting.2019.105987
– ident: e_1_2_9_27_1
  doi: 10.1016/j.indcrop.2012.10.017
– ident: e_1_2_9_30_1
  doi: 10.1016/j.rser.2021.112054
– ident: e_1_2_9_14_1
  doi: 10.1007/s11104-009-0050-x
– ident: e_1_2_9_7_1
  doi: 10.1080/1023666X.2016.1168602
– ident: e_1_2_9_17_1
  doi: 10.4028/www.scientific.net/AMM.390.567
– ident: e_1_2_9_2_1
  doi: 10.2174/1573411013666171003155624
– ident: e_1_2_9_33_1
  doi: 10.1016/j.compositesb.2016.09.020
– ident: e_1_2_9_6_1
  doi: 10.1007/s13399-022-03612-9
– ident: e_1_2_9_20_1
  doi: 10.1002/ep.13116
– ident: e_1_2_9_28_1
  doi: 10.1021/acsomega.9b01771
– ident: e_1_2_9_4_1
  doi: 10.1007/s00289-019-02779-y
– ident: e_1_2_9_13_1
  doi: 10.1016/j.compositesb.2021.109169
– ident: e_1_2_9_25_1
  doi: 10.1016/j.dib.2019.104073
– ident: e_1_2_9_3_1
  doi: 10.1088/2053-1591/ab6197
– ident: e_1_2_9_16_1
  doi: 10.1016/j.compositesa.2018.08.006
– ident: e_1_2_9_26_1
  doi: 10.1590/01047760201723042373
– ident: e_1_2_9_19_1
  doi: 10.1007/s00289-019-02878-w
– ident: e_1_2_9_22_1
  doi: 10.1016/j.scitotenv.2020.139910
SSID ssj0021663
Score 2.4230795
Snippet Biomass and other biogenic wastes can be used in polymeric materials, allowing for effective waste utilization. Thus, these materials can be converted into...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 8344
SubjectTerms Biomass
Composite fabrication
Composite materials
Flexural strength
mechanical properties
polymer composites
Pyrolysis
SEM analysis
sustainable biochar
Tensile strength
Thermal stability
Thermodynamic properties
Waste utilization
Wastes
Title Enhancing vinyl ester properties with eco‐friendly sustainable biochar filler
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.27700
https://www.proquest.com/docview/2899261587
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA3akx78FqtVIoi3td3sRxJvUls8aUEFbyHJTrQg26Vrhd78Cf5Gf4lJttvWgyBIDntJYBlmMvOGvDcInWUQKeBaBtZjTBAb68aSJmnAbTqXHDomBj864Z7ePrHrnpPJuay5MJU-xLzh5iLD39cuwKUq2wvR0EJfEEo7Dq5bkODZG9FgjrXCtBqiRqgNeJtza93ZDmnXB39mokV5uVyk-izT3_zP_22hjVltia8qZ9hGK5DvoPUlxcFddNfLX5zCRv6M34f59BV7oQRcuJb82GmrYteYxRaTfn18GqeBnL1OcblgWWE1HDmmFjaeRLiHHvu9h-5NMJupEGib2O2VGyWptEulPNQqzBglkofMaBMSAjJ2bUHNpIojqSDLjAJgzBhijLTYKKXRPmrkoxwO3KOoNDEyAgIWcjEOkiiuaQa2YtSh0qyJTmv7iqKSzhCVSDIRhRbeOE3Uqg0vZsFTCocBLbBLGG2ic2_iX8-LQdd_D_-68QituYHx1YOUFmq8jSdwjFbLbHLiHegbJCrJOw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA1aD-rBb7FaNYJ4W7ub_UgWT1JbKtZasIK3kGQTLZTt0lqhN3-Cv9FfYpLttvUgCJLDXhJYhpnMvCHvDQDnifS5jAVztMcoJ1DajRkOIyfW6ZzF0lWBtKMTHnH7mdzUjUzOVcGFyfUhZg03Exn2vjYBbhrS1blqaCYuEcauxusrQaT90PA3_M4MbXlRPkYNYR3yOusWyrMuqhYnf-aieYG5WKbaPNPY_NcfboGNaXkJr3N_2AZLMt0B6wuig7vgoZ6-GpGN9AW-99JJH1qtBJiZrvzQyKtC05uFGpZ-fXwqI4Oc9CdwNCdaQd4bGLIWVJZHuAeeGvVurelMxyo4Qud2fev6YcT04lHsCe4lBCMWe0QJ5SEkWWA6g4IwHviMyyRRXEpClEJKMQ2PIuzvg1I6SOWBeRcVhYr5EkmNukgsGeKxwInURaPwuCBlcFYYmGa5egbNdZIRzQS1ximDSmF5Oo2fETUwUGO7kOAyuLA2_vU87dTs9_CvG0_BarN736Kt2_bdEVgz8-Pz9ykVUHobjuUxWB4l4xPrTd_mvs1j
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeDVhA9-BarVSOIt7Xd7CNZb9IHilILKngLedZC2S6tFXrzI_gZ_SQm2W5bD4Ige9jLBpZhJjP_kPkNAOdSBVwlgnnGY7QXauPGDEexl5h0zhJV06FyoxMecfuFNJoWk3NV9MLkfIjZgZuNDLdf2wDPpK7OoaGZuEQY14xcXwlNFW65-UHQmYktP86nqCFsIt4k3QI8W0PVYuXPVDSvLxerVJdmWpv_-cEtsDEtLuF17g3bYEmlO2B9ATm4Cx6a6atFbKRd-N5LJ33oSAkws2fyQwtXhfZkFhpR-vXxqS0EWfYncDRvs4K8N7CtWlC7LsI98NxqPtVvvOlQBU-YzG723CCKmXl4nPiC-5JgxBKfaKF9hBQL7bmgIIyHAeNKSs2VIkRrpDUz4ijGwT4opYNUHdhbUXGkWaCQMpqLJIohnggslSkZhc8FKYOzwr40y9kZNKckI5oJ6oxTBpXC8HQaPSNqRaBRdhHBZXDhTPzretqpu_fhXz88BaudRove37bvjsCaHR6fX06pgNLbcKyOwfJIjk-cL30DmHnMCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+vinyl+ester+properties+with+eco%E2%80%90friendly+sustainable+biochar+filler&rft.jtitle=Polymer+composites&rft.au=Rajamani%2C+Pradeep&rft.au=Veerasimman%2C+Arumugaprabu&rft.au=Palani%2C+Geetha&rft.au=Shanmugam%2C+Vigneshwaran&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=44&rft.issue=12&rft.spage=8344&rft.epage=8352&rft_id=info:doi/10.1002%2Fpc.27700&rft.externalDBID=10.1002%252Fpc.27700&rft.externalDocID=PC27700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon