Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers

Green peppers (Capsicum annuum L.) are a fruit vegetable with great culinary versatility and present important nutritional properties for human health. Water deficit negatively affects the nutritional quality of green peppers’ fruits. This study aimed to investigate the influence of zinc oxide nanop...

Full description

Saved in:
Bibliographic Details
Published in:Horticulturae Vol. 10; no. 9; p. 969
Main Authors: Martins, Bruna Lorrane Rosendo, Ferreira, Kaikí Nogueira, Rocha, Josinaldo Lopes Araujo, Araujo, Railene Hérica Carlos Rocha, Lopes, Guilherme, Santos, Leônidas Canuto dos, Bezerra Neto, Francisco, Sá, Francisco Vaniés da Silva, Silva, Toshik Iarley da, da Silva, Whashington Idalino, de Lima, Geovani Soares, Paiva, Francisco Jean da Silva, Santos, José Zilton Lopes
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green peppers (Capsicum annuum L.) are a fruit vegetable with great culinary versatility and present important nutritional properties for human health. Water deficit negatively affects the nutritional quality of green peppers’ fruits. This study aimed to investigate the influence of zinc oxide nanoparticles (ZnONPs), associated with plant growth-promoting bacteria (PGPB), on the post-harvest nutritional quality of green peppers subjected to water deficit. In an open-field experiment, two irrigation levels (50 and 100% of crop evapotranspiration (Etc)), four treatments composed of a combination of ZnONPs, zinc sulfate (ZnSO4), and PGPB (T1 = ZnSO4 via leaves, T2 = ZnONPs via leaves, T3 = ZnONPs via leaves + PGPB via soil, T4 = ZnSO4 via soil + PGPB via soil), and a control treatment (Control) were tested. Water deficit or water deficit mitigation treatments did not interfere with the physical–chemical parameters (except vitamin C content) and physical color parameters (except the lightness) of green peppers. On average, the water deficit reduced the levels of Ca (−13.2%), Mg (−8.5%), P (−8.5%), K (−8.6%), Mn (−10.5%), Fe (−12.2%), B (−12.0%), and Zn (−11.5%) in the fruits. Under the water deficit condition, ZnONPs or ZnSO4 via foliar, associated or not with PGPB, increased the levels of Ca (+57% in the T2 and +69.0% in the T2), P, Mg, and Fe in the fruits. At 50% Etc, the foliar application of ZnONPs in association with PGPB increases vitamin C and mineral nutrients’ contents and nutritional quality index (+12.0%) of green peppers. Applying Zn via foliar as ZnONPs or ZnSO4 mitigated the negative effects of water deficit on the quality of pepper fruits that were enhanced by the Bacillus subtilis and B. amyloliquefaciens inoculation. The ZnONPs source was more efficient than the ZnSO4 source. The water deficit alleviating effect of both zinc sources was enhanced by the PGPB.
ISSN:2311-7524
2311-7524
DOI:10.3390/horticulturae10090969