Energy and Structure of the Terbium Domain Wall
The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described method is theoretical and is based on experimental measurements of neutron inelastic scattering. The domain wall energy is determined by both fin...
Saved in:
Published in: | Metals (Basel ) Vol. 14; no. 8; p. 866 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described method is theoretical and is based on experimental measurements of neutron inelastic scattering. The domain wall energy is determined by both finding the minimum of energy and deriving the energy and setting it to zero. The determination was undertaken for the discrete case, and this means that the calculation was performed for each plane or atomic layer. This is in contrast with the Bloch wall, which assumes continuum mean. The energy of the Lilley domain wall was discussed. Most of the energy of the Bloch wall was comprised inside the Lilley distance (above 99.9% of the energy). Antiferromagnetic interactions strongly decreased the domain wall energy. The negative terms due to antiferromagnetism must be considered in the Hamiltonian describing the exchange energy terms. The domain wall energy and width of terbium were reassessed. The values varied between 83.7 and 95.2 Kelvin (10.3 to 11.2 ergs/cm2). The domain width was estimated to be 57 Angstroms. It was found that a significant part of the total domain wall energy was concentrated on the planes at the center of the domain wall. |
---|---|
AbstractList | The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described method is theoretical and is based on experimental measurements of neutron inelastic scattering. The domain wall energy is determined by both finding the minimum of energy and deriving the energy and setting it to zero. The determination was undertaken for the discrete case, and this means that the calculation was performed for each plane or atomic layer. This is in contrast with the Bloch wall, which assumes continuum mean. The energy of the Lilley domain wall was discussed. Most of the energy of the Bloch wall was comprised inside the Lilley distance (above 99.9% of the energy). Antiferromagnetic interactions strongly decreased the domain wall energy. The negative terms due to antiferromagnetism must be considered in the Hamiltonian describing the exchange energy terms. The domain wall energy and width of terbium were reassessed. The values varied between 83.7 and 95.2 Kelvin (10.3 to 11.2 ergs/cm2). The domain width was estimated to be 57 Angstroms. It was found that a significant part of the total domain wall energy was concentrated on the planes at the center of the domain wall. The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described method is theoretical and is based on experimental measurements of neutron inelastic scattering. The domain wall energy is determined by both finding the minimum of energy and deriving the energy and setting it to zero. The determination was undertaken for the discrete case, and this means that the calculation was performed for each plane or atomic layer. This is in contrast with the Bloch wall, which assumes continuum mean. The energy of the Lilley domain wall was discussed. Most of the energy of the Bloch wall was comprised inside the Lilley distance (above 99.9% of the energy). Antiferromagnetic interactions strongly decreased the domain wall energy. The negative terms due to antiferromagnetism must be considered in the Hamiltonian describing the exchange energy terms. The domain wall energy and width of terbium were reassessed. The values varied between 83.7 and 95.2 Kelvin (10.3 to 11.2 ergs/cm[sup.2]). The domain width was estimated to be 57 Angstroms. It was found that a significant part of the total domain wall energy was concentrated on the planes at the center of the domain wall. |
Audience | Academic |
Author | de Souza, Kaio S. T. de Campos, Marcos F. de Lima, Ingrid R. de Castro, Jose A. da Silva, Charle C. |
Author_xml | – sequence: 1 givenname: Marcos F. surname: de Campos fullname: de Campos, Marcos F. – sequence: 2 givenname: Kaio S. T. surname: de Souza fullname: de Souza, Kaio S. T. – sequence: 3 givenname: Ingrid R. surname: de Lima fullname: de Lima, Ingrid R. – sequence: 4 givenname: Charle C. surname: da Silva fullname: da Silva, Charle C. – sequence: 5 givenname: Jose A. orcidid: 0000-0001-8054-9236 surname: de Castro fullname: de Castro, Jose A. |
BookMark | eNpNkU1PwzAMhiMEEgN24g9U4oi2OR9tk-MEAyZN4sAQxyhNnNFpbUbaHvbvyRhC2Adbr-xHr-wrct6GFgm5pTDlXMGswZ4KkCCL4oyMGJT5RJRAz__1l2TcdVtIIVkBSo3IbNFi3Bwy07rsrY-D7YeIWfBZ_4nZGmNVD032GBpTt9mH2e1uyIU3uw7Hv_WavD8t1g8vk9Xr8_JhvppYpmg_cYWXIleCgkNhbZU7VokSK1Gh48CpZEJ6KCnluROOSQWKlooaUEWOqpL8mixPXBfMVu9j3Zh40MHU-kcIcaNN7Gu7Q10IAwyrBLUohERjqXdceqsssoLRxLo7sfYxfA3Y9Xobhtgm-5qDklTkuYI0NT1NbUyC1q0PfTQ2pcOmtunUvk76XEIpuCiLo8X704KNoesi-j-bFPTxI_rfR_g3FQV8Sg |
Cites_doi | 10.1103/PhysRevB.94.085137 10.1103/PhysRevB.94.174445 10.1016/B978-0-444-87068-1.50011-1 10.1088/0370-1328/79/6/318 10.1103/PhysRevB.105.104402 10.1103/PhysRev.96.99 10.1063/1.1661003 10.1063/1.1660224 10.1103/PhysRevB.72.035417 10.1016/j.crhy.2019.07.003 10.1080/14786445008561011 10.1109/TMAG.1991.1183750 10.1103/PhysRev.106.446 10.1007/s13538-017-0547-3 10.1007/978-1-4757-5691-3 10.1016/j.jmmm.2022.170119 10.1007/BF01337791 10.1016/0304-8853(80)90378-9 10.1016/j.jmmm.2019.02.035 10.1016/j.jmmm.2017.06.134 10.2478/adms-2020-0002 10.1016/S0081-1947(08)60742-0 10.1088/0022-3719/1/1/314 10.1016/0304-8853(81)90025-1 10.1063/1.1709631 10.1007/978-3-642-47366-1 10.1109/TMAG.1971.1067036 10.1209/epl/i2006-10307-2 10.1088/0305-4608/7/9/011 10.4028/www.scientific.net/MSF.899.266 10.1063/1.1660390 10.1103/PhysRevB.17.2348 10.1103/PhysRevLett.16.737 10.1063/1.1656144 10.1093/oso/9780198520276.001.0001 10.1103/PhysRevB.92.104415 10.1103/PhysRevB.76.064411 10.1088/0305-4608/3/1/027 10.1063/1.2163623 10.1063/1.2946967 10.1088/0022-3719/4/1/008 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/met14080866 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-4701 |
ExternalDocumentID | oai_doaj_org_article_64a02eb318ce448eac1fd38fc9ce2621 A807434768 10_3390_met14080866 |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PIMPY PROAC RIG TUS 8BQ 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c291t-d6f8459410de4ccb5d2b47eb4bed30318248f071135d4d289091791a0965e9b83 |
IEDL.DBID | DOA |
ISSN | 2075-4701 |
IngestDate | Tue Oct 22 15:01:46 EDT 2024 Thu Oct 10 21:59:24 EDT 2024 Tue Nov 12 23:35:36 EST 2024 Fri Nov 22 02:32:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-d6f8459410de4ccb5d2b47eb4bed30318248f071135d4d289091791a0965e9b83 |
ORCID | 0000-0001-8054-9236 |
OpenAccessLink | https://doaj.org/article/64a02eb318ce448eac1fd38fc9ce2621 |
PQID | 3098145590 |
PQPubID | 2032361 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64a02eb318ce448eac1fd38fc9ce2621 proquest_journals_3098145590 gale_infotracacademiconefile_A807434768 crossref_primary_10_3390_met14080866 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metals (Basel ) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Herring (ref_9) 1973; 3 ref_11 Martins (ref_18) 2017; 442 Barbara (ref_23) 2019; 20 Scheie (ref_24) 2022; 105 Ruderman (ref_48) 1954; 96 Cooper (ref_32) 1968; 21 Heigl (ref_7) 2005; 72 Martins (ref_50) 2018; 48 Lindgard (ref_15) 1978; 17 Kooy (ref_20) 1960; 15 ref_25 Chapman (ref_6) 1981; 22 Zijlstra (ref_19) 1971; 7 (ref_44) 2020; 56 Houmann (ref_12) 1966; 16 Ratnam (ref_37) 1973; 10 Prieto (ref_5) 2016; 94 Bloch (ref_21) 1932; 74 ref_27 ref_26 Stoner (ref_43) 1991; 27 Corner (ref_10) 1980; 15–18 Egami (ref_1) 1971; 42 Krause (ref_4) 2007; 76 (ref_46) 2020; 20 Rhyne (ref_34) 1967; 38 Livingston (ref_38) 1972; 43 Lilley (ref_22) 1950; 41 (ref_47) 1968; 39 Enz (ref_28) 1983; 56 (ref_42) 1962; 79 Corner (ref_8) 1971; 4 ref_33 ref_31 Nicklow (ref_35) 1971; 42 Martins (ref_49) 2017; Volume 899 Locht (ref_29) 2016; 94 Birss (ref_36) 1977; 7 Krause (ref_3) 2006; 76 ref_41 Goodings (ref_30) 1968; 1 Frei (ref_45) 1957; 106 Moller (ref_13) 1968; 39 ref_2 Sinha (ref_16) 1988; Volume 22 Romero (ref_39) 2022; 564 Stringfellow (ref_17) 1970; 2 Martins (ref_40) 2019; 479 |
References_xml | – volume: 94 start-page: 085137 year: 2016 ident: ref_29 article-title: Standard model of the rare earths, analyzed from the Hubbard I approximation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.085137 contributor: fullname: Locht – volume: 94 start-page: 174445 year: 2016 ident: ref_5 article-title: Magnetism of epitaxial Tb films on W(110) studied by spin-polarized low-energy electron microscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.174445 contributor: fullname: Prieto – volume: 2 start-page: S189 year: 1970 ident: ref_17 article-title: Spin waves in holmium publication-title: J. Phys. C Metal Phys. Suppl. contributor: fullname: Stringfellow – volume: Volume 22 start-page: 287 year: 1988 ident: ref_16 article-title: Theory of Spin Excitations in the Rare Earth Systems publication-title: Spin Waves and Magnetic Excitations doi: 10.1016/B978-0-444-87068-1.50011-1 contributor: fullname: Sinha – ident: ref_26 – volume: 79 start-page: 1237 year: 1962 ident: ref_42 article-title: The Determination of Domain Wall Thickness in Ferromagnetic Films by Electron Microscopy publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/79/6/318 – volume: 105 start-page: 104402 year: 2022 ident: ref_24 article-title: Spin-exchange Hamiltonian and topological degeneracies in elemental gadolinium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.104402 contributor: fullname: Scheie – volume: 96 start-page: 99 year: 1954 ident: ref_48 article-title: Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons publication-title: Phys. Rev. doi: 10.1103/PhysRev.96.99 contributor: fullname: Ruderman – volume: 43 start-page: 4756 year: 1972 ident: ref_38 article-title: Domain-wall energy in cobalt-rare-earth compounds publication-title: J. Appl. Phys. doi: 10.1063/1.1661003 contributor: fullname: Livingston – volume: 42 start-page: 1299 year: 1971 ident: ref_1 article-title: Domain walls in ferromagnetic Dy and Tb publication-title: J. Appl. Phys. doi: 10.1063/1.1660224 contributor: fullname: Egami – volume: 72 start-page: 035417 year: 2005 ident: ref_7 article-title: Annealing-induced extension of the antiferromagnetic phase in epitaxial terbium metal films publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.035417 contributor: fullname: Heigl – volume: 20 start-page: 631 year: 2019 ident: ref_23 article-title: Louis Néel: His multifaceted seminal work in magnetism publication-title: Comptes Rendus Phys. doi: 10.1016/j.crhy.2019.07.003 contributor: fullname: Barbara – volume: 41 start-page: 792 year: 1950 ident: ref_22 article-title: Energies and widths of domain boundaries in ferromagnetics publication-title: Phil. Mag. doi: 10.1080/14786445008561011 contributor: fullname: Lilley – volume: 27 start-page: 3475 year: 1991 ident: ref_43 article-title: A mechanism of magnetic hysteresis in heterogeneous alloys publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1991.1183750 contributor: fullname: Stoner – volume: 106 start-page: 446 year: 1957 ident: ref_45 article-title: Critical Size and Nucleation Field of Ideal Ferromagnetic Particles publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.446 contributor: fullname: Frei – ident: ref_2 doi: 10.1063/1.1660224 – volume: 48 start-page: 39 year: 2018 ident: ref_50 article-title: Revisiting Spin Glasses: Impact of Spin-Spin Interaction Range publication-title: Braz. J. Phys. doi: 10.1007/s13538-017-0547-3 contributor: fullname: Martins – ident: ref_14 doi: 10.1007/978-1-4757-5691-3 – volume: 564 start-page: 170119 year: 2022 ident: ref_39 article-title: Estimation of texture and anisotropy field in a NdDyFeCoB magnet by magnetic measurements at the perpendicular direction publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2022.170119 contributor: fullname: Romero – volume: 74 start-page: 295 year: 1932 ident: ref_21 article-title: Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika publication-title: Z. Für Phys. doi: 10.1007/BF01337791 contributor: fullname: Bloch – volume: 15–18 start-page: 1488 year: 1980 ident: ref_10 article-title: Magnetic domain structures in high purity single crystal terbium publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(80)90378-9 contributor: fullname: Corner – volume: 15 start-page: 7 year: 1960 ident: ref_20 article-title: Experimental and theoretical study of the domain configuration in thin layers of BaFe_<12>O_<19> publication-title: Philips Res. Rep. contributor: fullname: Kooy – volume: 479 start-page: 222 year: 2019 ident: ref_40 article-title: Spin glass transition in AuFe, CuMn, AuMn, AgMn and AuCr systems publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.02.035 contributor: fullname: Martins – volume: 442 start-page: 236 year: 2017 ident: ref_18 article-title: Domain wall structure in metals: A new approach to an old problem publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.06.134 contributor: fullname: Martins – volume: 20 start-page: 16 year: 2020 ident: ref_46 article-title: Achievements in micromagnetic techniques of steel plastic stage evaluation publication-title: Adv. Mater. Sci. doi: 10.2478/adms-2020-0002 – volume: 21 start-page: 393 year: 1968 ident: ref_32 article-title: Magnetic properties of rare earth metals publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60742-0 contributor: fullname: Cooper – volume: 56 start-page: 7512304 year: 2020 ident: ref_44 article-title: Calculation of Recoil Curves in Isotropic and Anisotropic Stoner-Wohlfarth Materials publication-title: IEEE Trans. Magn. – volume: 1 start-page: 125 year: 1968 ident: ref_30 article-title: Exchange interactions and the spin-wave spectrum of terbium publication-title: J. Phys. C (Proc. Phys. Soc.) doi: 10.1088/0022-3719/1/1/314 contributor: fullname: Goodings – volume: 22 start-page: 212 year: 1981 ident: ref_6 article-title: An electron microscope investigation of domain structures in thin terbium foils publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(81)90025-1 contributor: fullname: Chapman – ident: ref_11 – volume: 38 start-page: 1379 year: 1967 ident: ref_34 article-title: Magnetic anisotropy of terbium and dysprosium publication-title: J. Appl. Phys. doi: 10.1063/1.1709631 contributor: fullname: Rhyne – ident: ref_27 doi: 10.1007/978-3-642-47366-1 – volume: 7 start-page: 226 year: 1971 ident: ref_19 article-title: Calculation of intrinsic coercivity of magnetic domain walls in perfect crystals publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1971.1067036 contributor: fullname: Zijlstra – volume: 76 start-page: 637 year: 2006 ident: ref_3 article-title: Consequences of line defects on the magnetic structure of high anisotropy films: Pinning centers on Dy/W(110) publication-title: Europhys. Lett. doi: 10.1209/epl/i2006-10307-2 contributor: fullname: Krause – volume: 7 start-page: 1669 year: 1977 ident: ref_36 article-title: Temperature dependence of the magnetocrystalline anisotropy energy of terbium in the basal plane publication-title: J. Phys. F Met. Phys. doi: 10.1088/0305-4608/7/9/011 contributor: fullname: Birss – volume: Volume 899 start-page: 266 year: 2017 ident: ref_49 article-title: Longe Range Exchange Interactions in Sintered CuMn Alloys: A Monte Carlo Study publication-title: Materials Science Forum doi: 10.4028/www.scientific.net/MSF.899.266 contributor: fullname: Martins – ident: ref_25 – ident: ref_33 – volume: 42 start-page: 1672 year: 1971 ident: ref_35 article-title: SpinWave Dispersion Relation in RareEarth Metals publication-title: J. Appl. Phys. doi: 10.1063/1.1660390 contributor: fullname: Nicklow – volume: 17 start-page: 2348 year: 1978 ident: ref_15 article-title: Spin waves in the heavy-rare-earth metals Gd, Tb, Dy, and Er publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.17.2348 contributor: fullname: Lindgard – volume: 16 start-page: 737 year: 1966 ident: ref_12 article-title: Inelastic Scattering of Neutrons by Spin Waves in Terbium publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.16.737 contributor: fullname: Houmann – volume: 39 start-page: 1006 year: 1968 ident: ref_47 article-title: Point Singularities in Micromagnetism publication-title: J. Appl. Phys. doi: 10.1063/1.1656144 – ident: ref_31 doi: 10.1093/oso/9780198520276.001.0001 – volume: 56 start-page: 993 year: 1983 ident: ref_28 article-title: Heisenberg’s applications of quantum mechanics (1926–1933) or the settling of the new land publication-title: Helv. Phys. Acta contributor: fullname: Enz – ident: ref_41 doi: 10.1103/PhysRevB.92.104415 – volume: 76 start-page: 064411 year: 2007 ident: ref_4 article-title: Spin-polarized scanning tunneling microscopy and spectroscopy of ferromagnetic Dy(0001)/W(110) films publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.064411 contributor: fullname: Krause – volume: 3 start-page: 157 year: 1973 ident: ref_9 article-title: Observation of magnetic domain patterns in terbium and dysprosium publication-title: J. Phys. F Met. Phys. doi: 10.1088/0305-4608/3/1/027 contributor: fullname: Herring – volume: 39 start-page: 807 year: 1968 ident: ref_13 article-title: Magnetic Interactions in Tb and Tb-10% Ho from Inelastic Neutron Scattering publication-title: J. Appl. Phys. doi: 10.1063/1.2163623 contributor: fullname: Moller – volume: 10 start-page: 568 year: 1973 ident: ref_37 article-title: Determination of Domain Wall Energies in Rare Earth Cobalt Compounds publication-title: AIP Conf. Proc. doi: 10.1063/1.2946967 contributor: fullname: Ratnam – volume: 4 start-page: 47 year: 1971 ident: ref_8 article-title: Magnetic domain structure of terbium single crystals publication-title: J. Phys. C Solid St. Phys. doi: 10.1088/0022-3719/4/1/008 contributor: fullname: Corner |
SSID | ssj0000826099 |
Score | 2.3353515 |
Snippet | The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 866 |
SubjectTerms | Anisotropy Antiferromagnetism Approximation domain wall Domain walls Energy Inelastic scattering Terbium |
Title | Energy and Structure of the Terbium Domain Wall |
URI | https://www.proquest.com/docview/3098145590 https://doaj.org/article/64a02eb318ce448eac1fd38fc9ce2621 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwFIUt6AQD4ikKBXmoxBQ1iZ3UHgtt1YmlRWKz_LiRGJqi0v5_7nXSqgyIhSVDlEjWubF9TmJ_YaxPNACQmUqEhZBIhQcng05wdnE54dFVpPPP5sPXdzWeECZn_6svWhPW4IEb4QaltGmOiS9THjBK4DiRVUGoymsPeZk3wSctD8JUHIPRNaP3aTbkCcz1gyVsMEsodPDljykokvp_G4_jJDM9Z2etO-SjplUX7AjqS3Z6wAy8YoNJ3K3HbR34PMJft2vgq4qjk-MLFOlju-Tj1RITP6e35NfsbTpZvMyS9q8Hic91tklCWSlZaJmlAaT3rgi5k0Nw0kEQ1AVzqSo0Bpkoggz0nVATYtQSxgW0U-KGdepVDbeMO48V0pVVDjTebrVV0hdp0FKgrQHosv5OCPPZwC0MhgLSyxzo1WXPJNL-EiJSxxNYJ9PWyfxVpy57IokN9ZvN2nrbLv_HlhKByoyIyiMkpp8u6-2qYNoO9WVEqhUx1XV69x-tuWcnObqTZiVfj3WwXPDAjr_C9jE-SN9ZYst7 |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+and+Structure+of+the+Terbium+Domain+Wall&rft.jtitle=Metals+%28Basel+%29&rft.au=de+Campos%2C+Marcos+F&rft.au=Kaio+S+T+de+Souza&rft.au=de+Lima%2C+Ingrid+R&rft.au=da+Silva%2C+Charle+C&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2075-4701&rft.volume=14&rft.issue=8&rft.spage=866&rft_id=info:doi/10.3390%2Fmet14080866&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon |