Nonparametric Event Detection in Multiple Time Series for Power Distribution Networks
With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states, patterns, and the behavior of its users. However, classic data analysis or machine learning tools ignore some unique characteristics of the multi...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) Vol. 66; no. 2; pp. 1619 - 1628 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-02-2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states, patterns, and the behavior of its users. However, classic data analysis or machine learning tools ignore some unique characteristics of the multistream measurement data, in particular, the coexistence of strong temporal correlation and interstream relatedness. To this end, in this paper we discuss the problem of novelty detection with multiple coevolving time series data. To capture both the temporal dependence and the interseries relatedness, a multitask nonparametric model is proposed, which can be extended to family of data distributions by adopting the notion of Bregman divergence. Albeit convex, the learning problem can be hard as the time series accumulate. In this regard, an efficient randomized block coordinate descent algorithm is proposed. The model and the algorithm is tested with a real-world application, involving novelty detection and event analysis in smart city power distribution networks with high-resolution multistream measurements. It is shown that the incorporation of interseries relatedness enables the detection of system-level events, which would otherwise be unobservable with traditional methods. The experimental results not only justify the benefits of incorporating information from different sources, but also demonstrate the potential of the proposed multistream analysis tool as one of the core computational components to improve smart city observability, security, and reliability. |
---|---|
AbstractList | With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states, patterns, and the behavior of its users. However, classic data analysis or machine learning tools ignore some unique characteristics of the multistream measurement data, in particular, the coexistence of strong temporal correlation and interstream relatedness. To this end, in this paper we discuss the problem of novelty detection with multiple coevolving time series data. To capture both the temporal dependence and the interseries relatedness, a multitask nonparametric model is proposed, which can be extended to family of data distributions by adopting the notion of Bregman divergence. Albeit convex, the learning problem can be hard as the time series accumulate. In this regard, an efficient randomized block coordinate descent algorithm is proposed. The model and the algorithm is tested with a real-world application, involving novelty detection and event analysis in smart city power distribution networks with high-resolution multistream measurements. It is shown that the incorporation of interseries relatedness enables the detection of system-level events, which would otherwise be unobservable with traditional methods. The experimental results not only justify the benefits of incorporating information from different sources, but also demonstrate the potential of the proposed multistream analysis tool as one of the core computational components to improve smart city observability, security, and reliability. |
Author | Spanos, Costas J. Yuxun Zhou Han Zou Arghandeh, Reza |
Author_xml | – sequence: 1 surname: Yuxun Zhou fullname: Yuxun Zhou email: yxzhou@berkeley.edu organization: EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Reza surname: Arghandeh fullname: Arghandeh, Reza email: arghandehr@gmail.com organization: ECE Dept., Florida State Univ., Tallahassee, FL, USA – sequence: 3 surname: Han Zou fullname: Han Zou email: hanzou@berkeley.edu organization: EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 4 givenname: Costas J. surname: Spanos fullname: Spanos, Costas J. email: spanos@berkeley.edu organization: EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA |
BookMark | eNo9kMFPwjAUhxuDiYDeTbw08Tx83dq1PRpAJUE0Ec7Lur0lRVhnu0n87x1CPL3L9_1e8o3IoHY1EnLLYMIY6If1Yj6JgalJrDgIUBdkyISQkdZcDcgQYqkiAJ5ekVEIWwDGBRNDslm5usl9vsfW24LOv7Fu6QxbLFrrampr-trtWtvskK7tHukHeouBVs7Td3dAT2c29Kbp_vAVtgfnP8M1uazyXcCb8x2TzdN8PX2Jlm_Pi-njMipizdpIMw5KF5JrAClSzHmiytwISHkJ0hhWAY-lifNUV4lhqSoZCIMJyFQYXRbJmNyfdhvvvjoMbbZ1na_7l1nMmFAJT4ToKThRhXcheKyyxtt97n8yBtkxXtbHy47xsnO8Xrk7KRYR_3GVSJBaJr8XOGv3 |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1109_TSG_2019_2938989 crossref_primary_10_1109_TSG_2019_2898676 crossref_primary_10_3390_smartcities2020020 crossref_primary_10_1049_iet_gtd_2020_0048 crossref_primary_10_1002_acs_3209 crossref_primary_10_1016_j_scs_2021_103094 crossref_primary_10_1109_TPWRS_2021_3080279 crossref_primary_10_1016_j_tej_2020_106886 crossref_primary_10_1061__ASCE_WR_1943_5452_0001597 crossref_primary_10_1109_JIOT_2022_3177686 crossref_primary_10_1145_3444690 crossref_primary_10_1109_ACCESS_2021_3107975 crossref_primary_10_3390_en12081449 crossref_primary_10_1016_j_jngse_2021_104135 crossref_primary_10_1109_TPWRS_2023_3287233 crossref_primary_10_1109_TPWRS_2022_3158248 |
Cites_doi | 10.1201/b15842 10.1109/TIM.2016.2578518 10.2307/2291512 10.1145/376284.375668 10.1109/TSG.2017.2681962 10.1109/ISGT.2014.6816509 10.1109/TKDE.2013.184 10.1198/jasa.2010.tm09181 10.1016/j.enbuild.2016.07.014 10.1016/j.arcontrol.2004.12.002 10.1017/CBO9780511804441 10.1109/TCSI.2012.2221222 10.1109/ACCESS.2017.2675940 10.1561/2200000016 10.1109/TPEL.2015.2393373 10.1016/j.jprocont.2009.07.011 10.1007/978-1-4614-5369-7 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2018.2840508 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 1628 |
ExternalDocumentID | 10_1109_TIE_2018_2840508 8370797 |
Genre | orig-research |
GrantInformation_xml | – fundername: Republic of Singapore's National Research Foundation – fundername: NSF grantid: 1640587 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-914089c74900756ea438dab5064d07bb1f0427b2a69f3b168d105be30765b9dc3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Thu Oct 10 20:46:57 EDT 2024 Fri Aug 23 01:00:37 EDT 2024 Wed Jun 26 19:28:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-914089c74900756ea438dab5064d07bb1f0427b2a69f3b168d105be30765b9dc3 |
ORCID | 0000-0003-4258-2179 0000-0002-8063-5211 0000-0002-0691-5426 |
PQID | 2115834355 |
PQPubID | 85464 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2115834355 crossref_primary_10_1109_TIE_2018_2840508 ieee_primary_8370797 |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 mather (ref18) 0 cai (ref33) 0 gupta (ref7) 0 zhou (ref30) 0 ref15 ref14 cavraro (ref10) 0 aggarwal (ref8) 2015 ref2 ref1 ref17 gonçalves (ref29) 2016; 17 ref19 bertsekas (ref27) 2003 aggarwal (ref6) 0 chatterjee (ref25) 2015 mallat (ref12) 2008 ref24 ref26 ref20 ref21 cavraro (ref11) 0 ref28 enders (ref23) 2004; 46 ref9 gu (ref31) 2013; 297 ref4 box (ref32) 2015 ref3 schwarte (ref16) 2004; 1 aggarwal (ref5) 0 sprent (ref22) 2016 |
References_xml | – start-page: 483 year: 0 ident: ref5 article-title: Outlier detection with uncertain data publication-title: Proc SIAM Int Conf Data Mining contributor: fullname: aggarwal – year: 2016 ident: ref22 publication-title: Applied Nonparametric Statistical Methods doi: 10.1201/b15842 contributor: fullname: sprent – volume: 46 start-page: 55 year: 2004 ident: ref23 article-title: Applied econometric time series publication-title: Technometrics contributor: fullname: enders – year: 2003 ident: ref27 publication-title: Convex Analysis and Optimization contributor: fullname: bertsekas – ident: ref20 doi: 10.1109/TIM.2016.2578518 – ident: ref13 doi: 10.2307/2291512 – year: 2015 ident: ref25 publication-title: Regression Analysis by Example contributor: fullname: chatterjee – ident: ref4 doi: 10.1145/376284.375668 – start-page: 399 year: 0 ident: ref6 article-title: Outlier detection in graph streams publication-title: Proc IEEE 27th Int Conf Data Eng contributor: fullname: aggarwal – year: 2015 ident: ref32 publication-title: Time Series Analysis Forecasting and Control contributor: fullname: box – ident: ref2 doi: 10.1109/TSG.2017.2681962 – ident: ref1 doi: 10.1109/ISGT.2014.6816509 – ident: ref3 doi: 10.1109/TKDE.2013.184 – volume: 17 start-page: 1 year: 2016 ident: ref29 article-title: Multi-task sparse structure learning with Gaussian copula models publication-title: J Mach Learn Res contributor: fullname: gonçalves – ident: ref24 doi: 10.1198/jasa.2010.tm09181 – ident: ref14 doi: 10.1016/j.enbuild.2016.07.014 – ident: ref9 doi: 10.1016/j.arcontrol.2004.12.002 – start-page: 237 year: 2015 ident: ref8 publication-title: Data Mining contributor: fullname: aggarwal – volume: 1 start-page: 293 year: 2004 ident: ref16 article-title: Model-based fault detection of a diesel engine with turbo charger-A case study publication-title: Fault Detection Supervision and Safety of Technical Processes 2003 (SAFEPROCESS 2003) A Proceedings Volume from the 5th IFAC Symposium Washington DC USA 9-11 June 2003 contributor: fullname: schwarte – ident: ref26 doi: 10.1017/CBO9780511804441 – start-page: 1 year: 0 ident: ref18 article-title: Quasi-static time-series test feeder for PV integration analysis on distribution systems publication-title: Proc Power Energy Soc General Meeting contributor: fullname: mather – ident: ref17 doi: 10.1109/TCSI.2012.2221222 – start-page: 859 year: 0 ident: ref7 article-title: Integrating community matching and outlier detection for mining evolutionary community outliers publication-title: Proc ACM SIGKDD Int Conf Knowledge Discovery and Data Mining contributor: fullname: gupta – start-page: 5962 year: 0 ident: ref30 article-title: Data-driven event detection with partial knowledge: A hidden structure semi-supervised learning method publication-title: Proc Am Control Conf contributor: fullname: zhou – start-page: 1 year: 0 ident: ref11 article-title: Data-driven approach for distribution network topology detection publication-title: Proceedings of IEEE Power & Energy Society General Meeting contributor: fullname: cavraro – ident: ref21 doi: 10.1109/ACCESS.2017.2675940 – start-page: 79 year: 0 ident: ref33 article-title: Facets: Fast comprehensive mining of coevolving high-order time series publication-title: Proc ACM SIGKDD Int Conf Knowledge Discovery and Data Mining contributor: fullname: cai – year: 2008 ident: ref12 publication-title: A Wavelet Tour of Signal Processing The Sparse Way contributor: fullname: mallat – ident: ref28 doi: 10.1561/2200000016 – ident: ref19 doi: 10.1109/TPEL.2015.2393373 – start-page: 1 year: 0 ident: ref10 article-title: Distribution network topology detection with time-series measurements publication-title: Proc IEEE Power Energy Soc Innovative Smart Grid Technologies Conf contributor: fullname: cavraro – ident: ref15 doi: 10.1016/j.jprocont.2009.07.011 – volume: 297 year: 2013 ident: ref31 publication-title: Smoothing Spline ANOVA Models doi: 10.1007/978-1-4614-5369-7 contributor: fullname: gu |
SSID | ssj0014515 |
Score | 2.432377 |
Snippet | With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1619 |
SubjectTerms | Algorithms Analytical models Artificial intelligence Component reliability Data analysis Data models Dependence Divergence Electric power distribution electrical fault detection Hidden Markov models Machine learning Mathematical model Microprocessors Networks Nonparametric statistics Observability (systems) Phasor measurement units power system analysis Power systems statistical learning Time series Time series analysis |
Title | Nonparametric Event Detection in Multiple Time Series for Power Distribution Networks |
URI | https://ieeexplore.ieee.org/document/8370797 https://www.proquest.com/docview/2115834355 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTjDwVRDlSx5YkEibxE5sj4imKgMVEq3EFsX2RWIgRbT9__iStKoEC1uGJIp88fmd_e49gLsUPUqw0gTS0W6V5DwofDCC1ApXpATwa2_AyZucvqtRRjI5D9teGESsyWc4oMv6LN8t7Jq2yoYk1CK17EBHatX0am1PDETSuBXEpBjri77NkWSoh7PnjDhcauBTcZiQkeTOElR7qvxKxPXqMj7633cdw2GLItljE_YT2MPqFA52tAV7MJ8uKtL1_iTLLMsy4jWyEa5q6lXFPir20nIJGbWBMNomwyXzGJa9knMaG5GkbuuGxaYNW3x5BvNxNnuaBK2HQmBjHa18LhOh0lYKTeAgxUJw5QpDMnUulMZEJZltmLhIdclNlCrnAZdBP_PTxGhn-Tl0q0WFF8B07GyiTGgiWwhMyqLURoRcIwrDkbs-3G-GNf9qpDLyusQIde5DkFMI8jYEfejRMG7va0ewD9ebOOTtXFrmvkRNFPewLrn8-6kr2Pfv1g2X-hq6q-813kBn6da39T_yA0YSuSE |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1oPagHv6qxWnUPXkykBXZh2aOxNG1siYlt4o2wHyQepEba_-8O0KaJXrxxgEB22Nk3u2_eA7gPjUUJikuHa9yt4pQ6mQ2GEyqmsxABfuUNOHrjyXs0iFEm53HTC2OMqchnpoeX1Vm-XqgVbpX1UaiFC74LewHjIa-7tTZnBiyo_Qp81Iy1Zd_6UNIV_dk4RhZX1LPJ2A3QSnJrEapcVX6l4mp9GR7_78tO4KjBkeSpDvwp7JjiDA631AXbME8WBSp7f6JpliIxMhvJwCwr8lVBPgoybdiEBBtBCG6UmZJYFEte0TuNDFBUt_HDIknNFy_PYT6MZ88jp3FRcJQvvKXNZsyNhOJMIDwITcZopDOJQnXa5VJ6OdptSD8LRU6lF0baQi5p7NwPAym0ohfQKhaFuQQifK2CSLrSUxkzQZ7lQjKXCmOYpIbqDjyshzX9qsUy0qrIcEVqQ5BiCNImBB1o4zBu7mtGsAPddRzSZjaVqS1Sg4haYBdc_f3UHeyPZtNJOhknL9dwYN8jamZ1F1rL75W5gd1Sr26r_-UHMQC8cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+Event+Detection+in+Multiple+Time+Series+for+Power+Distribution+Networks&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Yuxun+Zhou&rft.au=Arghandeh%2C+Reza&rft.au=Han+Zou&rft.au=Spanos%2C+Costas+J.&rft.date=2019-02-01&rft.pub=IEEE&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=2&rft.spage=1619&rft.epage=1628&rft_id=info:doi/10.1109%2FTIE.2018.2840508&rft.externalDocID=8370797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |