Nonparametric Event Detection in Multiple Time Series for Power Distribution Networks

With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states, patterns, and the behavior of its users. However, classic data analysis or machine learning tools ignore some unique characteristics of the multi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 66; no. 2; pp. 1619 - 1628
Main Authors: Yuxun Zhou, Arghandeh, Reza, Han Zou, Spanos, Costas J.
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states, patterns, and the behavior of its users. However, classic data analysis or machine learning tools ignore some unique characteristics of the multistream measurement data, in particular, the coexistence of strong temporal correlation and interstream relatedness. To this end, in this paper we discuss the problem of novelty detection with multiple coevolving time series data. To capture both the temporal dependence and the interseries relatedness, a multitask nonparametric model is proposed, which can be extended to family of data distributions by adopting the notion of Bregman divergence. Albeit convex, the learning problem can be hard as the time series accumulate. In this regard, an efficient randomized block coordinate descent algorithm is proposed. The model and the algorithm is tested with a real-world application, involving novelty detection and event analysis in smart city power distribution networks with high-resolution multistream measurements. It is shown that the incorporation of interseries relatedness enables the detection of system-level events, which would otherwise be unobservable with traditional methods. The experimental results not only justify the benefits of incorporating information from different sources, but also demonstrate the potential of the proposed multistream analysis tool as one of the core computational components to improve smart city observability, security, and reliability.
AbstractList With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states, patterns, and the behavior of its users. However, classic data analysis or machine learning tools ignore some unique characteristics of the multistream measurement data, in particular, the coexistence of strong temporal correlation and interstream relatedness. To this end, in this paper we discuss the problem of novelty detection with multiple coevolving time series data. To capture both the temporal dependence and the interseries relatedness, a multitask nonparametric model is proposed, which can be extended to family of data distributions by adopting the notion of Bregman divergence. Albeit convex, the learning problem can be hard as the time series accumulate. In this regard, an efficient randomized block coordinate descent algorithm is proposed. The model and the algorithm is tested with a real-world application, involving novelty detection and event analysis in smart city power distribution networks with high-resolution multistream measurements. It is shown that the incorporation of interseries relatedness enables the detection of system-level events, which would otherwise be unobservable with traditional methods. The experimental results not only justify the benefits of incorporating information from different sources, but also demonstrate the potential of the proposed multistream analysis tool as one of the core computational components to improve smart city observability, security, and reliability.
Author Spanos, Costas J.
Yuxun Zhou
Han Zou
Arghandeh, Reza
Author_xml – sequence: 1
  surname: Yuxun Zhou
  fullname: Yuxun Zhou
  email: yxzhou@berkeley.edu
  organization: EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 2
  givenname: Reza
  surname: Arghandeh
  fullname: Arghandeh, Reza
  email: arghandehr@gmail.com
  organization: ECE Dept., Florida State Univ., Tallahassee, FL, USA
– sequence: 3
  surname: Han Zou
  fullname: Han Zou
  email: hanzou@berkeley.edu
  organization: EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 4
  givenname: Costas J.
  surname: Spanos
  fullname: Spanos, Costas J.
  email: spanos@berkeley.edu
  organization: EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA
BookMark eNo9kMFPwjAUhxuDiYDeTbw08Tx83dq1PRpAJUE0Ec7Lur0lRVhnu0n87x1CPL3L9_1e8o3IoHY1EnLLYMIY6If1Yj6JgalJrDgIUBdkyISQkdZcDcgQYqkiAJ5ekVEIWwDGBRNDslm5usl9vsfW24LOv7Fu6QxbLFrrampr-trtWtvskK7tHukHeouBVs7Td3dAT2c29Kbp_vAVtgfnP8M1uazyXcCb8x2TzdN8PX2Jlm_Pi-njMipizdpIMw5KF5JrAClSzHmiytwISHkJ0hhWAY-lifNUV4lhqSoZCIMJyFQYXRbJmNyfdhvvvjoMbbZ1na_7l1nMmFAJT4ToKThRhXcheKyyxtt97n8yBtkxXtbHy47xsnO8Xrk7KRYR_3GVSJBaJr8XOGv3
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TSG_2019_2938989
crossref_primary_10_1109_TSG_2019_2898676
crossref_primary_10_3390_smartcities2020020
crossref_primary_10_1049_iet_gtd_2020_0048
crossref_primary_10_1002_acs_3209
crossref_primary_10_1016_j_scs_2021_103094
crossref_primary_10_1109_TPWRS_2021_3080279
crossref_primary_10_1016_j_tej_2020_106886
crossref_primary_10_1061__ASCE_WR_1943_5452_0001597
crossref_primary_10_1109_JIOT_2022_3177686
crossref_primary_10_1145_3444690
crossref_primary_10_1109_ACCESS_2021_3107975
crossref_primary_10_3390_en12081449
crossref_primary_10_1016_j_jngse_2021_104135
crossref_primary_10_1109_TPWRS_2023_3287233
crossref_primary_10_1109_TPWRS_2022_3158248
Cites_doi 10.1201/b15842
10.1109/TIM.2016.2578518
10.2307/2291512
10.1145/376284.375668
10.1109/TSG.2017.2681962
10.1109/ISGT.2014.6816509
10.1109/TKDE.2013.184
10.1198/jasa.2010.tm09181
10.1016/j.enbuild.2016.07.014
10.1016/j.arcontrol.2004.12.002
10.1017/CBO9780511804441
10.1109/TCSI.2012.2221222
10.1109/ACCESS.2017.2675940
10.1561/2200000016
10.1109/TPEL.2015.2393373
10.1016/j.jprocont.2009.07.011
10.1007/978-1-4614-5369-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2018.2840508
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 1628
ExternalDocumentID 10_1109_TIE_2018_2840508
8370797
Genre orig-research
GrantInformation_xml – fundername: Republic of Singapore's National Research Foundation
– fundername: NSF
  grantid: 1640587
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-914089c74900756ea438dab5064d07bb1f0427b2a69f3b168d105be30765b9dc3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Oct 10 20:46:57 EDT 2024
Fri Aug 23 01:00:37 EDT 2024
Wed Jun 26 19:28:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-914089c74900756ea438dab5064d07bb1f0427b2a69f3b168d105be30765b9dc3
ORCID 0000-0003-4258-2179
0000-0002-8063-5211
0000-0002-0691-5426
PQID 2115834355
PQPubID 85464
PageCount 10
ParticipantIDs proquest_journals_2115834355
crossref_primary_10_1109_TIE_2018_2840508
ieee_primary_8370797
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
mather (ref18) 0
cai (ref33) 0
gupta (ref7) 0
zhou (ref30) 0
ref15
ref14
cavraro (ref10) 0
aggarwal (ref8) 2015
ref2
ref1
ref17
gonçalves (ref29) 2016; 17
ref19
bertsekas (ref27) 2003
aggarwal (ref6) 0
chatterjee (ref25) 2015
mallat (ref12) 2008
ref24
ref26
ref20
ref21
cavraro (ref11) 0
ref28
enders (ref23) 2004; 46
ref9
gu (ref31) 2013; 297
ref4
box (ref32) 2015
ref3
schwarte (ref16) 2004; 1
aggarwal (ref5) 0
sprent (ref22) 2016
References_xml – start-page: 483
  year: 0
  ident: ref5
  article-title: Outlier detection with uncertain data
  publication-title: Proc SIAM Int Conf Data Mining
  contributor:
    fullname: aggarwal
– year: 2016
  ident: ref22
  publication-title: Applied Nonparametric Statistical Methods
  doi: 10.1201/b15842
  contributor:
    fullname: sprent
– volume: 46
  start-page: 55
  year: 2004
  ident: ref23
  article-title: Applied econometric time series
  publication-title: Technometrics
  contributor:
    fullname: enders
– year: 2003
  ident: ref27
  publication-title: Convex Analysis and Optimization
  contributor:
    fullname: bertsekas
– ident: ref20
  doi: 10.1109/TIM.2016.2578518
– ident: ref13
  doi: 10.2307/2291512
– year: 2015
  ident: ref25
  publication-title: Regression Analysis by Example
  contributor:
    fullname: chatterjee
– ident: ref4
  doi: 10.1145/376284.375668
– start-page: 399
  year: 0
  ident: ref6
  article-title: Outlier detection in graph streams
  publication-title: Proc IEEE 27th Int Conf Data Eng
  contributor:
    fullname: aggarwal
– year: 2015
  ident: ref32
  publication-title: Time Series Analysis Forecasting and Control
  contributor:
    fullname: box
– ident: ref2
  doi: 10.1109/TSG.2017.2681962
– ident: ref1
  doi: 10.1109/ISGT.2014.6816509
– ident: ref3
  doi: 10.1109/TKDE.2013.184
– volume: 17
  start-page: 1
  year: 2016
  ident: ref29
  article-title: Multi-task sparse structure learning with Gaussian copula models
  publication-title: J Mach Learn Res
  contributor:
    fullname: gonçalves
– ident: ref24
  doi: 10.1198/jasa.2010.tm09181
– ident: ref14
  doi: 10.1016/j.enbuild.2016.07.014
– ident: ref9
  doi: 10.1016/j.arcontrol.2004.12.002
– start-page: 237
  year: 2015
  ident: ref8
  publication-title: Data Mining
  contributor:
    fullname: aggarwal
– volume: 1
  start-page: 293
  year: 2004
  ident: ref16
  article-title: Model-based fault detection of a diesel engine with turbo charger-A case study
  publication-title: Fault Detection Supervision and Safety of Technical Processes 2003 (SAFEPROCESS 2003) A Proceedings Volume from the 5th IFAC Symposium Washington DC USA 9-11 June 2003
  contributor:
    fullname: schwarte
– ident: ref26
  doi: 10.1017/CBO9780511804441
– start-page: 1
  year: 0
  ident: ref18
  article-title: Quasi-static time-series test feeder for PV integration analysis on distribution systems
  publication-title: Proc Power Energy Soc General Meeting
  contributor:
    fullname: mather
– ident: ref17
  doi: 10.1109/TCSI.2012.2221222
– start-page: 859
  year: 0
  ident: ref7
  article-title: Integrating community matching and outlier detection for mining evolutionary community outliers
  publication-title: Proc ACM SIGKDD Int Conf Knowledge Discovery and Data Mining
  contributor:
    fullname: gupta
– start-page: 5962
  year: 0
  ident: ref30
  article-title: Data-driven event detection with partial knowledge: A hidden structure semi-supervised learning method
  publication-title: Proc Am Control Conf
  contributor:
    fullname: zhou
– start-page: 1
  year: 0
  ident: ref11
  article-title: Data-driven approach for distribution network topology detection
  publication-title: Proceedings of IEEE Power & Energy Society General Meeting
  contributor:
    fullname: cavraro
– ident: ref21
  doi: 10.1109/ACCESS.2017.2675940
– start-page: 79
  year: 0
  ident: ref33
  article-title: Facets: Fast comprehensive mining of coevolving high-order time series
  publication-title: Proc ACM SIGKDD Int Conf Knowledge Discovery and Data Mining
  contributor:
    fullname: cai
– year: 2008
  ident: ref12
  publication-title: A Wavelet Tour of Signal Processing The Sparse Way
  contributor:
    fullname: mallat
– ident: ref28
  doi: 10.1561/2200000016
– ident: ref19
  doi: 10.1109/TPEL.2015.2393373
– start-page: 1
  year: 0
  ident: ref10
  article-title: Distribution network topology detection with time-series measurements
  publication-title: Proc IEEE Power Energy Soc Innovative Smart Grid Technologies Conf
  contributor:
    fullname: cavraro
– ident: ref15
  doi: 10.1016/j.jprocont.2009.07.011
– volume: 297
  year: 2013
  ident: ref31
  publication-title: Smoothing Spline ANOVA Models
  doi: 10.1007/978-1-4614-5369-7
  contributor:
    fullname: gu
SSID ssj0014515
Score 2.432377
Snippet With the unprecedented advancement of sensing technology, smart city applications are now enriched with massive measurement data related to system states,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1619
SubjectTerms Algorithms
Analytical models
Artificial intelligence
Component reliability
Data analysis
Data models
Dependence
Divergence
Electric power distribution
electrical fault detection
Hidden Markov models
Machine learning
Mathematical model
Microprocessors
Networks
Nonparametric statistics
Observability (systems)
Phasor measurement units
power system analysis
Power systems
statistical learning
Time series
Time series analysis
Title Nonparametric Event Detection in Multiple Time Series for Power Distribution Networks
URI https://ieeexplore.ieee.org/document/8370797
https://www.proquest.com/docview/2115834355
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTjDwVRDlSx5YkEibxE5sj4imKgMVEq3EFsX2RWIgRbT9__iStKoEC1uGJIp88fmd_e49gLsUPUqw0gTS0W6V5DwofDCC1ApXpATwa2_AyZucvqtRRjI5D9teGESsyWc4oMv6LN8t7Jq2yoYk1CK17EBHatX0am1PDETSuBXEpBjri77NkWSoh7PnjDhcauBTcZiQkeTOElR7qvxKxPXqMj7633cdw2GLItljE_YT2MPqFA52tAV7MJ8uKtL1_iTLLMsy4jWyEa5q6lXFPir20nIJGbWBMNomwyXzGJa9knMaG5GkbuuGxaYNW3x5BvNxNnuaBK2HQmBjHa18LhOh0lYKTeAgxUJw5QpDMnUulMZEJZltmLhIdclNlCrnAZdBP_PTxGhn-Tl0q0WFF8B07GyiTGgiWwhMyqLURoRcIwrDkbs-3G-GNf9qpDLyusQIde5DkFMI8jYEfejRMG7va0ewD9ebOOTtXFrmvkRNFPewLrn8-6kr2Pfv1g2X-hq6q-813kBn6da39T_yA0YSuSE
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1oPagHv6qxWnUPXkykBXZh2aOxNG1siYlt4o2wHyQepEba_-8O0KaJXrxxgEB22Nk3u2_eA7gPjUUJikuHa9yt4pQ6mQ2GEyqmsxABfuUNOHrjyXs0iFEm53HTC2OMqchnpoeX1Vm-XqgVbpX1UaiFC74LewHjIa-7tTZnBiyo_Qp81Iy1Zd_6UNIV_dk4RhZX1LPJ2A3QSnJrEapcVX6l4mp9GR7_78tO4KjBkeSpDvwp7JjiDA631AXbME8WBSp7f6JpliIxMhvJwCwr8lVBPgoybdiEBBtBCG6UmZJYFEte0TuNDFBUt_HDIknNFy_PYT6MZ88jp3FRcJQvvKXNZsyNhOJMIDwITcZopDOJQnXa5VJ6OdptSD8LRU6lF0baQi5p7NwPAym0ohfQKhaFuQQifK2CSLrSUxkzQZ7lQjKXCmOYpIbqDjyshzX9qsUy0qrIcEVqQ5BiCNImBB1o4zBu7mtGsAPddRzSZjaVqS1Sg4haYBdc_f3UHeyPZtNJOhknL9dwYN8jamZ1F1rL75W5gd1Sr26r_-UHMQC8cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+Event+Detection+in+Multiple+Time+Series+for+Power+Distribution+Networks&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Yuxun+Zhou&rft.au=Arghandeh%2C+Reza&rft.au=Han+Zou&rft.au=Spanos%2C+Costas+J.&rft.date=2019-02-01&rft.pub=IEEE&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=2&rft.spage=1619&rft.epage=1628&rft_id=info:doi/10.1109%2FTIE.2018.2840508&rft.externalDocID=8370797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon