Experimental I – V(T) and C – V Analysis of Si Planar p-TFETs on Ultrathin Body
We present the experimental analysis of planar Si p-tunnel FETs (TFETs) fabricated on ultrathin body Silicon on Insulator (SOI) substrates by an optimized dopant implantation into silicide process. The average subthreshold swing of such planar TFETs reaches 75 mV/decade over four orders of magnitude...
Saved in:
Published in: | IEEE transactions on electron devices Vol. 63; no. 12; pp. 5036 - 5040 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-12-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the experimental analysis of planar Si p-tunnel FETs (TFETs) fabricated on ultrathin body Silicon on Insulator (SOI) substrates by an optimized dopant implantation into silicide process. The average subthreshold swing of such planar TFETs reaches 75 mV/decade over four orders of magnitude of drain current. Emphasis is placed on the capacitance- voltage analysis of TFETs. In contrast to simulation predictions, we provide experimental evidence that the contribution of Cgs to the total gate capacitance increases at on-state, which in turn results in a decrease of the gate-to-drain capacitance Cgd. This beneficial effect could result in a reduction of the Miller capacitance effect in TFETs-based circuits. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2016.2619740 |