Semi-Data-Aided Channel Estimation for MIMO Systems via Reinforcement Learning

Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. O...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 22; no. 7; pp. 4565 - 4579
Main Authors: Kim, Tae-Kyoung, Jeon, Yo-Seb, Li, Jun, Tavangaran, Nima, Poor, H. Vincent
Format: Journal Article
Language:English
Published: New York IEEE 01-07-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols, then update the channel estimate by utilizing only the selected symbols as additional pilot signals. Towards this end, we first define a Markov decision process (MDP) which sequentially decides whether to use each detected symbol as an additional pilot signal. We then develop an RL algorithm to find an effective policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit the a-posteriori probability for approximating both the optimal future actions and the corresponding state transitions of the MDP and derive a closed-form expression for the optimal policy under the approximations. A key advantage of the proposed channel estimator is that it requires less computational complexity than conventional iterative data-aided channel estimators. Simulation results demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and detection performance loss caused by insufficient pilot signals.
AbstractList Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols, then update the channel estimate by utilizing only the selected symbols as additional pilot signals. Towards this end, we first define a Markov decision process (MDP) which sequentially decides whether to use each detected symbol as an additional pilot signal. We then develop an RL algorithm to find an effective policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit the a-posteriori probability for approximating both the optimal future actions and the corresponding state transitions of the MDP and derive a closed-form expression for the optimal policy under the approximations. A key advantage of the proposed channel estimator is that it requires less computational complexity than conventional iterative data-aided channel estimators. Simulation results demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and detection performance loss caused by insufficient pilot signals.
Author Li, Jun
Tavangaran, Nima
Kim, Tae-Kyoung
Poor, H. Vincent
Jeon, Yo-Seb
Author_xml – sequence: 1
  givenname: Tae-Kyoung
  orcidid: 0000-0002-9629-7413
  surname: Kim
  fullname: Kim, Tae-Kyoung
  email: tk415kim@gmail.com
  organization: Department of Electronic Engineering, Gachon University, Seongnam, Republic of Korea
– sequence: 2
  givenname: Yo-Seb
  orcidid: 0000-0002-2886-157X
  surname: Jeon
  fullname: Jeon, Yo-Seb
  email: yoseb.jeon@postech.ac.kr
  organization: Department of Electrical Engineering, POSTECH, Pohang, Republic of Korea
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-6239-2922
  surname: Li
  fullname: Li, Jun
  email: jun.li@njust.edu.cn
  organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Nima
  orcidid: 0000-0002-7397-4194
  surname: Tavangaran
  fullname: Tavangaran, Nima
  email: nimat@princeton.edu
  organization: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
– sequence: 5
  givenname: H. Vincent
  orcidid: 0000-0002-2062-131X
  surname: Poor
  fullname: Poor, H. Vincent
  email: poor@princeton.edu
  organization: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
BookMark eNo9kN1LwzAUxYNMcJu-C74UfO7MR5Mmj6NOHWwO3MDHkLY3mrGmM-mE_fd2bPh0D9xz7uX8RmjgWw8I3RM8IQSrp81nMaGY0gmjNGeEXqEh4VymlGZycNJMpITm4gaNYtxiTHLB-RC9r6Fx6bPpTDp1NdRJ8W28h10yi51rTOdan9g2JMv5cpWsj7GDJia_ziQf4Hy_qKAB3yULMME7_3WLrq3ZRbi7zDHavMw2xVu6WL3Oi-kiragiXZpjyXEFVFQEl8xSK7jIFaGizJkltTKWZZzXWNiy7LsIJokUoJiqMLeWsjF6PJ_dh_bnALHT2_YQfP9RU8kEFoTirHfhs6sKbYwBrN6HvlM4aoL1CZruoekTNH2B1kcezhEHAP92pWRGJGd_791n1g
CODEN ITWCAX
CitedBy_id crossref_primary_10_1002_rob_22157
crossref_primary_10_3390_s23125689
crossref_primary_10_1109_LWC_2023_3333416
Cites_doi 10.1109/TSP.2015.2416684
10.1109/LWC.2019.2916786
10.1109/TCOMM.2019.2947906
10.1109/TWC.2019.2956044
10.1109/TSP.2020.2976585
10.1109/TSP.2014.2321120
10.1109/JSTSP.2021.3051490
10.1109/TBC.2012.2184152
10.1109/TSP.2004.826182
10.1109/COMST.2007.382406
10.1002/ett.4460100604
10.1109/TVT.2020.2980861
10.1109/ACCESS.2019.2901066
10.1109/TCIAIG.2012.2186810
10.1109/TSP.2005.863008
10.1109/ICC40277.2020.9149283
10.1109/TWC.2008.070228
10.1109/TWC.2016.2612629
10.1109/LCOMM.2020.3011571
10.1109/LWC.2019.2912378
10.1109/TSP.2018.2799164
10.1109/TCOMM.2003.815062
10.1109/TWC.2003.819022
10.1613/jair.5507
10.56021/9781421407944
10.1109/TCOMM.2017.2688447
10.1109/TCOMM.2012.050812.100436
10.1109/TIT.2003.810646
10.1109/JSAC.2021.3087269
10.1109/LWC.2018.2832128
10.1109/TVT.2021.3090087
10.1109/TWC.2022.3183255
10.1109/COMST.2019.2893851
10.1109/ICC42927.2021.9500671
10.1109/TSP.2022.3171065
10.1109/JCN.2014.000075
10.1109/GLOCOM.2003.1258350
10.1109/TWC.2021.3069240
10.1002/bltj.2015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2022.3227312
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 4579
ExternalDocumentID 10_1109_TWC_2022_3227312
9984185
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) Grant by the Korean Government through MIST
  grantid: 2021R1F1A1063273
  funderid: 10.13039/501100003725
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30921013104
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61872184
  funderid: 10.13039/501100001809
– fundername: Future Network Grant of Provincial Education Board in Jiangsu
– fundername: U.S. National Science Foundation
  grantid: CNS-2128448
  funderid: 10.13039/100000001
– fundername: National Research Foundation of Korea (NRF) Grant by the Korean Government through MSIT
  grantid: 2022R1C1C1010074
  funderid: 10.13039/501100003725
– fundername: BK21 FOUR Program
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-70850ce26c10b3f2f65679126b73f1d9af3455d06fbb312638186e939c05ff23
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Thu Oct 10 14:41:18 EDT 2024
Fri Aug 23 02:52:27 EDT 2024
Mon Nov 04 11:48:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-70850ce26c10b3f2f65679126b73f1d9af3455d06fbb312638186e939c05ff23
ORCID 0000-0002-6239-2922
0000-0002-2886-157X
0000-0002-9629-7413
0000-0002-7397-4194
0000-0002-2062-131X
PQID 2836061204
PQPubID 105736
PageCount 15
ParticipantIDs proquest_journals_2836061204
crossref_primary_10_1109_TWC_2022_3227312
ieee_primary_9984185
PublicationCentury 2000
PublicationDate 2023-July
2023-7-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
mehmet (ref8) 2007; 9
sutton (ref34) 2018
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref15
  doi: 10.1109/TSP.2015.2416684
– ident: ref25
  doi: 10.1109/LWC.2019.2916786
– ident: ref12
  doi: 10.1109/TCOMM.2019.2947906
– ident: ref31
  doi: 10.1109/TWC.2019.2956044
– ident: ref26
  doi: 10.1109/TSP.2020.2976585
– ident: ref13
  doi: 10.1109/TSP.2014.2321120
– ident: ref20
  doi: 10.1109/JSTSP.2021.3051490
– ident: ref10
  doi: 10.1109/TBC.2012.2184152
– ident: ref39
  doi: 10.1109/TSP.2004.826182
– volume: 9
  start-page: 18
  year: 2007
  ident: ref8
  article-title: Channel estimation for wireless OFDM systems
  publication-title: IEEE Commun Surveys Tuts
  doi: 10.1109/COMST.2007.382406
  contributor:
    fullname: mehmet
– year: 2018
  ident: ref34
  publication-title: Reinforcement Learning An Introduction
  contributor:
    fullname: sutton
– ident: ref3
  doi: 10.1002/ett.4460100604
– ident: ref32
  doi: 10.1109/TVT.2020.2980861
– ident: ref22
  doi: 10.1109/ACCESS.2019.2901066
– ident: ref35
  doi: 10.1109/TCIAIG.2012.2186810
– ident: ref7
  doi: 10.1109/TSP.2005.863008
– ident: ref1
  doi: 10.1109/ICC40277.2020.9149283
– ident: ref14
  doi: 10.1109/TWC.2008.070228
– ident: ref18
  doi: 10.1109/TWC.2016.2612629
– ident: ref24
  doi: 10.1109/LCOMM.2020.3011571
– ident: ref23
  doi: 10.1109/LWC.2019.2912378
– ident: ref19
  doi: 10.1109/TSP.2018.2799164
– ident: ref16
  doi: 10.1109/TCOMM.2003.815062
– ident: ref5
  doi: 10.1109/TWC.2003.819022
– ident: ref36
  doi: 10.1613/jair.5507
– ident: ref37
  doi: 10.56021/9781421407944
– ident: ref17
  doi: 10.1109/TCOMM.2017.2688447
– ident: ref11
  doi: 10.1109/TCOMM.2012.050812.100436
– ident: ref4
  doi: 10.1109/TIT.2003.810646
– ident: ref27
  doi: 10.1109/JSAC.2021.3087269
– ident: ref21
  doi: 10.1109/LWC.2018.2832128
– ident: ref40
  doi: 10.1109/TVT.2021.3090087
– ident: ref30
  doi: 10.1109/TWC.2022.3183255
– ident: ref38
  doi: 10.1109/COMST.2019.2893851
– ident: ref29
  doi: 10.1109/ICC42927.2021.9500671
– ident: ref28
  doi: 10.1109/TSP.2022.3171065
– ident: ref6
  doi: 10.1109/JCN.2014.000075
– ident: ref9
  doi: 10.1109/GLOCOM.2003.1258350
– ident: ref33
  doi: 10.1109/TWC.2021.3069240
– ident: ref2
  doi: 10.1002/bltj.2015
SSID ssj0017655
Score 2.4813318
Snippet Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 4565
SubjectTerms Approximation
Channel estimation
Communications systems
Corresponding states
data-aided channel estimation
Error detection
Estimation
Iterative decoding
Iterative methods
Markov processes
MIMO communication
Monte Carlo tree search
Multiple-input multiple-output (MIMO)
reinforcement learning
Search algorithms
Symbols
Wireless communication
Title Semi-Data-Aided Channel Estimation for MIMO Systems via Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9984185
https://www.proquest.com/docview/2836061204
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTjDwVRCFgjywIOHi2Ekcj1U_VIYWiVaCLYpjG1WCFNGW34_tpBEIFrYMiWS93PnufH7vAK61lDkPlME2nmpsjSLEgkiORUIiYmxAM8zxncczPn1OBkMnk3Nbc2G01v7yme66R9_LV8t8447K7mxp4LRWGtDgIim5WnXHgMd-wql1YDdXhtctSSLu5k99WwhS2rXGy1lAf4QgP1Pl10bso8vo4H_rOoT9KotEvfK3H8GOLo5h75u2YAumM_22wINsneHeQmmFHI-g0K9oaJ265Csim7Ciyf3kAVW65ehzkaFH7cVUc39uiCr91ZcTmI-G8_4YV8MTcE5FsMbcadHlmsZ5QCQz1NjEjYuAxpIzEyiRGRZGkSKxkdJiErvIHWvBRE4iYyg7hWaxLPQZIJaoUEqeCBPIkBGRaLsHJFJlSea04lUbbrZwpu-lREbqSwsiUgt96qBPK-jb0HLw1e9VyLWhs8U_rXxolVLHL7EJGAnP__7qAnbd8Pfy8mwHmuuPjb6ExkptrrxtfAEG1rSy
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RMgADXwVRKOCBBQmDYydxPFb9UCvaItFKsEVxbKNKUBC0_H5sJ61AsLBlSCTr5c535_N7B3Chpcx5oAy28VRjaxQhFkRyLBISEWMDmmGO79wb89Fj0u44mZyrFRdGa-0vn-lr9-h7-eo1X7ijshtbGjitlQqsRyGPecHWWvUMeOxnnFoXdpNl-KopScTN5KFlS0FKr635chbQH0HIT1X5tRX7-NLd-d_KdmG7zCNRs_jxe7CmZ_uw9U1dsAajsX6Z4nY2z3BzqrRCjkkw08-oY926YCwim7KiYX94h0rlcvQ5zdC99nKquT85RKUC69MBTLqdSauHy_EJOKcimGPu1OhyTeM8IJIZamzqxkVAY8mZCZTIDAujSJHYSGkxiV3sjrVgIieRMZQdQnX2OtNHgFiiQil5IkwgQ0ZEou0ukEiVJZlTi1d1uFzCmb4VIhmpLy6ISC30qYM-LaGvQ83Bt3qvRK4OjSX-aelFHyl1DBObgpHw-O-vzmGjNxkO0kF_dHsCm24UfHGVtgHV-ftCn0LlQy3OvJ18AbpLuAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Data-Aided+Channel+Estimation+for+MIMO+Systems+via+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Kim%2C+Tae-Kyoung&rft.au=Jeon%2C+Yo-Seb&rft.au=Li%2C+Jun&rft.au=Tavangaran%2C+Nima&rft.date=2023-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=22&rft.issue=7&rft.spage=4565&rft.epage=4579&rft_id=info:doi/10.1109%2FTWC.2022.3227312&rft.externalDocID=9984185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon