Semi-Data-Aided Channel Estimation for MIMO Systems via Reinforcement Learning
Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. O...
Saved in:
Published in: | IEEE transactions on wireless communications Vol. 22; no. 7; pp. 4565 - 4579 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-07-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols, then update the channel estimate by utilizing only the selected symbols as additional pilot signals. Towards this end, we first define a Markov decision process (MDP) which sequentially decides whether to use each detected symbol as an additional pilot signal. We then develop an RL algorithm to find an effective policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit the a-posteriori probability for approximating both the optimal future actions and the corresponding state transitions of the MDP and derive a closed-form expression for the optimal policy under the approximations. A key advantage of the proposed channel estimator is that it requires less computational complexity than conventional iterative data-aided channel estimators. Simulation results demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and detection performance loss caused by insufficient pilot signals. |
---|---|
AbstractList | Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols, then update the channel estimate by utilizing only the selected symbols as additional pilot signals. Towards this end, we first define a Markov decision process (MDP) which sequentially decides whether to use each detected symbol as an additional pilot signal. We then develop an RL algorithm to find an effective policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit the a-posteriori probability for approximating both the optimal future actions and the corresponding state transitions of the MDP and derive a closed-form expression for the optimal policy under the approximations. A key advantage of the proposed channel estimator is that it requires less computational complexity than conventional iterative data-aided channel estimators. Simulation results demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and detection performance loss caused by insufficient pilot signals. |
Author | Li, Jun Tavangaran, Nima Kim, Tae-Kyoung Poor, H. Vincent Jeon, Yo-Seb |
Author_xml | – sequence: 1 givenname: Tae-Kyoung orcidid: 0000-0002-9629-7413 surname: Kim fullname: Kim, Tae-Kyoung email: tk415kim@gmail.com organization: Department of Electronic Engineering, Gachon University, Seongnam, Republic of Korea – sequence: 2 givenname: Yo-Seb orcidid: 0000-0002-2886-157X surname: Jeon fullname: Jeon, Yo-Seb email: yoseb.jeon@postech.ac.kr organization: Department of Electrical Engineering, POSTECH, Pohang, Republic of Korea – sequence: 3 givenname: Jun orcidid: 0000-0002-6239-2922 surname: Li fullname: Li, Jun email: jun.li@njust.edu.cn organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 4 givenname: Nima orcidid: 0000-0002-7397-4194 surname: Tavangaran fullname: Tavangaran, Nima email: nimat@princeton.edu organization: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA – sequence: 5 givenname: H. Vincent orcidid: 0000-0002-2062-131X surname: Poor fullname: Poor, H. Vincent email: poor@princeton.edu organization: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA |
BookMark | eNo9kN1LwzAUxYNMcJu-C74UfO7MR5Mmj6NOHWwO3MDHkLY3mrGmM-mE_fd2bPh0D9xz7uX8RmjgWw8I3RM8IQSrp81nMaGY0gmjNGeEXqEh4VymlGZycNJMpITm4gaNYtxiTHLB-RC9r6Fx6bPpTDp1NdRJ8W28h10yi51rTOdan9g2JMv5cpWsj7GDJia_ziQf4Hy_qKAB3yULMME7_3WLrq3ZRbi7zDHavMw2xVu6WL3Oi-kiragiXZpjyXEFVFQEl8xSK7jIFaGizJkltTKWZZzXWNiy7LsIJokUoJiqMLeWsjF6PJ_dh_bnALHT2_YQfP9RU8kEFoTirHfhs6sKbYwBrN6HvlM4aoL1CZruoekTNH2B1kcezhEHAP92pWRGJGd_791n1g |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1002_rob_22157 crossref_primary_10_3390_s23125689 crossref_primary_10_1109_LWC_2023_3333416 |
Cites_doi | 10.1109/TSP.2015.2416684 10.1109/LWC.2019.2916786 10.1109/TCOMM.2019.2947906 10.1109/TWC.2019.2956044 10.1109/TSP.2020.2976585 10.1109/TSP.2014.2321120 10.1109/JSTSP.2021.3051490 10.1109/TBC.2012.2184152 10.1109/TSP.2004.826182 10.1109/COMST.2007.382406 10.1002/ett.4460100604 10.1109/TVT.2020.2980861 10.1109/ACCESS.2019.2901066 10.1109/TCIAIG.2012.2186810 10.1109/TSP.2005.863008 10.1109/ICC40277.2020.9149283 10.1109/TWC.2008.070228 10.1109/TWC.2016.2612629 10.1109/LCOMM.2020.3011571 10.1109/LWC.2019.2912378 10.1109/TSP.2018.2799164 10.1109/TCOMM.2003.815062 10.1109/TWC.2003.819022 10.1613/jair.5507 10.56021/9781421407944 10.1109/TCOMM.2017.2688447 10.1109/TCOMM.2012.050812.100436 10.1109/TIT.2003.810646 10.1109/JSAC.2021.3087269 10.1109/LWC.2018.2832128 10.1109/TVT.2021.3090087 10.1109/TWC.2022.3183255 10.1109/COMST.2019.2893851 10.1109/ICC42927.2021.9500671 10.1109/TSP.2022.3171065 10.1109/JCN.2014.000075 10.1109/GLOCOM.2003.1258350 10.1109/TWC.2021.3069240 10.1002/bltj.2015 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2022.3227312 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 4579 |
ExternalDocumentID | 10_1109_TWC_2022_3227312 9984185 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) Grant by the Korean Government through MIST grantid: 2021R1F1A1063273 funderid: 10.13039/501100003725 – fundername: Fundamental Research Funds for the Central Universities grantid: 30921013104 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61872184 funderid: 10.13039/501100001809 – fundername: Future Network Grant of Provincial Education Board in Jiangsu – fundername: U.S. National Science Foundation grantid: CNS-2128448 funderid: 10.13039/100000001 – fundername: National Research Foundation of Korea (NRF) Grant by the Korean Government through MSIT grantid: 2022R1C1C1010074 funderid: 10.13039/501100003725 – fundername: BK21 FOUR Program |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACGFS ACIWK AENEX AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-70850ce26c10b3f2f65679126b73f1d9af3455d06fbb312638186e939c05ff23 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Thu Oct 10 14:41:18 EDT 2024 Fri Aug 23 02:52:27 EDT 2024 Mon Nov 04 11:48:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-70850ce26c10b3f2f65679126b73f1d9af3455d06fbb312638186e939c05ff23 |
ORCID | 0000-0002-6239-2922 0000-0002-2886-157X 0000-0002-9629-7413 0000-0002-7397-4194 0000-0002-2062-131X |
PQID | 2836061204 |
PQPubID | 105736 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2836061204 crossref_primary_10_1109_TWC_2022_3227312 ieee_primary_9984185 |
PublicationCentury | 2000 |
PublicationDate | 2023-July 2023-7-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 mehmet (ref8) 2007; 9 sutton (ref34) 2018 ref21 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref15 doi: 10.1109/TSP.2015.2416684 – ident: ref25 doi: 10.1109/LWC.2019.2916786 – ident: ref12 doi: 10.1109/TCOMM.2019.2947906 – ident: ref31 doi: 10.1109/TWC.2019.2956044 – ident: ref26 doi: 10.1109/TSP.2020.2976585 – ident: ref13 doi: 10.1109/TSP.2014.2321120 – ident: ref20 doi: 10.1109/JSTSP.2021.3051490 – ident: ref10 doi: 10.1109/TBC.2012.2184152 – ident: ref39 doi: 10.1109/TSP.2004.826182 – volume: 9 start-page: 18 year: 2007 ident: ref8 article-title: Channel estimation for wireless OFDM systems publication-title: IEEE Commun Surveys Tuts doi: 10.1109/COMST.2007.382406 contributor: fullname: mehmet – year: 2018 ident: ref34 publication-title: Reinforcement Learning An Introduction contributor: fullname: sutton – ident: ref3 doi: 10.1002/ett.4460100604 – ident: ref32 doi: 10.1109/TVT.2020.2980861 – ident: ref22 doi: 10.1109/ACCESS.2019.2901066 – ident: ref35 doi: 10.1109/TCIAIG.2012.2186810 – ident: ref7 doi: 10.1109/TSP.2005.863008 – ident: ref1 doi: 10.1109/ICC40277.2020.9149283 – ident: ref14 doi: 10.1109/TWC.2008.070228 – ident: ref18 doi: 10.1109/TWC.2016.2612629 – ident: ref24 doi: 10.1109/LCOMM.2020.3011571 – ident: ref23 doi: 10.1109/LWC.2019.2912378 – ident: ref19 doi: 10.1109/TSP.2018.2799164 – ident: ref16 doi: 10.1109/TCOMM.2003.815062 – ident: ref5 doi: 10.1109/TWC.2003.819022 – ident: ref36 doi: 10.1613/jair.5507 – ident: ref37 doi: 10.56021/9781421407944 – ident: ref17 doi: 10.1109/TCOMM.2017.2688447 – ident: ref11 doi: 10.1109/TCOMM.2012.050812.100436 – ident: ref4 doi: 10.1109/TIT.2003.810646 – ident: ref27 doi: 10.1109/JSAC.2021.3087269 – ident: ref21 doi: 10.1109/LWC.2018.2832128 – ident: ref40 doi: 10.1109/TVT.2021.3090087 – ident: ref30 doi: 10.1109/TWC.2022.3183255 – ident: ref38 doi: 10.1109/COMST.2019.2893851 – ident: ref29 doi: 10.1109/ICC42927.2021.9500671 – ident: ref28 doi: 10.1109/TSP.2022.3171065 – ident: ref6 doi: 10.1109/JCN.2014.000075 – ident: ref9 doi: 10.1109/GLOCOM.2003.1258350 – ident: ref33 doi: 10.1109/TWC.2021.3069240 – ident: ref2 doi: 10.1002/bltj.2015 |
SSID | ssj0017655 |
Score | 2.4813318 |
Snippet | Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 4565 |
SubjectTerms | Approximation Channel estimation Communications systems Corresponding states data-aided channel estimation Error detection Estimation Iterative decoding Iterative methods Markov processes MIMO communication Monte Carlo tree search Multiple-input multiple-output (MIMO) reinforcement learning Search algorithms Symbols Wireless communication |
Title | Semi-Data-Aided Channel Estimation for MIMO Systems via Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/9984185 https://www.proquest.com/docview/2836061204 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTjDwVRCFgjywIOHi2Ekcj1U_VIYWiVaCLYpjG1WCFNGW34_tpBEIFrYMiWS93PnufH7vAK61lDkPlME2nmpsjSLEgkiORUIiYmxAM8zxncczPn1OBkMnk3Nbc2G01v7yme66R9_LV8t8447K7mxp4LRWGtDgIim5WnXHgMd-wql1YDdXhtctSSLu5k99WwhS2rXGy1lAf4QgP1Pl10bso8vo4H_rOoT9KotEvfK3H8GOLo5h75u2YAumM_22wINsneHeQmmFHI-g0K9oaJ265Csim7Ciyf3kAVW65ehzkaFH7cVUc39uiCr91ZcTmI-G8_4YV8MTcE5FsMbcadHlmsZ5QCQz1NjEjYuAxpIzEyiRGRZGkSKxkdJiErvIHWvBRE4iYyg7hWaxLPQZIJaoUEqeCBPIkBGRaLsHJFJlSea04lUbbrZwpu-lREbqSwsiUgt96qBPK-jb0HLw1e9VyLWhs8U_rXxolVLHL7EJGAnP__7qAnbd8Pfy8mwHmuuPjb6ExkptrrxtfAEG1rSy |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RMgADXwVRKOCBBQmDYydxPFb9UCvaItFKsEVxbKNKUBC0_H5sJ61AsLBlSCTr5c535_N7B3Chpcx5oAy28VRjaxQhFkRyLBISEWMDmmGO79wb89Fj0u44mZyrFRdGa-0vn-lr9-h7-eo1X7ijshtbGjitlQqsRyGPecHWWvUMeOxnnFoXdpNl-KopScTN5KFlS0FKr635chbQH0HIT1X5tRX7-NLd-d_KdmG7zCNRs_jxe7CmZ_uw9U1dsAajsX6Z4nY2z3BzqrRCjkkw08-oY926YCwim7KiYX94h0rlcvQ5zdC99nKquT85RKUC69MBTLqdSauHy_EJOKcimGPu1OhyTeM8IJIZamzqxkVAY8mZCZTIDAujSJHYSGkxiV3sjrVgIieRMZQdQnX2OtNHgFiiQil5IkwgQ0ZEou0ukEiVJZlTi1d1uFzCmb4VIhmpLy6ISC30qYM-LaGvQ83Bt3qvRK4OjSX-aelFHyl1DBObgpHw-O-vzmGjNxkO0kF_dHsCm24UfHGVtgHV-ftCn0LlQy3OvJ18AbpLuAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Data-Aided+Channel+Estimation+for+MIMO+Systems+via+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Kim%2C+Tae-Kyoung&rft.au=Jeon%2C+Yo-Seb&rft.au=Li%2C+Jun&rft.au=Tavangaran%2C+Nima&rft.date=2023-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=22&rft.issue=7&rft.spage=4565&rft.epage=4579&rft_id=info:doi/10.1109%2FTWC.2022.3227312&rft.externalDocID=9984185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |