Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning

An intelligent eye-diagram analyzer is proposed to implement both modulation format recognition (MFR) and optical signal-to-noise rate (OSNR) estimation by using a convolution neural network (CNN)-based deep learning technique. With the ability of feature extraction and self-learning, CNN can proces...

Full description

Saved in:
Bibliographic Details
Published in:IEEE photonics technology letters Vol. 29; no. 19; pp. 1667 - 1670
Main Authors: Wang, Danshi, Zhang, Min, Li, Ze, Li, Jin, Fu, Meixia, Cui, Yue, Chen, Xue
Format: Journal Article
Language:English
Published: New York IEEE 01-10-2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An intelligent eye-diagram analyzer is proposed to implement both modulation format recognition (MFR) and optical signal-to-noise rate (OSNR) estimation by using a convolution neural network (CNN)-based deep learning technique. With the ability of feature extraction and self-learning, CNN can process eye diagram in its raw form (pixel values of an image) from the perspective of image processing, without knowing other eye-diagram parameters or original bit information. The eye diagram images of four commonly-used modulation formats over a wide OSNR range (10~25 dB) are obtained from an eye-diagram generation module in oscilloscope combined with the simulation system. Compared with four other machine learning algorithms (decision tress, k-nearest neighbors, back-propagation artificial neural network, and support vector machine), CNN obtains the higher accuracies. The accuracies of OSNR estimation and MFR both attain 100%. The proposed technique has the potential to be embedded in the test instrument to perform intelligent signal analysis or applied for optical performance monitoring.
AbstractList An intelligent eye-diagram analyzer is proposed to implement both modulation format recognition (MFR) and optical signal-to-noise rate (OSNR) estimation by using a convolution neural network (CNN)-based deep learning technique. With the ability of feature extraction and self-learning, CNN can process eye diagram in its raw form (pixel values of an image) from the perspective of image processing, without knowing other eye-diagram parameters or original bit information. The eye diagram images of four commonly-used modulation formats over a wide OSNR range (10~25 dB) are obtained from an eye-diagram generation module in oscilloscope combined with the simulation system. Compared with four other machine learning algorithms (decision tress, k-nearest neighbors, back-propagation artificial neural network, and support vector machine), CNN obtains the higher accuracies. The accuracies of OSNR estimation and MFR both attain 100%. The proposed technique has the potential to be embedded in the test instrument to perform intelligent signal analysis or applied for optical performance monitoring.
Author Li, Ze
Wang, Danshi
Li, Jin
Fu, Meixia
Cui, Yue
Zhang, Min
Chen, Xue
Author_xml – sequence: 1
  givenname: Danshi
  orcidid: 0000-0001-9815-4013
  surname: Wang
  fullname: Wang, Danshi
  email: danshi_wang@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Ze
  surname: Li
  fullname: Li, Ze
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Jin
  surname: Li
  fullname: Li, Jin
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Meixia
  surname: Fu
  fullname: Fu, Meixia
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Yue
  surname: Cui
  fullname: Cui, Yue
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 7
  givenname: Xue
  surname: Chen
  fullname: Chen, Xue
  organization: State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNo9kM1PAjEQxRuDiYDeTbxs4nmx03bb7VER1GQFg3De7McsWQIttsvB_97iGk_z5uU3M5k3IgNjDRJyC3QCQPVD9rGeMApqwpRgScIvyBC0gDhYYhA0DRqAJ1dk5P2OUhAJF0OyfLf1aV90rTXR3LpD0UUrrOzWtL9WYepo-blYRTPftYce2_jWbKPpYhE_FR7r6BnxGGVYOBP8a3LZFHuPN391TDbz2Xr6GmfLl7fpYxZXTEMXSw1pglRIxiUTWkvGGpUgylJwXgpkNG14QmUJslS6Yk3oFJNprTnUAgQfk_t-79HZrxP6Lt_ZkzPhZA6ap1JRJWSgaE9VznrvsMmPLrzhvnOg-Tm2PMSWn2PL_2ILI3f9SIuI_3hKgSst-Q8zf2d3
CODEN IPTLEL
CitedBy_id crossref_primary_10_1109_JPHOT_2022_3197148
crossref_primary_10_1109_TNNLS_2021_3085433
crossref_primary_10_1364_OE_488829
crossref_primary_10_1002_cpe_7180
crossref_primary_10_1109_LPT_2019_2910288
crossref_primary_10_1364_JOCN_425494
crossref_primary_10_3390_app12073331
crossref_primary_10_1109_ACCESS_2020_3019692
crossref_primary_10_1016_j_yofte_2021_102804
crossref_primary_10_3390_app10010253
crossref_primary_10_1016_j_ejmech_2023_115500
crossref_primary_10_1109_JLT_2019_2897313
crossref_primary_10_1117_1_OE_57_4_046111
crossref_primary_10_1109_ACCESS_2021_3111092
crossref_primary_10_1364_OE_26_018684
crossref_primary_10_1364_OE_27_019398
crossref_primary_10_1109_JLT_2019_2927748
crossref_primary_10_1109_JLT_2023_3243883
crossref_primary_10_1142_S0219720019500057
crossref_primary_10_3788_LOP221055
crossref_primary_10_3390_photonics9010030
crossref_primary_10_1109_JPHOT_2019_2947705
crossref_primary_10_1007_s11432_020_2871_2
crossref_primary_10_1016_j_ijleo_2021_167788
crossref_primary_10_1109_ACCESS_2024_3390209
crossref_primary_10_1109_ACCESS_2019_2916806
crossref_primary_10_3390_sym14050873
crossref_primary_10_1364_JOCN_11_0000C1
crossref_primary_10_1016_j_optcom_2020_126084
crossref_primary_10_1109_ACCESS_2019_2943927
crossref_primary_10_1364_JOCN_10_000D84
crossref_primary_10_1016_j_optcom_2020_126007
crossref_primary_10_3390_s23094331
crossref_primary_10_1007_s13198_022_01677_3
crossref_primary_10_1007_s40831_020_00300_8
crossref_primary_10_1016_j_yofte_2023_103357
crossref_primary_10_1364_OE_464159
crossref_primary_10_3390_e24050700
crossref_primary_10_3390_rs15153886
crossref_primary_10_1109_JLT_2019_2942431
crossref_primary_10_1364_OE_27_011281
crossref_primary_10_1364_OE_491377
crossref_primary_10_3390_fi16020038
crossref_primary_10_1117_1_OE_59_6_060501
crossref_primary_10_1016_j_rinp_2019_102790
crossref_primary_10_1109_JPHOT_2022_3148798
crossref_primary_10_1364_AO_455752
crossref_primary_10_1364_OE_27_009403
crossref_primary_10_3390_photonics8090402
crossref_primary_10_1364_JOCN_11_000A52
crossref_primary_10_1364_OE_27_004471
crossref_primary_10_3390_photonics6040111
crossref_primary_10_1145_3468506
crossref_primary_10_1109_COMST_2020_3018494
crossref_primary_10_1049_iet_smt_2017_0465
crossref_primary_10_3389_fmats_2021_791296
crossref_primary_10_1016_j_optcom_2020_125819
crossref_primary_10_1016_j_yofte_2022_102895
crossref_primary_10_1109_ACCESS_2019_2949201
crossref_primary_10_1016_j_yofte_2022_102931
crossref_primary_10_1364_JOCN_390727
crossref_primary_10_1364_OE_422849
crossref_primary_10_1109_JPHOT_2018_2869972
crossref_primary_10_1364_OE_25_026186
crossref_primary_10_1109_JLT_2020_2969296
crossref_primary_10_35234_fumbd_1141515
crossref_primary_10_54105_ijdcn_B5028_023223
crossref_primary_10_3390_electronics12081791
crossref_primary_10_1016_j_neucom_2022_09_088
crossref_primary_10_1007_s11036_021_01887_2
crossref_primary_10_1109_LPT_2018_2869913
crossref_primary_10_1364_AO_58_001246
crossref_primary_10_3389_frcmn_2021_656786
crossref_primary_10_1364_OE_26_021346
crossref_primary_10_1364_AO_426293
crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_1109_ACCESS_2020_2966777
crossref_primary_10_1109_ACCESS_2020_2988727
crossref_primary_10_1109_JLT_2020_2984270
crossref_primary_10_1016_j_optcom_2019_05_062
crossref_primary_10_1007_s11432_022_3557_9
crossref_primary_10_1109_JLT_2019_2895730
crossref_primary_10_1109_JIOT_2024_3350927
crossref_primary_10_1016_j_yofte_2021_102726
crossref_primary_10_3390_photonics10040373
crossref_primary_10_1109_LPT_2018_2878530
crossref_primary_10_1016_j_petrol_2019_05_086
crossref_primary_10_1002_lpor_202000249
crossref_primary_10_1515_nanoph_2021_0578
crossref_primary_10_1109_JPHOT_2019_2944064
crossref_primary_10_1109_JLT_2019_2947154
crossref_primary_10_1109_TVT_2020_3030018
crossref_primary_10_1109_JLT_2017_2778883
crossref_primary_10_3390_photonics10060655
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_1016_j_yofte_2021_102455
crossref_primary_10_1016_j_optcom_2018_11_054
crossref_primary_10_1109_ACCESS_2020_2989521
crossref_primary_10_1109_ACCESS_2022_3197224
crossref_primary_10_1109_JPHOT_2022_3187648
crossref_primary_10_1016_j_optcom_2018_12_004
crossref_primary_10_1364_OSAC_412886
crossref_primary_10_3389_fnbot_2021_624466
crossref_primary_10_1109_JLT_2024_3401419
crossref_primary_10_1016_j_optcom_2022_127933
crossref_primary_10_1016_j_dsp_2022_103650
crossref_primary_10_1109_ACCESS_2019_2895409
crossref_primary_10_1016_j_yofte_2020_102147
crossref_primary_10_3390_electronics11172764
crossref_primary_10_1364_OE_27_018831
crossref_primary_10_1109_JLT_2022_3146025
crossref_primary_10_1103_PhysRevResearch_3_013200
crossref_primary_10_7717_peerj_cs_1453
crossref_primary_10_1016_j_optcom_2019_124698
crossref_primary_10_1109_ACCESS_2021_3071801
crossref_primary_10_1016_j_optcom_2019_07_016
crossref_primary_10_1109_ACCESS_2020_3038624
crossref_primary_10_1109_JLT_2019_2921305
crossref_primary_10_1364_AO_457463
crossref_primary_10_1109_ACCESS_2019_2939043
crossref_primary_10_1007_s11082_021_03280_5
crossref_primary_10_1007_s11432_020_2873_x
crossref_primary_10_1002_mop_32906
crossref_primary_10_1109_TVT_2018_2868698
crossref_primary_10_1109_ACCESS_2020_3034942
crossref_primary_10_1016_j_optcom_2021_127657
crossref_primary_10_1109_ACCESS_2021_3054756
crossref_primary_10_1364_OE_395433
crossref_primary_10_1109_JQE_2021_3130935
crossref_primary_10_1364_JOCN_10_000D63
crossref_primary_10_3390_electronics12132762
crossref_primary_10_1364_JOCN_471154
Cites_doi 10.1109/LGRS.2017.2671922
10.1109/TKDE.2015.2399298
10.1364/OE.20.00B181
10.1016/j.neunet.2014.09.003
10.1364/OFC.2017.Th1J.1
10.1109/JLT.2015.2480798
10.1364/OE.25.017150
10.1038/nature16961
10.1109/JLT.2015.2508502
10.1109/LPT.2014.2375960
10.1109/LPT.2016.2555857
10.1016/j.optcom.2016.02.029
10.1109/ECOC.2015.7341753
10.1038/nature14539
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/LPT.2017.2742553
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1941-0174
EndPage 1670
ExternalDocumentID 10_1109_LPT_2017_2742553
8013796
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 61372119
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-69185e0462362499622f75ee6b433b4e208f3506b16b79c2ff357268d931d4143
IEDL.DBID RIE
ISSN 1041-1135
IngestDate Thu Oct 10 19:44:02 EDT 2024
Fri Aug 23 01:05:17 EDT 2024
Mon Nov 04 12:03:11 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-69185e0462362499622f75ee6b433b4e208f3506b16b79c2ff357268d931d4143
ORCID 0000-0001-9815-4013
PQID 1938670746
PQPubID 85439
PageCount 4
ParticipantIDs crossref_primary_10_1109_LPT_2017_2742553
proquest_journals_1938670746
ieee_primary_8013796
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE photonics technology letters
PublicationTitleAbbrev LPT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref17
ref16
ref8
ref7
dos santos (ref15) 2014
ref4
ref3
ref6
ref5
harrington (ref1) 2012
bishop (ref9) 2006
References_xml – ident: ref13
  doi: 10.1109/LGRS.2017.2671922
– ident: ref14
  doi: 10.1109/TKDE.2015.2399298
– ident: ref3
  doi: 10.1364/OE.20.00B181
– ident: ref11
  doi: 10.1016/j.neunet.2014.09.003
– year: 2012
  ident: ref1
  publication-title: Machine Learning in Action
  contributor:
    fullname: harrington
– start-page: 69
  year: 2014
  ident: ref15
  article-title: Deep convolutional neural networks for sentiment analysis of short texts
  publication-title: Proc COLING
  contributor:
    fullname: dos santos
– ident: ref4
  doi: 10.1364/OFC.2017.Th1J.1
– year: 2006
  ident: ref9
  publication-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: bishop
– ident: ref17
  doi: 10.1109/JLT.2015.2480798
– ident: ref16
  doi: 10.1364/OE.25.017150
– ident: ref12
  doi: 10.1038/nature16961
– ident: ref2
  doi: 10.1109/JLT.2015.2508502
– ident: ref5
  doi: 10.1109/LPT.2014.2375960
– ident: ref6
  doi: 10.1109/LPT.2016.2555857
– ident: ref8
  doi: 10.1016/j.optcom.2016.02.029
– ident: ref7
  doi: 10.1109/ECOC.2015.7341753
– ident: ref10
  doi: 10.1038/nature14539
SSID ssj0014534
Score 2.6458921
Snippet An intelligent eye-diagram analyzer is proposed to implement both modulation format recognition (MFR) and optical signal-to-noise rate (OSNR) estimation by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1667
SubjectTerms Artificial neural networks
Back propagation
Back propagation networks
Computer simulation
Convolution
convolution neural network (CNN)
Deep learning
eye diagram
Feature extraction
Format
Image processing
Kernel
Machine learning
Modulation
modulation format recognition (MFR)
Neural networks
Optical communication
Optical imaging
Optical noise
optical performance monitoring (OPM)
optical signal-to-noise rate (OSNR)
Recognition
Signal analysis
Signal to noise ratio
Title Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning
URI https://ieeexplore.ieee.org/document/8013796
https://www.proquest.com/docview/1938670746
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RSkgwUGhBFArywIKE2zwcP0boQx0gRW2R2KImdtjSirT_H9txKhAsbEkUW9Fd7LvzffcdwB3LqYwylmPjG2Ai8hSLjBAcckn1AB0Q2M5z0wWL3_lobGhyHva1MEopCz5TfXNpc_lyne3MUdmAG348QRvQYIJXtVr7jAGJqgyyR3zs-2FUpyQ9MXh-XRoMF-ubtGQUhT9MkO2p8msjttZl0vrfd53CifMi0WOl9jM4UEUbWs6jRG69lm04_kY32IZDC_fMyg7MXtbS9e1CE-u1onmNJNKPVoVEs0U8R2O9AVS1jchiC9AwjvGTNnwSjZTaIMfO-nEOb5PxcjjFrrUCzgLhbzEV2k4rU5iqDZgOemgQ5CxSiqYkDFOiAo_nYeTR1KcpE1mQ6zsWUC5F6EuifawLaBbrQl0CMoz8kfJXQupQjoY05Ss9d-b5WbrKqWJduK-lnWwqBo3ERh6eSLRmEqOZxGmmCx0j3f17TrBd6NXqSdwSKxPteXLKTLuUq79HXcORmbtC3vWguf3cqRtolHJ3a3-dL9fXvXg
link.rule.ids 315,782,786,798,27934,27935,54769
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IxqgHUdCIou7Bi4krfeyje1QewQjFACbeGtrdegMi8P_d3S5EoxdvbdNtm5nuzjc7M98A3PKcSZrxHBtsgInIUywyQnAYSaYHaIfAdp7rjXn8HrU7hibnflsLo5SyyWfqwRzaWL6cZ2uzVdaMDD-eYCXYpYQzUVRrbWMGhBYxZI_42PdDuglKeqLZf52YLC7-YAKTlIY_jJDtqvJrKbb2pVv535cdw5HDkeixUPwJ7KhZFSoOUyI3Y5dVOPxGOFiFPZvwmS1rMBzMpevchboWt6LRJpdIX5rOJBqO4xHq6CWgqG5ENrsAteIYP2nTJ1FbqQVy_Kwfp_DW7UxaPeyaK-AsEP4KM6EttTKlqdqEabeHBUHOqVIsJWGYEhV4UR5Sj6U-S7nIglyf8YBFUoS-JBplnUF5Np-pc0CGk58qfyqkduZYyNJoqp-deX6WTnOmeB3uNtJOFgWHRmJ9D08kWjOJ0UziNFOHmpHu9j4n2Do0NupJ3CRbJhp7RoybhikXf4-6gf3eZNBP-s_xyyUcmPcUeXgNKK8-1-oKSku5vra_0RcGFcDL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+Format+Recognition+and+OSNR+Estimation+Using+CNN-Based+Deep+Learning&rft.jtitle=IEEE+photonics+technology+letters&rft.au=Wang%2C+Danshi&rft.au=Zhang%2C+Min&rft.au=Li%2C+Ze&rft.au=Li%2C+Jin&rft.date=2017-10-01&rft.pub=IEEE&rft.issn=1041-1135&rft.volume=29&rft.issue=19&rft.spage=1667&rft.epage=1670&rft_id=info:doi/10.1109%2FLPT.2017.2742553&rft.externalDocID=8013796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-1135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-1135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-1135&client=summon