Synthesis and dehydrogenation of LiCa(NH2)3(BH3)2
We report the synthesis of a new hydrogen storage material with a composition of LiCa(NH2)3(BH3)2. The theoretical hydrogen capacity of LiCa(NH2)3(BH3)2 is 9.85 wt.%. It can be prepared by ball milling the mixture of calcium amidoborane (Ca(NH2BH3)2) and lithium amide (LiNH2) in a molar ratio of 1:1...
Saved in:
Published in: | International journal of hydrogen energy Vol. 37; no. 11; pp. 9076 - 9081 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-06-2012
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the synthesis of a new hydrogen storage material with a composition of LiCa(NH2)3(BH3)2. The theoretical hydrogen capacity of LiCa(NH2)3(BH3)2 is 9.85 wt.%. It can be prepared by ball milling the mixture of calcium amidoborane (Ca(NH2BH3)2) and lithium amide (LiNH2) in a molar ratio of 1:1. The experimental results show that this material starts to release hydrogen at a temperature as low as ca. 50 °C, which is ca. 70 °C lower than that of pure Ca(NH2BH3)2 possibly resulting from the active interaction of NH2− in LiNH2 with BH3 in Ca(NH2BH3)2. ca. 4.1 equiv. or 6.8 wt.% hydrogen can be released at 300 °C. The dehydrogenation is a mildly exothermic process forming stable nitride products.
► A new phase, LiCa(NH2)3(BH3)2, is synthesized. ► The dehydrogenation of LiCa(NH2)3(BH3)2 is reported. ► NH2− in lithium amide interacts with BH3 in calcium amidoborane strongly, resulting in a lower temperature for dehydrogenation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2012.02.112 |