Identifying Android malware using dynamically obtained features
The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform payments, store sensitive information and even to access other accounts on remote machines. This scenario has contributed to the rapid rise of...
Saved in:
Published in: | Journal of computer virology and hacking techniques Vol. 11; no. 1; pp. 9 - 17 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Paris
Springer Paris
01-02-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform payments, store sensitive information and even to access other accounts on remote machines. This scenario has contributed to the rapid rise of new malware samples targeting mobile platforms. Given that Android is the most widespread mobile operating system and that it provides more options regarding application markets (official and alternative stores), it has been the main target for mobile malware. As such, markets that publish Android applications have been used as a point of infection for many users, who unknowingly download some popular applications that are in fact disguised malware. Hence, there is an urge for techniques to analyze and identify malicious applications before they are published and able to harm users. In this article, we present a system to dynamically identify whether an Android application is malicious or not, based on machine learning and features extracted from Android API calls and system call traces. We evaluated our system with 7,520 apps, 3,780 for training and 3,740 for testing, and obtained a detection rate of 96.66 %. |
---|---|
AbstractList | The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform payments, store sensitive information and even to access other accounts on remote machines. This scenario has contributed to the rapid rise of new malware samples targeting mobile platforms. Given that Android is the most widespread mobile operating system and that it provides more options regarding application markets (official and alternative stores), it has been the main target for mobile malware. As such, markets that publish Android applications have been used as a point of infection for many users, who unknowingly download some popular applications that are in fact disguised malware. Hence, there is an urge for techniques to analyze and identify malicious applications before they are published and able to harm users. In this article, we present a system to dynamically identify whether an Android application is malicious or not, based on machine learning and features extracted from Android API calls and system call traces. We evaluated our system with 7,520 apps, 3,780 for training and 3,740 for testing, and obtained a detection rate of 96.66 %. |
Author | de Amorim, Matheus Favero Junquera, Glauco Barroso Afonso, Vitor Monte de Geus, Paulo Lício Grégio, André Ricardo Abed |
Author_xml | – sequence: 1 givenname: Vitor Monte surname: Afonso fullname: Afonso, Vitor Monte email: vitor@lasca.ic.unicamp.br organization: University of Campinas – sequence: 2 givenname: Matheus Favero surname: de Amorim fullname: de Amorim, Matheus Favero organization: University of Campinas – sequence: 3 givenname: André Ricardo Abed surname: Grégio fullname: Grégio, André Ricardo Abed organization: University of Campinas – sequence: 4 givenname: Glauco Barroso surname: Junquera fullname: Junquera, Glauco Barroso organization: Samsung Institute for Informatics Development (SIDI) – sequence: 5 givenname: Paulo Lício surname: de Geus fullname: de Geus, Paulo Lício organization: University of Campinas |
BookMark | eNp9kMtqwzAQRUVJoWmaD-jOP6BWb8mrEkIfgUA37VrIegQFRy6STfHf18ZddNXVHYY5w-XcglXqkgfgHqMHjJB8LBgzLCDCDCJCBJRXYD0lhUpSuvoz34BtKWeEECZcScHX4OngfOpjGGM6VbvkchdddTHtt8m-Gsq8dWMyl2hN245V1_QmJu-q4E0_ZF_uwHUwbfHb39yAz5fnj_0bPL6_Hva7I7REqR42hNfWKGRQI0SNpZF2rhyCdZwHwYKijWd1oITVNAjkMSbWUcNIQymhnG4AXv7a3JWSfdBfOV5MHjVGepagFwl6kqBnCVpODFmYMt2mk8_63A05TTX_gX4AkP1gwQ |
CitedBy_id | crossref_primary_10_1016_j_comcom_2023_12_036 crossref_primary_10_1109_ACCESS_2020_3006143 crossref_primary_10_1109_ACCESS_2023_3244656 crossref_primary_10_1145_3371924 crossref_primary_10_1016_j_eswa_2024_124347 crossref_primary_10_1080_1206212X_2023_2270804 crossref_primary_10_1109_MSEC_2018_2874855 crossref_primary_10_3390_electronics11244079 crossref_primary_10_1007_s10586_016_0703_5 crossref_primary_10_1016_j_jisa_2022_103202 crossref_primary_10_1155_2022_3111540 crossref_primary_10_1007_s11416_021_00390_2 crossref_primary_10_1109_TCYB_2017_2777960 crossref_primary_10_35940_ijeat_E2593_0610521 crossref_primary_10_1109_TIFS_2019_2950134 crossref_primary_10_35940_ijrte_A5804_0510121 crossref_primary_10_1016_j_compeleceng_2017_02_013 crossref_primary_10_1155_2022_5491411 crossref_primary_10_1016_j_mlwa_2022_100357 crossref_primary_10_1145_3567599 crossref_primary_10_7717_peerj_cs_907 crossref_primary_10_1109_ACCESS_2021_3123187 crossref_primary_10_1007_s10664_023_10375_y crossref_primary_10_1007_s40595_017_0095_3 crossref_primary_10_1155_2020_5190138 crossref_primary_10_3390_electronics11244148 crossref_primary_10_1155_2021_5538841 crossref_primary_10_1109_ACCESS_2019_2916886 crossref_primary_10_33411_IJIST_2023050101 crossref_primary_10_1007_s12652_020_02196_4 crossref_primary_10_1016_j_jisa_2020_102718 crossref_primary_10_23834_isrjournal_824662 crossref_primary_10_1016_j_cose_2023_103654 crossref_primary_10_1007_s11042_020_10371_0 crossref_primary_10_1007_s10207_022_00579_6 crossref_primary_10_1007_s12243_017_0580_9 crossref_primary_10_3390_info14070374 crossref_primary_10_1186_s42400_022_00119_8 crossref_primary_10_1016_j_eswa_2023_122255 crossref_primary_10_1016_j_cose_2022_102670 crossref_primary_10_1088_1757_899X_884_1_012060 crossref_primary_10_1016_j_jisa_2021_103063 crossref_primary_10_1007_s10586_019_03045_6 crossref_primary_10_1016_j_eswa_2024_123675 crossref_primary_10_1080_08839514_2021_2007327 crossref_primary_10_1109_ACCESS_2021_3082173 crossref_primary_10_1016_j_micpro_2020_103115 crossref_primary_10_1186_s40064_015_1356_1 crossref_primary_10_1016_j_cose_2020_101783 crossref_primary_10_1109_ACCESS_2019_2918139 crossref_primary_10_1016_j_cose_2019_101685 crossref_primary_10_1016_j_cose_2022_102833 crossref_primary_10_1155_2023_7827823 crossref_primary_10_4018_IJISP_319018 crossref_primary_10_3233_JIFS_231969 crossref_primary_10_4018_IJSI_309719 crossref_primary_10_1016_j_cose_2018_10_001 crossref_primary_10_1016_j_comnet_2019_107026 crossref_primary_10_1093_comjnl_bxac110 crossref_primary_10_1016_j_cose_2017_11_006 crossref_primary_10_4018_IJSSCI_312554 crossref_primary_10_1109_JIOT_2023_3262594 crossref_primary_10_1109_TIFS_2018_2879302 crossref_primary_10_1109_TR_2019_2927285 crossref_primary_10_35940_ijitee_G8951_0510721 crossref_primary_10_1109_TIA_2019_2958530 crossref_primary_10_3390_app9020277 crossref_primary_10_1016_j_cose_2023_103277 crossref_primary_10_18185_erzifbed_806683 crossref_primary_10_1145_3524020 crossref_primary_10_1007_s10664_022_10249_9 crossref_primary_10_1371_journal_pone_0238694 crossref_primary_10_1016_j_cose_2020_102087 crossref_primary_10_1109_TSE_2016_2615307 crossref_primary_10_32604_cmc_2023_038639 crossref_primary_10_3390_sym13071107 crossref_primary_10_32604_cmc_2022_024501 crossref_primary_10_1016_j_cose_2022_102835 crossref_primary_10_1186_s13635_019_0087_1 crossref_primary_10_1109_ACCESS_2019_2927552 |
Cites_doi | 10.1145/1656274.1656278 10.1109/TrustCom.2013.25 10.1109/MSN.2012.43 10.1007/978-3-642-33018-6_30 10.1109/ACSAC.2007.21 10.1145/2381934.2381950 10.1145/2480362.2480701 10.1145/2046614.2046618 10.1109/MALWARE.2010.5665792 10.1109/SP.2012.16 10.14722/ndss.2014.23247 10.1109/AsiaJCIS.2012.18 10.1145/2307636.2307663 |
ContentType | Journal Article |
Copyright | Springer-Verlag France 2014 |
Copyright_xml | – notice: Springer-Verlag France 2014 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11416-014-0226-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2263-8733 |
EndPage | 17 |
ExternalDocumentID | 10_1007_s11416_014_0226_7 |
GroupedDBID | -EM .VR 203 2J2 2JN 2JY 2KG 2KM 2LR 4.4 406 40E 95- 96X AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARTL AATNV AATVU AAUYE AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADINQ ADKNI ADKPE ADMDM ADOXG ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFNRJ AFQWF AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWIL AGWZB AGYKE AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 HVGLF IKXTQ IWAJR IXD J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O93 O9J PT4 R89 ROL RSV S16 SAP SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG UG4 UNUBA UOJIU UTJUX UZXMN VFIZW W23 W48 YLTOR Z7R Z7X Z81 Z83 Z88 ZMTXR AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION |
ID | FETCH-LOGICAL-c288t-b259ca80a0b66917a7c1416ffcd55f64f83be49f32493f60e112cd3a42b332353 |
IEDL.DBID | AEJHL |
ISSN | 2263-8733 |
IngestDate | Thu Nov 21 22:57:45 EST 2024 Sat Dec 16 12:00:54 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Malicious Application Android Application Taint Tracking System Call Android |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-b259ca80a0b66917a7c1416ffcd55f64f83be49f32493f60e112cd3a42b332353 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1007_s11416_014_0226_7 springer_journals_10_1007_s11416_014_0226_7 |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | Journal of computer virology and hacking techniques |
PublicationTitleAbbrev | J Comput Virol Hack Tech |
PublicationYear | 2015 |
Publisher | Springer Paris |
Publisher_xml | – name: Springer Paris |
References | Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Alvarez, G.: Puma: Permission usage to detect malware in android. In: CISIS/ICEUTE/SOCO Special Sessions, pp. 289–298 (2012) HallMFrankEHolmesGPfahringerBReutemannPWittenIThe weka data mining software: an updateACM SIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278 Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: Droidmat: Android malware detection through manifest and api calls tracing. In: Seventh Asia Joint Conference on Information Security (Asia JCIS). doi:10.1109/AsiaJCIS.2012.18 (2012) Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis. In: Proceedings of the 21st USENIX Conference on Security Symposium. USENIX Association (2012) Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zou, W.: Smartdroid: an automatic system for revealing ui-based trigger conditions in android applications. In: Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 93–104. ACM (2012) Juniper: Juniper networks mobile threat center third annual mobile threats report: March 2012 through March 2013. http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf (2013) Su, X., Chuah, M., Tan, G.: Smartphone dual defense protection framework: detecting malicious applications in android markets. In: 2012 Eighth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 153–160. doi:10.1109/MSN.2012.43 (2012) Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets. In: Proceedings of the 19th Annual Network and Distributed System Security Symposium (2012) DroidBox: Android application sandbox. https://code.google.com/p/droidbox/ (2011) iSecLab: Andrubis: a tool for analyzing unknown android applications. http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/ (2012) PoeplauSFratantonioYBianchiAKruegelCVignaGExecute this! analyzing unsafe and malicious dynamic code loading in android applicationsNDSS2014142326 Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android application sandbox system for suspicious software detection. In: 2010 5th International Conference on Malicious and Unwanted Software (MALWARE), pp. 55–62. IEEE (2010) Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accurate zero-day android malware detection. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 281–294. ACM (2012) Gartner: Gartner says worldwide sales of mobile phones declined 3 percent in third quarter of 2012; smartphone sales increased 47 percent. http://www.gartner.com/newsroom/id/2237315 (2012) Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-sandbox: having a deeper look into android applications. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1808–1815. ACM (2013) Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, pp. 1–6. USENIX Association (2010) Felt, A., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 3–14. ACM (2011) VRT: Changing the imei, provider, model, and phone number in the android emulator. http://vrt-blog.snort.org/2013/04/changing-imei-provider-model-and-phone.html (2013) Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (2012) Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: Effective and explainable detection of android malware in your pocket (2014) Spreitzenbarth, M.: The Evil Inside a Droid—Android Malware: past, present and future. In: E.F.S. Institute (ed.) Proceedings of the 1st Baltic Conference on Network Security & Forensics, pp. 41–59 (2012) Zheng, M., Sun, M., Lui, J.C.: Droidanalytics: a signature based analytic system to collect, extract, analyze and associate android malware. In: Proceedings of The 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 13) (2013) Elish, K.O., Yao, D., Ryder, B.G.: User-centric dependence analysis for identifying malicious mobile apps. In: Workshop on Mobile Security Technologies (2012) Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Computer Security Applications Conference, 2007, ACSAC 2007, Twenty-Third Annual, pp. 421–430. IEEE (2007) 226_CR20 226_CR10 226_CR21 S Poeplau (226_CR13) 2014; 14 226_CR24 M Hall (226_CR9) 2009; 11 226_CR14 226_CR11 226_CR22 226_CR12 226_CR23 226_CR17 226_CR18 226_CR15 226_CR8 226_CR16 226_CR7 226_CR6 226_CR5 226_CR19 226_CR4 226_CR3 226_CR2 226_CR1 |
References_xml | – ident: 226_CR3 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 226_CR9 publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 contributor: fullname: M Hall – ident: 226_CR4 – ident: 226_CR22 doi: 10.1109/TrustCom.2013.25 – ident: 226_CR5 – ident: 226_CR20 – ident: 226_CR17 doi: 10.1109/MSN.2012.43 – ident: 226_CR14 doi: 10.1007/978-3-642-33018-6_30 – ident: 226_CR24 – ident: 226_CR12 doi: 10.1109/ACSAC.2007.21 – ident: 226_CR21 doi: 10.1145/2381934.2381950 – ident: 226_CR18 – ident: 226_CR7 – ident: 226_CR11 – ident: 226_CR10 – ident: 226_CR16 doi: 10.1145/2480362.2480701 – ident: 226_CR6 doi: 10.1145/2046614.2046618 – ident: 226_CR2 doi: 10.1109/MALWARE.2010.5665792 – volume: 14 start-page: 23 year: 2014 ident: 226_CR13 publication-title: NDSS contributor: fullname: S Poeplau – ident: 226_CR15 – ident: 226_CR23 doi: 10.1109/SP.2012.16 – ident: 226_CR1 doi: 10.14722/ndss.2014.23247 – ident: 226_CR19 doi: 10.1109/AsiaJCIS.2012.18 – ident: 226_CR8 doi: 10.1145/2307636.2307663 |
SSID | ssj0001258765 |
Score | 2.3876011 |
Snippet | The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 9 |
SubjectTerms | Computer Science Original Paper |
Title | Identifying Android malware using dynamically obtained features |
URI | https://link.springer.com/article/10.1007/s11416-014-0226-7 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5se_FiXbFuzMGTMpJmliQnKbaliHhRoT2FWUVsU-mC-O99k8Va0IOecpkkw8u8vO9t30PoXPMk5kIL4gB-ErDQlCiqQxJqplUcmFBY7ygOHqL7YdzteZqc8Ct0kb1eVRnJ_Ee96nVrA3YAz5cRMDuCRDXUANPD4Ww3Or3bwd23yAoHFedVCvOne9eN0HoGNDcs_eZ_trSNtkoYiTvFd99BGzbbRc1qRAMuNXYPXReNuHkzE_bFi9MXgydy_C5nFvua92dsipn0cjz-wFPlIwXWYGdzws_5Pnrq9x5vBqScmUB0GMcLosCd0TIOZKCEAFdMRtpv0jltOHeCuZgqyxIHOCqhTgQW8JY2VLJQURpSTg9QPZtm9hBhrQJH2zqymjpmGDhmRuZ0eAk83EnWQheVENO3ghojXZEg-7emIJrUiyaNWuiykmFaasn899VHf1p9jDYBxvCilvoE1RezpT1FtblZnpVnw1-Ho1H3E3aItZs |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PejF-sT63IMnZSHNPpKcpNiWirUXK7SnsE8Rait9IP57d_OgFvSg902yTDKZ79uZ-QbgSrEkZlxxbB38xC5CEyyJCnGoqJJxoENuPFHsPkX9Ydxqe5kcUvbCZNXuZUoy-1Ovmt0aDjw46kuxizscR5tQ9WLnYQWqzeFo1Pp2tMKcj7Myh_nTtetRaD0FmkWWTu1fe9qFnQJIomb-5vdgw0z2oVYOaUCFzx7Abd6Km7UzIV--OH3V6E2MP8TMIF_1_oJ0PpVejMefaCr9WYHRyJpM8nN-CM-d9uCui4upCViFcbzA0hEaJeJABJJzR8ZEpPwmrVWaMcupjYk0NLEOSSXE8sA4xKU0ETSUhISEkSOoTKYTcwxIycCShoqMIpZq6qiZFpkgXuJubgWtw3VpxfQ9F8dIVzLI_qmpM03qTZNGdbgpbZgWfjL_ffXJn1ZfwlZ38NhLe_f9h1PYdqCG5ZXVZ1BZzJbmHDbnenlRfChf_bW4Gw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oC-LFumJdc_CkhE4nmczMqRTb2qIUwQrehqwi1GnpgvjvTWahFvQg3rPxyON9b_sewJUM4ihgkmFj4Se2FppgQaSPfUmliDzlM-0cxf5TOHyJOl1Hk9Mqe2GyavcyJZn3NDiWpnTRmCrTWDW-NS2QsG4wxdYGMRxuQtVFxWgFqu3B6K73LcwSWH0PynzmT3vXLdJ6OjSzMr3av9-3CzsFwETt_EfswYZO96FWDm9AhS4fQCtv0c3anJAra5y8KfTOxx98ppGrhn9FKp9Wz8fjTzQRLoagFTI6owKdH8Jzrzu67eNimgKWfhQtsLCOjuSRxz3BmHXSeCjdI42RKggMoyYiQtPYWIQVE8M8bZGYVIRTXxDik4AcQSWdpPoYkBSeIU0ZakkMVdS6bIpnRHmxPdxwWofrUqLJNCfNSFb0yO7WxIomcaJJwjrclPJMCv2Z_7765E-rL2HrsdNLHgbD-1PYtlgnyAuuz6CymC31OWzO1fKi-DNfxpPAsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Android+malware+using+dynamically+obtained+features&rft.jtitle=Journal+of+computer+virology+and+hacking+techniques&rft.au=Afonso%2C+Vitor+Monte&rft.au=de+Amorim%2C+Matheus+Favero&rft.au=Gr%C3%A9gio%2C+Andr%C3%A9+Ricardo+Abed&rft.au=Junquera%2C+Glauco+Barroso&rft.date=2015-02-01&rft.pub=Springer+Paris&rft.eissn=2263-8733&rft.volume=11&rft.issue=1&rft.spage=9&rft.epage=17&rft_id=info:doi/10.1007%2Fs11416-014-0226-7&rft.externalDocID=10_1007_s11416_014_0226_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2263-8733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2263-8733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2263-8733&client=summon |