Identifying Android malware using dynamically obtained features

The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform payments, store sensitive information and even to access other accounts on remote machines. This scenario has contributed to the rapid rise of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer virology and hacking techniques Vol. 11; no. 1; pp. 9 - 17
Main Authors: Afonso, Vitor Monte, de Amorim, Matheus Favero, Grégio, André Ricardo Abed, Junquera, Glauco Barroso, de Geus, Paulo Lício
Format: Journal Article
Language:English
Published: Paris Springer Paris 01-02-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform payments, store sensitive information and even to access other accounts on remote machines. This scenario has contributed to the rapid rise of new malware samples targeting mobile platforms. Given that Android is the most widespread mobile operating system and that it provides more options regarding application markets (official and alternative stores), it has been the main target for mobile malware. As such, markets that publish Android applications have been used as a point of infection for many users, who unknowingly download some popular applications that are in fact disguised malware. Hence, there is an urge for techniques to analyze and identify malicious applications before they are published and able to harm users. In this article, we present a system to dynamically identify whether an Android application is malicious or not, based on machine learning and features extracted from Android API calls and system call traces. We evaluated our system with 7,520 apps, 3,780 for training and 3,740 for testing, and obtained a detection rate of 96.66 %.
AbstractList The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform payments, store sensitive information and even to access other accounts on remote machines. This scenario has contributed to the rapid rise of new malware samples targeting mobile platforms. Given that Android is the most widespread mobile operating system and that it provides more options regarding application markets (official and alternative stores), it has been the main target for mobile malware. As such, markets that publish Android applications have been used as a point of infection for many users, who unknowingly download some popular applications that are in fact disguised malware. Hence, there is an urge for techniques to analyze and identify malicious applications before they are published and able to harm users. In this article, we present a system to dynamically identify whether an Android application is malicious or not, based on machine learning and features extracted from Android API calls and system call traces. We evaluated our system with 7,520 apps, 3,780 for training and 3,740 for testing, and obtained a detection rate of 96.66 %.
Author de Amorim, Matheus Favero
Junquera, Glauco Barroso
Afonso, Vitor Monte
de Geus, Paulo Lício
Grégio, André Ricardo Abed
Author_xml – sequence: 1
  givenname: Vitor Monte
  surname: Afonso
  fullname: Afonso, Vitor Monte
  email: vitor@lasca.ic.unicamp.br
  organization: University of Campinas
– sequence: 2
  givenname: Matheus Favero
  surname: de Amorim
  fullname: de Amorim, Matheus Favero
  organization: University of Campinas
– sequence: 3
  givenname: André Ricardo Abed
  surname: Grégio
  fullname: Grégio, André Ricardo Abed
  organization: University of Campinas
– sequence: 4
  givenname: Glauco Barroso
  surname: Junquera
  fullname: Junquera, Glauco Barroso
  organization: Samsung Institute for Informatics Development (SIDI)
– sequence: 5
  givenname: Paulo Lício
  surname: de Geus
  fullname: de Geus, Paulo Lício
  organization: University of Campinas
BookMark eNp9kMtqwzAQRUVJoWmaD-jOP6BWb8mrEkIfgUA37VrIegQFRy6STfHf18ZddNXVHYY5w-XcglXqkgfgHqMHjJB8LBgzLCDCDCJCBJRXYD0lhUpSuvoz34BtKWeEECZcScHX4OngfOpjGGM6VbvkchdddTHtt8m-Gsq8dWMyl2hN245V1_QmJu-q4E0_ZF_uwHUwbfHb39yAz5fnj_0bPL6_Hva7I7REqR42hNfWKGRQI0SNpZF2rhyCdZwHwYKijWd1oITVNAjkMSbWUcNIQymhnG4AXv7a3JWSfdBfOV5MHjVGepagFwl6kqBnCVpODFmYMt2mk8_63A05TTX_gX4AkP1gwQ
CitedBy_id crossref_primary_10_1016_j_comcom_2023_12_036
crossref_primary_10_1109_ACCESS_2020_3006143
crossref_primary_10_1109_ACCESS_2023_3244656
crossref_primary_10_1145_3371924
crossref_primary_10_1016_j_eswa_2024_124347
crossref_primary_10_1080_1206212X_2023_2270804
crossref_primary_10_1109_MSEC_2018_2874855
crossref_primary_10_3390_electronics11244079
crossref_primary_10_1007_s10586_016_0703_5
crossref_primary_10_1016_j_jisa_2022_103202
crossref_primary_10_1155_2022_3111540
crossref_primary_10_1007_s11416_021_00390_2
crossref_primary_10_1109_TCYB_2017_2777960
crossref_primary_10_35940_ijeat_E2593_0610521
crossref_primary_10_1109_TIFS_2019_2950134
crossref_primary_10_35940_ijrte_A5804_0510121
crossref_primary_10_1016_j_compeleceng_2017_02_013
crossref_primary_10_1155_2022_5491411
crossref_primary_10_1016_j_mlwa_2022_100357
crossref_primary_10_1145_3567599
crossref_primary_10_7717_peerj_cs_907
crossref_primary_10_1109_ACCESS_2021_3123187
crossref_primary_10_1007_s10664_023_10375_y
crossref_primary_10_1007_s40595_017_0095_3
crossref_primary_10_1155_2020_5190138
crossref_primary_10_3390_electronics11244148
crossref_primary_10_1155_2021_5538841
crossref_primary_10_1109_ACCESS_2019_2916886
crossref_primary_10_33411_IJIST_2023050101
crossref_primary_10_1007_s12652_020_02196_4
crossref_primary_10_1016_j_jisa_2020_102718
crossref_primary_10_23834_isrjournal_824662
crossref_primary_10_1016_j_cose_2023_103654
crossref_primary_10_1007_s11042_020_10371_0
crossref_primary_10_1007_s10207_022_00579_6
crossref_primary_10_1007_s12243_017_0580_9
crossref_primary_10_3390_info14070374
crossref_primary_10_1186_s42400_022_00119_8
crossref_primary_10_1016_j_eswa_2023_122255
crossref_primary_10_1016_j_cose_2022_102670
crossref_primary_10_1088_1757_899X_884_1_012060
crossref_primary_10_1016_j_jisa_2021_103063
crossref_primary_10_1007_s10586_019_03045_6
crossref_primary_10_1016_j_eswa_2024_123675
crossref_primary_10_1080_08839514_2021_2007327
crossref_primary_10_1109_ACCESS_2021_3082173
crossref_primary_10_1016_j_micpro_2020_103115
crossref_primary_10_1186_s40064_015_1356_1
crossref_primary_10_1016_j_cose_2020_101783
crossref_primary_10_1109_ACCESS_2019_2918139
crossref_primary_10_1016_j_cose_2019_101685
crossref_primary_10_1016_j_cose_2022_102833
crossref_primary_10_1155_2023_7827823
crossref_primary_10_4018_IJISP_319018
crossref_primary_10_3233_JIFS_231969
crossref_primary_10_4018_IJSI_309719
crossref_primary_10_1016_j_cose_2018_10_001
crossref_primary_10_1016_j_comnet_2019_107026
crossref_primary_10_1093_comjnl_bxac110
crossref_primary_10_1016_j_cose_2017_11_006
crossref_primary_10_4018_IJSSCI_312554
crossref_primary_10_1109_JIOT_2023_3262594
crossref_primary_10_1109_TIFS_2018_2879302
crossref_primary_10_1109_TR_2019_2927285
crossref_primary_10_35940_ijitee_G8951_0510721
crossref_primary_10_1109_TIA_2019_2958530
crossref_primary_10_3390_app9020277
crossref_primary_10_1016_j_cose_2023_103277
crossref_primary_10_18185_erzifbed_806683
crossref_primary_10_1145_3524020
crossref_primary_10_1007_s10664_022_10249_9
crossref_primary_10_1371_journal_pone_0238694
crossref_primary_10_1016_j_cose_2020_102087
crossref_primary_10_1109_TSE_2016_2615307
crossref_primary_10_32604_cmc_2023_038639
crossref_primary_10_3390_sym13071107
crossref_primary_10_32604_cmc_2022_024501
crossref_primary_10_1016_j_cose_2022_102835
crossref_primary_10_1186_s13635_019_0087_1
crossref_primary_10_1109_ACCESS_2019_2927552
Cites_doi 10.1145/1656274.1656278
10.1109/TrustCom.2013.25
10.1109/MSN.2012.43
10.1007/978-3-642-33018-6_30
10.1109/ACSAC.2007.21
10.1145/2381934.2381950
10.1145/2480362.2480701
10.1145/2046614.2046618
10.1109/MALWARE.2010.5665792
10.1109/SP.2012.16
10.14722/ndss.2014.23247
10.1109/AsiaJCIS.2012.18
10.1145/2307636.2307663
ContentType Journal Article
Copyright Springer-Verlag France 2014
Copyright_xml – notice: Springer-Verlag France 2014
DBID AAYXX
CITATION
DOI 10.1007/s11416-014-0226-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2263-8733
EndPage 17
ExternalDocumentID 10_1007_s11416_014_0226_7
GroupedDBID -EM
.VR
203
2J2
2JN
2JY
2KG
2KM
2LR
4.4
406
40E
95-
96X
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFNRJ
AFQWF
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
HVGLF
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O93
O9J
PT4
R89
ROL
RSV
S16
SAP
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
YLTOR
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
ID FETCH-LOGICAL-c288t-b259ca80a0b66917a7c1416ffcd55f64f83be49f32493f60e112cd3a42b332353
IEDL.DBID AEJHL
ISSN 2263-8733
IngestDate Thu Nov 21 22:57:45 EST 2024
Sat Dec 16 12:00:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Malicious Application
Android Application
Taint Tracking
System Call
Android
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-b259ca80a0b66917a7c1416ffcd55f64f83be49f32493f60e112cd3a42b332353
PageCount 9
ParticipantIDs crossref_primary_10_1007_s11416_014_0226_7
springer_journals_10_1007_s11416_014_0226_7
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationTitle Journal of computer virology and hacking techniques
PublicationTitleAbbrev J Comput Virol Hack Tech
PublicationYear 2015
Publisher Springer Paris
Publisher_xml – name: Springer Paris
References Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Alvarez, G.: Puma: Permission usage to detect malware in android. In: CISIS/ICEUTE/SOCO Special Sessions, pp. 289–298 (2012)
HallMFrankEHolmesGPfahringerBReutemannPWittenIThe weka data mining software: an updateACM SIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278
Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: Droidmat: Android malware detection through manifest and api calls tracing. In: Seventh Asia Joint Conference on Information Security (Asia JCIS). doi:10.1109/AsiaJCIS.2012.18 (2012)
Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis. In: Proceedings of the 21st USENIX Conference on Security Symposium. USENIX Association (2012)
Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zou, W.: Smartdroid: an automatic system for revealing ui-based trigger conditions in android applications. In: Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 93–104. ACM (2012)
Juniper: Juniper networks mobile threat center third annual mobile threats report: March 2012 through March 2013. http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf (2013)
Su, X., Chuah, M., Tan, G.: Smartphone dual defense protection framework: detecting malicious applications in android markets. In: 2012 Eighth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 153–160. doi:10.1109/MSN.2012.43 (2012)
Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets. In: Proceedings of the 19th Annual Network and Distributed System Security Symposium (2012)
DroidBox: Android application sandbox. https://code.google.com/p/droidbox/ (2011)
iSecLab: Andrubis: a tool for analyzing unknown android applications. http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/ (2012)
PoeplauSFratantonioYBianchiAKruegelCVignaGExecute this! analyzing unsafe and malicious dynamic code loading in android applicationsNDSS2014142326
Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android application sandbox system for suspicious software detection. In: 2010 5th International Conference on Malicious and Unwanted Software (MALWARE), pp. 55–62. IEEE (2010)
Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accurate zero-day android malware detection. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 281–294. ACM (2012)
Gartner: Gartner says worldwide sales of mobile phones declined 3 percent in third quarter of 2012; smartphone sales increased 47 percent. http://www.gartner.com/newsroom/id/2237315 (2012)
Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-sandbox: having a deeper look into android applications. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1808–1815. ACM (2013)
Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, pp. 1–6. USENIX Association (2010)
Felt, A., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 3–14. ACM (2011)
VRT: Changing the imei, provider, model, and phone number in the android emulator. http://vrt-blog.snort.org/2013/04/changing-imei-provider-model-and-phone.html (2013)
Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (2012)
Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: Effective and explainable detection of android malware in your pocket (2014)
Spreitzenbarth, M.: The Evil Inside a Droid—Android Malware: past, present and future. In: E.F.S. Institute (ed.) Proceedings of the 1st Baltic Conference on Network Security & Forensics, pp. 41–59 (2012)
Zheng, M., Sun, M., Lui, J.C.: Droidanalytics: a signature based analytic system to collect, extract, analyze and associate android malware. In: Proceedings of The 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 13) (2013)
Elish, K.O., Yao, D., Ryder, B.G.: User-centric dependence analysis for identifying malicious mobile apps. In: Workshop on Mobile Security Technologies (2012)
Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Computer Security Applications Conference, 2007, ACSAC 2007, Twenty-Third Annual, pp. 421–430. IEEE (2007)
226_CR20
226_CR10
226_CR21
S Poeplau (226_CR13) 2014; 14
226_CR24
M Hall (226_CR9) 2009; 11
226_CR14
226_CR11
226_CR22
226_CR12
226_CR23
226_CR17
226_CR18
226_CR15
226_CR8
226_CR16
226_CR7
226_CR6
226_CR5
226_CR19
226_CR4
226_CR3
226_CR2
226_CR1
References_xml – ident: 226_CR3
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 226_CR9
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
  contributor:
    fullname: M Hall
– ident: 226_CR4
– ident: 226_CR22
  doi: 10.1109/TrustCom.2013.25
– ident: 226_CR5
– ident: 226_CR20
– ident: 226_CR17
  doi: 10.1109/MSN.2012.43
– ident: 226_CR14
  doi: 10.1007/978-3-642-33018-6_30
– ident: 226_CR24
– ident: 226_CR12
  doi: 10.1109/ACSAC.2007.21
– ident: 226_CR21
  doi: 10.1145/2381934.2381950
– ident: 226_CR18
– ident: 226_CR7
– ident: 226_CR11
– ident: 226_CR10
– ident: 226_CR16
  doi: 10.1145/2480362.2480701
– ident: 226_CR6
  doi: 10.1145/2046614.2046618
– ident: 226_CR2
  doi: 10.1109/MALWARE.2010.5665792
– volume: 14
  start-page: 23
  year: 2014
  ident: 226_CR13
  publication-title: NDSS
  contributor:
    fullname: S Poeplau
– ident: 226_CR15
– ident: 226_CR23
  doi: 10.1109/SP.2012.16
– ident: 226_CR1
  doi: 10.14722/ndss.2014.23247
– ident: 226_CR19
  doi: 10.1109/AsiaJCIS.2012.18
– ident: 226_CR8
  doi: 10.1145/2307636.2307663
SSID ssj0001258765
Score 2.3876011
Snippet The constant evolution of mobile devices’ resources and features turned ordinary phones into powerful and portable computers, leading their users to perform...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 9
SubjectTerms Computer Science
Original Paper
Title Identifying Android malware using dynamically obtained features
URI https://link.springer.com/article/10.1007/s11416-014-0226-7
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5se_FiXbFuzMGTMpJmliQnKbaliHhRoT2FWUVsU-mC-O99k8Va0IOecpkkw8u8vO9t30PoXPMk5kIL4gB-ErDQlCiqQxJqplUcmFBY7ygOHqL7YdzteZqc8Ct0kb1eVRnJ_Ee96nVrA3YAz5cRMDuCRDXUANPD4Ww3Or3bwd23yAoHFedVCvOne9eN0HoGNDcs_eZ_trSNtkoYiTvFd99BGzbbRc1qRAMuNXYPXReNuHkzE_bFi9MXgydy_C5nFvua92dsipn0cjz-wFPlIwXWYGdzws_5Pnrq9x5vBqScmUB0GMcLosCd0TIOZKCEAFdMRtpv0jltOHeCuZgqyxIHOCqhTgQW8JY2VLJQURpSTg9QPZtm9hBhrQJH2zqymjpmGDhmRuZ0eAk83EnWQheVENO3ghojXZEg-7emIJrUiyaNWuiykmFaasn899VHf1p9jDYBxvCilvoE1RezpT1FtblZnpVnw1-Ho1H3E3aItZs
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PejF-sT63IMnZSHNPpKcpNiWirUXK7SnsE8Rait9IP57d_OgFvSg902yTDKZ79uZ-QbgSrEkZlxxbB38xC5CEyyJCnGoqJJxoENuPFHsPkX9Ydxqe5kcUvbCZNXuZUoy-1Ovmt0aDjw46kuxizscR5tQ9WLnYQWqzeFo1Pp2tMKcj7Myh_nTtetRaD0FmkWWTu1fe9qFnQJIomb-5vdgw0z2oVYOaUCFzx7Abd6Km7UzIV--OH3V6E2MP8TMIF_1_oJ0PpVejMefaCr9WYHRyJpM8nN-CM-d9uCui4upCViFcbzA0hEaJeJABJJzR8ZEpPwmrVWaMcupjYk0NLEOSSXE8sA4xKU0ETSUhISEkSOoTKYTcwxIycCShoqMIpZq6qiZFpkgXuJubgWtw3VpxfQ9F8dIVzLI_qmpM03qTZNGdbgpbZgWfjL_ffXJn1ZfwlZ38NhLe_f9h1PYdqCG5ZXVZ1BZzJbmHDbnenlRfChf_bW4Gw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oC-LFumJdc_CkhE4nmczMqRTb2qIUwQrehqwi1GnpgvjvTWahFvQg3rPxyON9b_sewJUM4ihgkmFj4Se2FppgQaSPfUmliDzlM-0cxf5TOHyJOl1Hk9Mqe2GyavcyJZn3NDiWpnTRmCrTWDW-NS2QsG4wxdYGMRxuQtVFxWgFqu3B6K73LcwSWH0PynzmT3vXLdJ6OjSzMr3av9-3CzsFwETt_EfswYZO96FWDm9AhS4fQCtv0c3anJAra5y8KfTOxx98ppGrhn9FKp9Wz8fjTzQRLoagFTI6owKdH8Jzrzu67eNimgKWfhQtsLCOjuSRxz3BmHXSeCjdI42RKggMoyYiQtPYWIQVE8M8bZGYVIRTXxDik4AcQSWdpPoYkBSeIU0ZakkMVdS6bIpnRHmxPdxwWofrUqLJNCfNSFb0yO7WxIomcaJJwjrclPJMCv2Z_7765E-rL2HrsdNLHgbD-1PYtlgnyAuuz6CymC31OWzO1fKi-DNfxpPAsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Android+malware+using+dynamically+obtained+features&rft.jtitle=Journal+of+computer+virology+and+hacking+techniques&rft.au=Afonso%2C+Vitor+Monte&rft.au=de+Amorim%2C+Matheus+Favero&rft.au=Gr%C3%A9gio%2C+Andr%C3%A9+Ricardo+Abed&rft.au=Junquera%2C+Glauco+Barroso&rft.date=2015-02-01&rft.pub=Springer+Paris&rft.eissn=2263-8733&rft.volume=11&rft.issue=1&rft.spage=9&rft.epage=17&rft_id=info:doi/10.1007%2Fs11416-014-0226-7&rft.externalDocID=10_1007_s11416_014_0226_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2263-8733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2263-8733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2263-8733&client=summon