Thermodynamic evidence for nematic superconductivity in CuxBi2Se3

In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu x Bi 2 Se 3 provide evidence for a nematic superconductor. In condensed matter physics, spontaneous symmetry breaking has been a key concept, and disc...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics Vol. 13; no. 2; pp. 123 - 126
Main Authors: Yonezawa, Shingo, Tajiri, Kengo, Nakata, Suguru, Nagai, Yuki, Wang, Zhiwei, Segawa, Kouji, Ando, Yoichi, Maeno, Yoshiteru
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-02-2017
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu x Bi 2 Se 3 provide evidence for a nematic superconductor. In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our understanding of matter 1 , 2 . Recently, electronic nematicity, novel spontaneous rotational-symmetry breaking leading to an emergence of a special direction in electron liquids, has been attracting significant attention 3 , 4 , 5 , 6 . Here, we show bulk thermodynamic evidence for nematic superconductivity, in which the nematicity emerges in the superconducting gap amplitude, in Cu x Bi 2 Se 3 . Based on high-resolution calorimetry of single-crystalline samples under accurate two-axis control of the magnetic field direction, we discovered clear two-fold symmetry in the specific heat and in the upper critical field despite the trigonal symmetry of the lattice. Nematic superconductivity for this material should possess a unique topological nature associated with odd parity 7 , 8 , 9 . Thus, our findings establish a new class of spontaneously symmetry-broken states of matter—namely, odd-parity nematic superconductivity.
AbstractList In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu x Bi 2 Se 3 provide evidence for a nematic superconductor. In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our understanding of matter 1 , 2 . Recently, electronic nematicity, novel spontaneous rotational-symmetry breaking leading to an emergence of a special direction in electron liquids, has been attracting significant attention 3 , 4 , 5 , 6 . Here, we show bulk thermodynamic evidence for nematic superconductivity, in which the nematicity emerges in the superconducting gap amplitude, in Cu x Bi 2 Se 3 . Based on high-resolution calorimetry of single-crystalline samples under accurate two-axis control of the magnetic field direction, we discovered clear two-fold symmetry in the specific heat and in the upper critical field despite the trigonal symmetry of the lattice. Nematic superconductivity for this material should possess a unique topological nature associated with odd parity 7 , 8 , 9 . Thus, our findings establish a new class of spontaneously symmetry-broken states of matter—namely, odd-parity nematic superconductivity.
In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our understanding of matter. Recently, electronic nematicity, novel spontaneous rotational-symmetry breaking leading to an emergence of a special direction in electron liquids, has been attracting significant attention. Here, we show bulk thermodynamic evidence for nematic superconductivity, in which the nematicity emerges in the superconducting gap amplitude, in CuxBi2Se3.
Author Tajiri, Kengo
Yonezawa, Shingo
Nagai, Yuki
Nakata, Suguru
Segawa, Kouji
Ando, Yoichi
Wang, Zhiwei
Maeno, Yoshiteru
Author_xml – sequence: 1
  givenname: Shingo
  orcidid: 0000-0002-7476-3604
  surname: Yonezawa
  fullname: Yonezawa, Shingo
  email: yonezawa@scphys.kyoto-u.ac.jp
  organization: Department of Physics, Graduate School of Science, Kyoto University
– sequence: 2
  givenname: Kengo
  surname: Tajiri
  fullname: Tajiri, Kengo
  organization: Department of Physics, Graduate School of Science, Kyoto University
– sequence: 3
  givenname: Suguru
  surname: Nakata
  fullname: Nakata, Suguru
  organization: Faculty of Science, Kyoto University
– sequence: 4
  givenname: Yuki
  orcidid: 0000-0001-5098-5440
  surname: Nagai
  fullname: Nagai, Yuki
  organization: CCSE, Japan Atomic Energy Agency
– sequence: 5
  givenname: Zhiwei
  surname: Wang
  fullname: Wang, Zhiwei
  organization: The Institute of Scientific and Industrial Research, Osaka University, Institute of Physics II, University of Cologne
– sequence: 6
  givenname: Kouji
  surname: Segawa
  fullname: Segawa, Kouji
  organization: The Institute of Scientific and Industrial Research, Osaka University, Department of Physics, Graduate School of Science, Kyoto Sangyo University
– sequence: 7
  givenname: Yoichi
  orcidid: 0000-0002-3553-3355
  surname: Ando
  fullname: Ando, Yoichi
  organization: The Institute of Scientific and Industrial Research, Osaka University, Institute of Physics II, University of Cologne
– sequence: 8
  givenname: Yoshiteru
  surname: Maeno
  fullname: Maeno, Yoshiteru
  organization: Department of Physics, Graduate School of Science, Kyoto University
BookMark eNpl0E1Lw0AQBuBFKthWD_6DgCeF6H4l2T3W4BcUPFjPYbOZ2C1mN-4mxfx7UyJF8DTD8PAOvAs0s84CQpcE3xLMxJ1tt0NgEmcnaE4ynsSUCzI77hk7Q4sQdhhzmhI2R6vNFnzjqsGqxugI9qYCqyGqnY8sNKobj6FvwWtnq153Zm-6ITI2yvvve0PfgJ2j01p9Brj4nUv0_viwyZ_j9evTS75ax5oK0cUUWCm0wqWCpExrWlKlsOS4zkTFNSeMccqSUipMORO6TGSiNeYVrpWkkjK2RFdTbuvdVw-hK3au93Z8WRCRci6pwAd1PSntXQge6qL1plF-KAguDg0Vx4ZGezPZMBr7Af5P4j_8A7uLaaU
CitedBy_id crossref_primary_10_1039_D3CP00642E
crossref_primary_10_1103_PhysRevB_104_L020506
crossref_primary_10_1103_PhysRevB_96_144512
crossref_primary_10_1103_PhysRevB_101_060501
crossref_primary_10_1103_PhysRevLett_123_027002
crossref_primary_10_1103_PhysRevResearch_5_L012034
crossref_primary_10_1103_PhysRevB_101_220503
crossref_primary_10_1038_s41598_017_10510_y
crossref_primary_10_1103_PhysRevB_103_174518
crossref_primary_10_1103_PhysRevLett_118_227001
crossref_primary_10_1088_2399_6528_abbb58
crossref_primary_10_1103_PhysRevB_101_180512
crossref_primary_10_1103_PhysRevB_98_024501
crossref_primary_10_1103_PhysRevB_95_201109
crossref_primary_10_1103_PhysRevLett_118_227002
crossref_primary_10_1103_PhysRevB_98_224509
crossref_primary_10_1103_PhysRevB_96_144504
crossref_primary_10_7498_aps_68_20181698
crossref_primary_10_1038_s41467_019_10942_2
crossref_primary_10_1016_j_chaos_2023_114439
crossref_primary_10_1016_j_physc_2023_1354252
crossref_primary_10_1103_PhysRevResearch_3_L032071
crossref_primary_10_1103_PhysRevB_105_134517
crossref_primary_10_1103_PhysRevB_106_075151
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_35848_1347_4065_abdc33
crossref_primary_10_1103_PhysRevLett_119_167001
crossref_primary_10_1103_PhysRevB_103_094508
crossref_primary_10_1103_PhysRevB_105_094508
crossref_primary_10_1088_1361_648X_aacf6a
crossref_primary_10_1103_PhysRevB_96_224518
crossref_primary_10_1038_s41567_022_01812_8
crossref_primary_10_7498_aps_71_20220596
crossref_primary_10_1038_s41567_019_0576_7
crossref_primary_10_1103_PhysRevB_101_014505
crossref_primary_10_1088_1742_6596_2323_1_012003
crossref_primary_10_1038_s41535_017_0064_1
crossref_primary_10_7566_JPSJ_87_033703
crossref_primary_10_1134_S0021364022601816
crossref_primary_10_1016_j_physd_2020_132705
crossref_primary_10_1007_s44214_022_00005_x
crossref_primary_10_1038_s41467_021_25121_5
crossref_primary_10_1103_PhysRevX_13_041050
crossref_primary_10_1103_PhysRevLett_127_227001
crossref_primary_10_1002_qute_201800112
crossref_primary_10_1103_PhysRevB_107_104514
crossref_primary_10_1038_s41535_017_0041_8
crossref_primary_10_1103_PhysRevB_101_224513
crossref_primary_10_1016_j_aop_2021_168439
crossref_primary_10_1007_s10948_021_06055_x
crossref_primary_10_1038_s41467_020_16871_9
crossref_primary_10_1088_1361_648X_ab41c7
crossref_primary_10_1103_PhysRevLett_123_137203
crossref_primary_10_1088_1361_648X_ac1f4d
crossref_primary_10_1038_s41467_021_27084_z
crossref_primary_10_1103_PhysRevB_98_024508
crossref_primary_10_1103_PhysRevB_104_L220502
crossref_primary_10_1103_PhysRevB_106_195415
crossref_primary_10_1103_PhysRevB_103_104505
crossref_primary_10_1088_1674_1056_27_10_107901
crossref_primary_10_1088_2515_7639_ac93b5
crossref_primary_10_1103_PhysRevB_101_054509
crossref_primary_10_1103_PhysRevB_98_085133
crossref_primary_10_1103_PhysRevMaterials_4_041801
crossref_primary_10_1103_PhysRevB_103_224504
crossref_primary_10_1103_PhysRevB_102_094202
crossref_primary_10_7566_JPSJ_91_123702
crossref_primary_10_1134_S002136402003008X
crossref_primary_10_1038_s41467_019_09869_5
crossref_primary_10_1038_s41598_019_48906_7
crossref_primary_10_1103_PhysRevB_101_064512
crossref_primary_10_1103_PhysRevB_103_035115
crossref_primary_10_1002_pssr_202000546
crossref_primary_10_1103_PhysRevB_98_014505
crossref_primary_10_1103_PhysRevMaterials_6_034201
crossref_primary_10_1103_PhysRevLett_125_187001
crossref_primary_10_1038_s41535_021_00411_9
crossref_primary_10_1103_PhysRevB_101_024505
crossref_primary_10_7566_JPSJ_89_043703
crossref_primary_10_1103_PhysRevB_100_224509
crossref_primary_10_1016_j_aop_2021_168494
crossref_primary_10_1021_acs_nanolett_9b04639
crossref_primary_10_3390_ma17081903
crossref_primary_10_7498_aps_71_20220118
crossref_primary_10_1103_PhysRevB_102_184502
crossref_primary_10_1126_sciadv_aat1084
crossref_primary_10_1103_PhysRevMaterials_2_014201
crossref_primary_10_1103_PhysRevB_105_035130
crossref_primary_10_1103_PhysRevB_100_224521
crossref_primary_10_1103_PhysRevB_107_L100505
crossref_primary_10_1103_PhysRevB_106_014515
crossref_primary_10_1146_annurev_conmatphys_031218_013200
crossref_primary_10_1063_1_5080692
crossref_primary_10_1103_PhysRevB_109_L121405
crossref_primary_10_1103_PhysRevB_96_180504
crossref_primary_10_1038_ncomms14466
crossref_primary_10_1103_PhysRevB_109_174512
crossref_primary_10_1103_PhysRevB_98_054502
crossref_primary_10_1038_s41535_022_00477_z
crossref_primary_10_1103_PhysRevLett_123_097002
crossref_primary_10_1103_PhysRevMaterials_3_034201
crossref_primary_10_1016_j_scib_2020_04_039
crossref_primary_10_1103_PhysRevLett_119_187003
crossref_primary_10_7566_JPSJ_88_041007
crossref_primary_10_1103_PhysRevB_103_085107
crossref_primary_10_1103_PhysRevResearch_2_033302
crossref_primary_10_7566_JPSJ_89_114601
crossref_primary_10_1103_PhysRevB_94_144516
crossref_primary_10_1103_PhysRevLett_124_067001
crossref_primary_10_1103_PhysRevB_104_054506
crossref_primary_10_1103_PhysRevB_106_214502
crossref_primary_10_1007_s11433_020_1653_x
crossref_primary_10_1088_1361_648X_aaaca1
crossref_primary_10_1103_PhysRevB_106_174520
crossref_primary_10_1002_smll_202305909
crossref_primary_10_1103_PhysRevB_104_094522
crossref_primary_10_1103_PhysRevB_100_094520
crossref_primary_10_1103_PhysRevMaterials_4_054802
crossref_primary_10_1088_0256_307X_38_10_107403
crossref_primary_10_1103_PhysRevB_108_054513
crossref_primary_10_1002_qute_202100067
crossref_primary_10_1103_PhysRevX_8_041026
crossref_primary_10_1103_PhysRevB_99_144507
crossref_primary_10_1103_PhysRevLett_127_047001
crossref_primary_10_3390_condmat4010002
crossref_primary_10_1103_PhysRevB_100_174502
crossref_primary_10_1103_PhysRevLett_118_127001
crossref_primary_10_1103_PhysRevB_95_224503
crossref_primary_10_1103_PhysRevLett_128_097001
crossref_primary_10_1063_5_0043694
crossref_primary_10_1088_1742_6596_2164_1_012015
crossref_primary_10_1103_PhysRevB_104_214514
crossref_primary_10_1088_1742_6596_2164_1_012019
crossref_primary_10_7566_JPSJ_88_033704
crossref_primary_10_1038_s42005_023_01496_3
crossref_primary_10_1103_PhysRevB_96_075152
crossref_primary_10_1103_PhysRevB_102_024516
crossref_primary_10_1002_adom_202302478
crossref_primary_10_1103_PhysRevMaterials_2_114601
crossref_primary_10_1038_s41598_018_26032_0
crossref_primary_10_1088_1361_6633_aa6ac7
crossref_primary_10_1103_PhysRevB_107_235154
crossref_primary_10_1103_PhysRevB_96_115145
crossref_primary_10_1038_s41535_018_0098_z
crossref_primary_10_1103_PhysRevX_7_011009
crossref_primary_10_1016_j_physe_2021_114800
crossref_primary_10_3390_ma12233899
crossref_primary_10_1038_s41598_018_20615_7
crossref_primary_10_1016_j_jssc_2023_124477
crossref_primary_10_1103_PhysRevB_102_024505
crossref_primary_10_1103_PhysRevB_102_094511
crossref_primary_10_1103_PhysRevB_94_134516
crossref_primary_10_7498_aps_69_20190959
crossref_primary_10_1103_PhysRevB_107_064504
crossref_primary_10_1103_PhysRevLett_121_157002
crossref_primary_10_1103_PhysRevB_100_064521
crossref_primary_10_3390_condmat5040081
crossref_primary_10_35848_1347_4065_abfbc0
crossref_primary_10_1088_1361_648X_abf386
crossref_primary_10_1103_PhysRevB_106_094509
crossref_primary_10_1103_PhysRevB_104_014503
crossref_primary_10_1038_srep28632
crossref_primary_10_1073_pnas_2117735119
crossref_primary_10_1038_s41467_020_17913_y
crossref_primary_10_1103_PhysRevB_98_220512
crossref_primary_10_1016_j_jpcs_2019_109208
crossref_primary_10_1103_PhysRevB_95_134508
crossref_primary_10_1038_s41535_018_0102_7
crossref_primary_10_1038_s41598_017_07990_3
crossref_primary_10_1103_PhysRevB_96_220505
crossref_primary_10_1103_PhysRevResearch_3_013262
crossref_primary_10_1103_PhysRevB_96_041201
crossref_primary_10_1103_PhysRevB_97_054503
crossref_primary_10_1016_j_physb_2020_412607
crossref_primary_10_1088_1367_2630_ab40d5
crossref_primary_10_21468_SciPostPhysCore_5_1_005
crossref_primary_10_1103_PhysRevB_98_140502
crossref_primary_10_1103_PhysRevResearch_2_043192
crossref_primary_10_1007_s11433_016_0499_x
crossref_primary_10_1103_PhysRevB_97_020505
crossref_primary_10_1063_5_0028517
crossref_primary_10_1038_s41467_024_47043_8
crossref_primary_10_1016_j_ceramint_2019_10_206
crossref_primary_10_1073_pnas_1900527116
crossref_primary_10_1103_PhysRevB_94_180510
crossref_primary_10_1103_PhysRevB_99_014510
crossref_primary_10_1103_PhysRevLett_123_237001
crossref_primary_10_1103_PhysRevB_99_214507
crossref_primary_10_7498_aps_69_20191627
crossref_primary_10_1088_1367_2630_ab7fca
crossref_primary_10_1088_1361_648X_ab73a8
crossref_primary_10_1103_PhysRevB_97_014510
crossref_primary_10_1038_nphys3932
crossref_primary_10_1103_PhysRevResearch_4_L032004
crossref_primary_10_1103_PhysRevB_105_174504
crossref_primary_10_1103_PhysRevB_98_184509
crossref_primary_10_7566_JPSJ_90_073701
crossref_primary_10_1103_PhysRevB_108_184512
crossref_primary_10_1103_PhysRevB_109_075119
crossref_primary_10_1088_1367_2630_aae595
crossref_primary_10_1103_PhysRevB_97_014504
crossref_primary_10_1007_s10948_022_06430_2
crossref_primary_10_1103_PhysRevB_109_104507
crossref_primary_10_1103_PhysRevX_8_041024
crossref_primary_10_1103_PhysRevLett_122_227001
crossref_primary_10_1016_j_mser_2021_100620
crossref_primary_10_1103_PhysRevB_94_224503
crossref_primary_10_1073_pnas_2020492118
crossref_primary_10_1103_PhysRevB_100_134508
crossref_primary_10_1103_PhysRevLett_125_017001
crossref_primary_10_1088_1674_1056_ac7a10
crossref_primary_10_1007_s11433_019_9395_0
crossref_primary_10_1088_1361_6668_ac74e9
crossref_primary_10_1038_s41467_019_14126_w
crossref_primary_10_4131_jshpreview_31_236
Cites_doi 10.1103/PhysRevLett.110.077003
10.1038/srep28632
10.1126/science.1134796
10.1103/PhysRevB.90.100509
10.1103/PhysRevB.88.195107
10.1146/annurev-conmatphys-031214-014501
10.1016/j.physc.2015.02.018
10.1143/JPSJ.76.051004
10.1103/PhysRevLett.107.217001
10.1016/0011-2275(92)90366-I
10.1103/PhysRevLett.104.057001
10.1103/PhysRevB.86.094507
10.1103/PhysRevLett.106.127004
10.1103/PhysRevB.83.104523
10.1103/RevModPhys.72.969
10.1038/nature11178
10.1038/nphys3781
10.1103/PhysRevB.90.184516
10.1126/science.1197358
10.1088/0953-2048/27/10/104002
10.7566/JPSJ.83.063705
10.1103/PhysRevLett.110.117001
10.1063/1.1710696
10.1103/PhysRevLett.88.137005
10.1103/PhysRevLett.104.037002
10.1103/RevModPhys.63.239
10.1103/PhysRevLett.96.237001
10.1103/PhysRevB.59.R9023
10.1103/PhysRev.173.679
10.1103/PhysRevLett.105.097001
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Feb 2017
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Feb 2017
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys3907
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
ProQuest Central Student
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 126
ExternalDocumentID 4311961091
10_1038_nphys3907
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABVXF
ABZEH
ACGFO
ACGFS
ACGOD
ACMJI
ADBBV
ADFRT
AENEX
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGEZK
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
AAYZH
ACBWK
CITATION
7U5
7XB
8FD
8FK
L7M
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c288t-2e3b8ca0bae5b6f2b2aa0940f78d4c41334235b9a02438cb595cc04d0fa929233
ISSN 1745-2473
IngestDate Tue Nov 19 06:37:04 EST 2024
Fri Nov 22 00:24:26 EST 2024
Fri Oct 11 20:46:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c288t-2e3b8ca0bae5b6f2b2aa0940f78d4c41334235b9a02438cb595cc04d0fa929233
ORCID 0000-0002-7476-3604
0000-0001-5098-5440
0000-0002-3553-3355
PQID 1864492803
PQPubID 27545
PageCount 4
ParticipantIDs proquest_journals_1864492803
crossref_primary_10_1038_nphys3907
springer_journals_10_1038_nphys3907
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References FuLBergEOdd-parity topological superconductors: theory and application to CuxBi2Se3Phys. Rev. Lett.20101050970012010PhRvL.105i7001F10.1103/PhysRevLett.105.097001
MatanoKSpin-rotation symmetry breaking in the superconducting state of CuxBi2Se3Nat. Phys.20161285285410.1038/nphys3781
LahoudEEvolution of the Fermi surface of a doped topological insulator with carrier concentrationPhys. Rev. B2013881951072013PhRvB..88s5107L10.1103/PhysRevB.88.195107
SigristMUedaKPhenomenological theory of unconventional superconductivityRev. Mod. Phys.1991632393111991RvMP...63..239S10.1103/RevModPhys.63.239
SasakiSTopological superconductivity in CuxBi2Se3Phys. Rev. Lett.20111072170012011PhRvL.107u7001S10.1103/PhysRevLett.107.217001
VorontsovAVekhterINodal structure of quasi-two-dimensional superconductors probed by a magnetic fieldPhys. Rev. Lett.2006962370012006PhRvL..96w7001V10.1103/PhysRevLett.96.237001
BorziRAFormation of a nematic fluid at high fields in Sr3Ru2O7Science20073152142172007Sci...315..214B10.1126/science.1134796
MizushimaTYamakageASatoMTanakaYDirac-fermion-induced parity mixing in superconducting topological insulatorsPhys. Rev. B2014901845162014PhRvB..90r4516M10.1103/PhysRevB.90.184516
AndersonPWBasic Notions of Condensed Matter Physics1997
AnKSign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and dx2−y2 pairing symmetryPhys. Rev. Lett.20101040370022010PhRvL.104c7002A10.1103/PhysRevLett.104.037002
NagaiYNakamuraHMachidaMSuperconducting gap function in the organic superconductor (TMTSF)2ClO4 with anion ordering: First-principles calculations and quasiclassical analysis for angle-resolved heat capacityPhys. Rev. B2011831045232011PhRvB..83j4523N10.1103/PhysRevB.83.104523
AndoYSegawaKKomiyaSLavrovANElectrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductorsPhys. Rev. Lett.2002881370052002PhRvL..88m7005A10.1103/PhysRevLett.88.137005
VelichkovIOn the problem of thermal link resistances in a.c. calorimetryCryogenics1992322852901992Cryo...32..285V10.1016/0011-2275(92)90366-I
NagaiYField-angle-dependent low-energy excitations around a vortex in the superconducting topological insulator CuxBi2Se3J. Phys. Soc. Jpn2014830637052014JPSJ...83f3705N10.7566/JPSJ.83.063705
HashimotoTYadaKYamakageASatoMTanakaYEffect of Fermi surface evolution on superconducting gap in superconducting topological insulatorSupercond. Sci. Technol.2014271040022014SuScT..27j4002H10.1088/0953-2048/27/10/104002
HorYSSuperconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulatorPhys. Rev. Lett.20101040570012010PhRvL.104e7001H10.1103/PhysRevLett.104.057001
NagaiYNakamuraHMachidaMRotational isotropy breaking as proof for spin-polarized Cooper pairs in the topological superconductor CuxBi2Se3Phys. Rev. B2012860945072012PhRvB..86i4507N10.1103/PhysRevB.86.094507
PanFRotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experimentsSci. Rep.20166286322016NatSR...628632P10.1038/srep28632
KasaharaSElectronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2Nature20124863823852012Natur.486..382K10.1038/nature11178
LevyNExperimental evidence for s-wave pairing symmetry in superconducting CuxBi2Se3 single crystals using a scanning tunneling microscopePhys. Rev. Lett.20131101170012013PhRvL.110k7001L10.1103/PhysRevLett.110.117001
FuLOdd-parity topological superconductor with nematic order: application to CuxBi2Se3Phys. Rev. B201490100509(R)2014PhRvB..90j0509F10.1103/PhysRevB.90.100509
TsueiCCKirtleyJRPairing symmetry in cuprate superconductorsRev. Mod. Phys.20007296910162000RvMP...72..969T10.1103/RevModPhys.72.969
SasakiSMizushimaTSuperconducting doped topological materialsPhysica C20155142062172015PhyC..514..206S10.1016/j.physc.2015.02.018
YonezawaSKajikawaTMaenoYFirst-order superconducting transition of Sr2RuO4Phys. Rev. Lett.20131100770032013PhRvL.110g7003Y10.1103/PhysRevLett.110.077003
DeguchiKIshiguroTMaenoYField-orientation dependent heat capacity measurements at low temperatures with a vector magnet systemRev. Sci. Instrum.200475118811932004RScI...75.1188D10.1063/1.1710696
AndoYFuLTopological crystalline insulators and topological superconductors: from concepts to materialsAnnu. Rev. Condens. Matter Phys.201563613812015ARCMP...6..361A10.1146/annurev-conmatphys-031214-014501
VekhterIHirschfeldPJCarbotteJPNicolEJAnisotropic thermodynamics of d-wave superconductors in the vortex statePhys. Rev. B199959R9023R90261999PhRvB..59.9023V10.1103/PhysRevB.59.R9023
SakakibaraTNodal structures of heavy fermion superconductors probed by the specific-heat measurements in magnetic fieldsJ. Phys. Soc. Jpn2007760510042007JPSJ...76e1004S10.1143/JPSJ.76.051004
KrienerMSegawaKRenZSasakiSAndoYBulk superconducting phase with a full energy gap in the doped topological insulator CuxBi2Se3Phys. Rev. Lett.20111061270042011PhRvL.106l7004K10.1103/PhysRevLett.106.127004
SullivanPFSeidelGSteady-state, ac-temperature calorimetryPhys. Rev.19681736796851968PhRv..173..679S10.1103/PhysRev.173.679
OkazakiRRotational symmetry breaking in the hidden-order phase of URu2Si2Science20113314394422011Sci...331..439O10.1126/science.1197358
I Velichkov (BFnphys3907_CR28) 1992; 32
Y Nagai (BFnphys3907_CR9) 2012; 86
L Fu (BFnphys3907_CR8) 2014; 90
K An (BFnphys3907_CR23) 2010; 104
RA Borzi (BFnphys3907_CR4) 2007; 315
E Lahoud (BFnphys3907_CR17) 2013; 88
M Sigrist (BFnphys3907_CR2) 1991; 63
Y Ando (BFnphys3907_CR12) 2015; 6
Y Ando (BFnphys3907_CR3) 2002; 88
T Sakakibara (BFnphys3907_CR21) 2007; 76
L Fu (BFnphys3907_CR7) 2010; 105
S Sasaki (BFnphys3907_CR13) 2015; 514
K Deguchi (BFnphys3907_CR19) 2004; 75
YS Hor (BFnphys3907_CR11) 2010; 104
N Levy (BFnphys3907_CR15) 2013; 110
R Okazaki (BFnphys3907_CR6) 2011; 331
T Mizushima (BFnphys3907_CR16) 2014; 90
M Kriener (BFnphys3907_CR25) 2011; 106
T Hashimoto (BFnphys3907_CR31) 2014; 27
S Kasahara (BFnphys3907_CR5) 2012; 486
PF Sullivan (BFnphys3907_CR27) 1968; 173
Y Nagai (BFnphys3907_CR29) 2011; 83
I Vekhter (BFnphys3907_CR20) 1999; 59
K Matano (BFnphys3907_CR18) 2016; 12
F Pan (BFnphys3907_CR24) 2016; 6
S Sasaki (BFnphys3907_CR14) 2011; 107
S Yonezawa (BFnphys3907_CR26) 2013; 110
A Vorontsov (BFnphys3907_CR22) 2006; 96
CC Tsuei (BFnphys3907_CR10) 2000; 72
Y Nagai (BFnphys3907_CR30) 2014; 83
PW Anderson (BFnphys3907_CR1) 1997
References_xml – volume: 110
  start-page: 077003
  year: 2013
  ident: BFnphys3907_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.077003
  contributor:
    fullname: S Yonezawa
– volume: 6
  start-page: 28632
  year: 2016
  ident: BFnphys3907_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/srep28632
  contributor:
    fullname: F Pan
– volume: 315
  start-page: 214
  year: 2007
  ident: BFnphys3907_CR4
  publication-title: Science
  doi: 10.1126/science.1134796
  contributor:
    fullname: RA Borzi
– volume: 90
  start-page: 100509(R)
  year: 2014
  ident: BFnphys3907_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.100509
  contributor:
    fullname: L Fu
– volume: 88
  start-page: 195107
  year: 2013
  ident: BFnphys3907_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.195107
  contributor:
    fullname: E Lahoud
– volume: 6
  start-page: 361
  year: 2015
  ident: BFnphys3907_CR12
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031214-014501
  contributor:
    fullname: Y Ando
– volume: 514
  start-page: 206
  year: 2015
  ident: BFnphys3907_CR13
  publication-title: Physica C
  doi: 10.1016/j.physc.2015.02.018
  contributor:
    fullname: S Sasaki
– volume: 76
  start-page: 051004
  year: 2007
  ident: BFnphys3907_CR21
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.76.051004
  contributor:
    fullname: T Sakakibara
– volume: 107
  start-page: 217001
  year: 2011
  ident: BFnphys3907_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.217001
  contributor:
    fullname: S Sasaki
– volume: 32
  start-page: 285
  year: 1992
  ident: BFnphys3907_CR28
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(92)90366-I
  contributor:
    fullname: I Velichkov
– volume: 104
  start-page: 057001
  year: 2010
  ident: BFnphys3907_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.057001
  contributor:
    fullname: YS Hor
– volume-title: Basic Notions of Condensed Matter Physics
  year: 1997
  ident: BFnphys3907_CR1
  contributor:
    fullname: PW Anderson
– volume: 86
  start-page: 094507
  year: 2012
  ident: BFnphys3907_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.094507
  contributor:
    fullname: Y Nagai
– volume: 106
  start-page: 127004
  year: 2011
  ident: BFnphys3907_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.127004
  contributor:
    fullname: M Kriener
– volume: 83
  start-page: 104523
  year: 2011
  ident: BFnphys3907_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.104523
  contributor:
    fullname: Y Nagai
– volume: 72
  start-page: 969
  year: 2000
  ident: BFnphys3907_CR10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.72.969
  contributor:
    fullname: CC Tsuei
– volume: 486
  start-page: 382
  year: 2012
  ident: BFnphys3907_CR5
  publication-title: Nature
  doi: 10.1038/nature11178
  contributor:
    fullname: S Kasahara
– volume: 12
  start-page: 852
  year: 2016
  ident: BFnphys3907_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3781
  contributor:
    fullname: K Matano
– volume: 90
  start-page: 184516
  year: 2014
  ident: BFnphys3907_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.184516
  contributor:
    fullname: T Mizushima
– volume: 331
  start-page: 439
  year: 2011
  ident: BFnphys3907_CR6
  publication-title: Science
  doi: 10.1126/science.1197358
  contributor:
    fullname: R Okazaki
– volume: 27
  start-page: 104002
  year: 2014
  ident: BFnphys3907_CR31
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/10/104002
  contributor:
    fullname: T Hashimoto
– volume: 83
  start-page: 063705
  year: 2014
  ident: BFnphys3907_CR30
  publication-title: J. Phys. Soc. Jpn
  doi: 10.7566/JPSJ.83.063705
  contributor:
    fullname: Y Nagai
– volume: 110
  start-page: 117001
  year: 2013
  ident: BFnphys3907_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.117001
  contributor:
    fullname: N Levy
– volume: 75
  start-page: 1188
  year: 2004
  ident: BFnphys3907_CR19
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1710696
  contributor:
    fullname: K Deguchi
– volume: 88
  start-page: 137005
  year: 2002
  ident: BFnphys3907_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.137005
  contributor:
    fullname: Y Ando
– volume: 104
  start-page: 037002
  year: 2010
  ident: BFnphys3907_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.037002
  contributor:
    fullname: K An
– volume: 63
  start-page: 239
  year: 1991
  ident: BFnphys3907_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.63.239
  contributor:
    fullname: M Sigrist
– volume: 96
  start-page: 237001
  year: 2006
  ident: BFnphys3907_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.237001
  contributor:
    fullname: A Vorontsov
– volume: 59
  start-page: R9023
  year: 1999
  ident: BFnphys3907_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.R9023
  contributor:
    fullname: I Vekhter
– volume: 173
  start-page: 679
  year: 1968
  ident: BFnphys3907_CR27
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.173.679
  contributor:
    fullname: PF Sullivan
– volume: 105
  start-page: 097001
  year: 2010
  ident: BFnphys3907_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.097001
  contributor:
    fullname: L Fu
SSID ssj0042613
Score 2.6421928
Snippet In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu x Bi 2 Se...
In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 123
SubjectTerms 639/301/923/919
639/766/119/1003
639/766/119/2792
639/766/119/995
639/766/119/997
Atomic
Calorimetry
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
letter
Magnetic fields
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Single crystals
Specific heat
Superconductivity
Theoretical
Thermodynamics
Title Thermodynamic evidence for nematic superconductivity in CuxBi2Se3
URI https://link.springer.com/article/10.1038/nphys3907
https://www.proquest.com/docview/1864492803
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA9zIvgifuJ0SlHfpNol7Zo-Tp0IwhDmwD2VJM1kDruxrSj-9V6a9GPby3zwpZRrG8rdr5e7pPc7hK4YadJIBpEtXeHYMEN5NvcgcfWJF3C10-ukFXJPXb_zRh_abrtSybP-XPavlgYZ2FpVzv7B2vmgIIBzsDkcwepwXNfu089xpBvNX0vTNDT9mzA2_KyzZCKnkAcrqlfdO0KV_iXfd0PclaQcrnZS2k-z_DErPEQsf9hXGnZ21QrWuMj_P4a6dB0ceCHusBHTUWo3eU-mSSF_192w-8loWF5_gDnNWfiXw7zI8qLZde-55FV917Oxq3uW3MiyTPdryV0xKUEOl_xqA5PSFN3QRfYr3l9zvcdKKSTQzXSXyLTTLXdCw_yeDbSJwUWBh9xsvfX7D9ksrjJLootp9atnrFSE3uYPL8YyRYKytKeehiqvu2jH5BhWS4NjD1VkvI-2XrQRD1BrASJWBhELIGIZiFgrELGGsZVD5BD1Htuv90-26aRhC0zp3MaScCqYw5n0eHOAOWZMEScOfBq5AuIYxQPp8YApfkoquBd4Qjhu5AwYhM-YkCNUjQFbx8hS35ogvOmTiLi-G1AGg_tkIDD4AikbNXSR6SScaMKUcEXrNVTPtBWab2cWNijE5oHqllZDl5kGS5eXBzlZ665TtF2gto6q82kiz9DGLErOjcl_AeBqeGw
link.rule.ids 315,782,786,27933,27934,48346,48347,48361,49651,49652,49666
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RiNGLv40oaqNeF0e70u6IAsGIXMAETkvbdQkHB2GQ-OfbbqsiJz1va5b32n7vy3vvewAPgrR4rMPY04HyPYNQ1JPUEFdGaChtptfPO-T6Izac8E43cDrbmat2dynJ_KYuGsP5Y2qpvmHorAI1K3KOq1BrT6bTjrt4LRkgRf8j9XDAiBMS2vz4N_z8xJRbadAcXXqH__qvIzgog0jULrx-DDs6PYHdvJhTZafQNr5ffszjYtg80uXgUGTiU5QWGq0oWy_00nBhK_eaz49AsxQ9rz-fZnikyRm897rj575XjkrwFOZ85WFNJFfCl0JT2UqwxEJYZbyE8ThQBqis0B-VobAChFxJGlKl_CD2E2HiI0zIOVTTeaovANljo4hsMRKTgAUhF2ZxRhKFjbO1btbhzlkwWhSKGFGeySY8-rZFHRrOtlF5KLKoyU3wFdpxWHW4d7bceLy9yOWf3rqFvf74bRANXoavV7CPLezmVdUNqK6Wa30NlSxe35Sb5Qsw1b5m
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4IROPFtxFF3ajXhrLbdrdHBCoGQzRo4q3ZVxMOFkIh8ee724ciJ-O57baZzPT7JjPzDcAdJwFTOlSO9qTrGITyHeGbxJUSPxS20uvmE3LDCR2_s_7AyuTQahYm73avSpLFTINVaUqX7blKyiFx1k5t2m-ydVqDhsdIYCKyEb08RKPqJ2wTA1LMQvoO9iipRIXWH_4NRT_8cqMkmiNNtP_vbzyAvZJcom7hDYewpdMj2M6bPGV2DF3jE4uPmSqW0CNdLhRFhreitNBuRdlqrhfmRVYGNt8rgaYp6q0-76d4oskJvEWD197QKVcoOBIztnSwJoJJ7gqufREkWGDOrWJeQpnypAEwKwDoi5BbYUImhR_6UrqechNueBMm5BTq6SzVZ4BsOEkiAkoU8agXMm4OpySR2DiB1p0m3FTWjOeFUkacV7gJi79t0YRWZee4DJYs7jBDykK7JqsJt5Vd1y5vHnL-p7uuYee5H8VPj-PRBexii8Z5s3UL6svFSl9CLVOrq9JvvgDlhscE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+evidence+for+nematic+superconductivity+in+CuxBi2Se3&rft.jtitle=Nature+physics&rft.au=Yonezawa%2C+Shingo&rft.au=Tajiri%2C+Kengo&rft.au=Nakata%2C+Suguru&rft.au=Nagai%2C+Yuki&rft.date=2017-02-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=2&rft.spage=123&rft.epage=126&rft_id=info:doi/10.1038%2Fnphys3907&rft.externalDocID=10_1038_nphys3907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon