Thermodynamic evidence for nematic superconductivity in CuxBi2Se3
In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu x Bi 2 Se 3 provide evidence for a nematic superconductor. In condensed matter physics, spontaneous symmetry breaking has been a key concept, and disc...
Saved in:
Published in: | Nature physics Vol. 13; no. 2; pp. 123 - 126 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-02-2017
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu
x
Bi
2
Se
3
provide evidence for a nematic superconductor.
In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our understanding of matter
1
,
2
. Recently, electronic nematicity, novel spontaneous rotational-symmetry breaking leading to an emergence of a special direction in electron liquids, has been attracting significant attention
3
,
4
,
5
,
6
. Here, we show bulk thermodynamic evidence for nematic superconductivity, in which the nematicity emerges in the superconducting gap amplitude, in Cu
x
Bi
2
Se
3
. Based on high-resolution calorimetry of single-crystalline samples under accurate two-axis control of the magnetic field direction, we discovered clear two-fold symmetry in the specific heat and in the upper critical field despite the trigonal symmetry of the lattice. Nematic superconductivity for this material should possess a unique topological nature associated with odd parity
7
,
8
,
9
. Thus, our findings establish a new class of spontaneously symmetry-broken states of matter—namely, odd-parity nematic superconductivity. |
---|---|
AbstractList | In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu
x
Bi
2
Se
3
provide evidence for a nematic superconductor.
In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our understanding of matter
1
,
2
. Recently, electronic nematicity, novel spontaneous rotational-symmetry breaking leading to an emergence of a special direction in electron liquids, has been attracting significant attention
3
,
4
,
5
,
6
. Here, we show bulk thermodynamic evidence for nematic superconductivity, in which the nematicity emerges in the superconducting gap amplitude, in Cu
x
Bi
2
Se
3
. Based on high-resolution calorimetry of single-crystalline samples under accurate two-axis control of the magnetic field direction, we discovered clear two-fold symmetry in the specific heat and in the upper critical field despite the trigonal symmetry of the lattice. Nematic superconductivity for this material should possess a unique topological nature associated with odd parity
7
,
8
,
9
. Thus, our findings establish a new class of spontaneously symmetry-broken states of matter—namely, odd-parity nematic superconductivity. In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our understanding of matter. Recently, electronic nematicity, novel spontaneous rotational-symmetry breaking leading to an emergence of a special direction in electron liquids, has been attracting significant attention. Here, we show bulk thermodynamic evidence for nematic superconductivity, in which the nematicity emerges in the superconducting gap amplitude, in CuxBi2Se3. |
Author | Tajiri, Kengo Yonezawa, Shingo Nagai, Yuki Nakata, Suguru Segawa, Kouji Ando, Yoichi Wang, Zhiwei Maeno, Yoshiteru |
Author_xml | – sequence: 1 givenname: Shingo orcidid: 0000-0002-7476-3604 surname: Yonezawa fullname: Yonezawa, Shingo email: yonezawa@scphys.kyoto-u.ac.jp organization: Department of Physics, Graduate School of Science, Kyoto University – sequence: 2 givenname: Kengo surname: Tajiri fullname: Tajiri, Kengo organization: Department of Physics, Graduate School of Science, Kyoto University – sequence: 3 givenname: Suguru surname: Nakata fullname: Nakata, Suguru organization: Faculty of Science, Kyoto University – sequence: 4 givenname: Yuki orcidid: 0000-0001-5098-5440 surname: Nagai fullname: Nagai, Yuki organization: CCSE, Japan Atomic Energy Agency – sequence: 5 givenname: Zhiwei surname: Wang fullname: Wang, Zhiwei organization: The Institute of Scientific and Industrial Research, Osaka University, Institute of Physics II, University of Cologne – sequence: 6 givenname: Kouji surname: Segawa fullname: Segawa, Kouji organization: The Institute of Scientific and Industrial Research, Osaka University, Department of Physics, Graduate School of Science, Kyoto Sangyo University – sequence: 7 givenname: Yoichi orcidid: 0000-0002-3553-3355 surname: Ando fullname: Ando, Yoichi organization: The Institute of Scientific and Industrial Research, Osaka University, Institute of Physics II, University of Cologne – sequence: 8 givenname: Yoshiteru surname: Maeno fullname: Maeno, Yoshiteru organization: Department of Physics, Graduate School of Science, Kyoto University |
BookMark | eNpl0E1Lw0AQBuBFKthWD_6DgCeF6H4l2T3W4BcUPFjPYbOZ2C1mN-4mxfx7UyJF8DTD8PAOvAs0s84CQpcE3xLMxJ1tt0NgEmcnaE4ynsSUCzI77hk7Q4sQdhhzmhI2R6vNFnzjqsGqxugI9qYCqyGqnY8sNKobj6FvwWtnq153Zm-6ITI2yvvve0PfgJ2j01p9Brj4nUv0_viwyZ_j9evTS75ax5oK0cUUWCm0wqWCpExrWlKlsOS4zkTFNSeMccqSUipMORO6TGSiNeYVrpWkkjK2RFdTbuvdVw-hK3au93Z8WRCRci6pwAd1PSntXQge6qL1plF-KAguDg0Vx4ZGezPZMBr7Af5P4j_8A7uLaaU |
CitedBy_id | crossref_primary_10_1039_D3CP00642E crossref_primary_10_1103_PhysRevB_104_L020506 crossref_primary_10_1103_PhysRevB_96_144512 crossref_primary_10_1103_PhysRevB_101_060501 crossref_primary_10_1103_PhysRevLett_123_027002 crossref_primary_10_1103_PhysRevResearch_5_L012034 crossref_primary_10_1103_PhysRevB_101_220503 crossref_primary_10_1038_s41598_017_10510_y crossref_primary_10_1103_PhysRevB_103_174518 crossref_primary_10_1103_PhysRevLett_118_227001 crossref_primary_10_1088_2399_6528_abbb58 crossref_primary_10_1103_PhysRevB_101_180512 crossref_primary_10_1103_PhysRevB_98_024501 crossref_primary_10_1103_PhysRevB_95_201109 crossref_primary_10_1103_PhysRevLett_118_227002 crossref_primary_10_1103_PhysRevB_98_224509 crossref_primary_10_1103_PhysRevB_96_144504 crossref_primary_10_7498_aps_68_20181698 crossref_primary_10_1038_s41467_019_10942_2 crossref_primary_10_1016_j_chaos_2023_114439 crossref_primary_10_1016_j_physc_2023_1354252 crossref_primary_10_1103_PhysRevResearch_3_L032071 crossref_primary_10_1103_PhysRevB_105_134517 crossref_primary_10_1103_PhysRevB_106_075151 crossref_primary_10_1007_s11433_022_2000_y crossref_primary_10_35848_1347_4065_abdc33 crossref_primary_10_1103_PhysRevLett_119_167001 crossref_primary_10_1103_PhysRevB_103_094508 crossref_primary_10_1103_PhysRevB_105_094508 crossref_primary_10_1088_1361_648X_aacf6a crossref_primary_10_1103_PhysRevB_96_224518 crossref_primary_10_1038_s41567_022_01812_8 crossref_primary_10_7498_aps_71_20220596 crossref_primary_10_1038_s41567_019_0576_7 crossref_primary_10_1103_PhysRevB_101_014505 crossref_primary_10_1088_1742_6596_2323_1_012003 crossref_primary_10_1038_s41535_017_0064_1 crossref_primary_10_7566_JPSJ_87_033703 crossref_primary_10_1134_S0021364022601816 crossref_primary_10_1016_j_physd_2020_132705 crossref_primary_10_1007_s44214_022_00005_x crossref_primary_10_1038_s41467_021_25121_5 crossref_primary_10_1103_PhysRevX_13_041050 crossref_primary_10_1103_PhysRevLett_127_227001 crossref_primary_10_1002_qute_201800112 crossref_primary_10_1103_PhysRevB_107_104514 crossref_primary_10_1038_s41535_017_0041_8 crossref_primary_10_1103_PhysRevB_101_224513 crossref_primary_10_1016_j_aop_2021_168439 crossref_primary_10_1007_s10948_021_06055_x crossref_primary_10_1038_s41467_020_16871_9 crossref_primary_10_1088_1361_648X_ab41c7 crossref_primary_10_1103_PhysRevLett_123_137203 crossref_primary_10_1088_1361_648X_ac1f4d crossref_primary_10_1038_s41467_021_27084_z crossref_primary_10_1103_PhysRevB_98_024508 crossref_primary_10_1103_PhysRevB_104_L220502 crossref_primary_10_1103_PhysRevB_106_195415 crossref_primary_10_1103_PhysRevB_103_104505 crossref_primary_10_1088_1674_1056_27_10_107901 crossref_primary_10_1088_2515_7639_ac93b5 crossref_primary_10_1103_PhysRevB_101_054509 crossref_primary_10_1103_PhysRevB_98_085133 crossref_primary_10_1103_PhysRevMaterials_4_041801 crossref_primary_10_1103_PhysRevB_103_224504 crossref_primary_10_1103_PhysRevB_102_094202 crossref_primary_10_7566_JPSJ_91_123702 crossref_primary_10_1134_S002136402003008X crossref_primary_10_1038_s41467_019_09869_5 crossref_primary_10_1038_s41598_019_48906_7 crossref_primary_10_1103_PhysRevB_101_064512 crossref_primary_10_1103_PhysRevB_103_035115 crossref_primary_10_1002_pssr_202000546 crossref_primary_10_1103_PhysRevB_98_014505 crossref_primary_10_1103_PhysRevMaterials_6_034201 crossref_primary_10_1103_PhysRevLett_125_187001 crossref_primary_10_1038_s41535_021_00411_9 crossref_primary_10_1103_PhysRevB_101_024505 crossref_primary_10_7566_JPSJ_89_043703 crossref_primary_10_1103_PhysRevB_100_224509 crossref_primary_10_1016_j_aop_2021_168494 crossref_primary_10_1021_acs_nanolett_9b04639 crossref_primary_10_3390_ma17081903 crossref_primary_10_7498_aps_71_20220118 crossref_primary_10_1103_PhysRevB_102_184502 crossref_primary_10_1126_sciadv_aat1084 crossref_primary_10_1103_PhysRevMaterials_2_014201 crossref_primary_10_1103_PhysRevB_105_035130 crossref_primary_10_1103_PhysRevB_100_224521 crossref_primary_10_1103_PhysRevB_107_L100505 crossref_primary_10_1103_PhysRevB_106_014515 crossref_primary_10_1146_annurev_conmatphys_031218_013200 crossref_primary_10_1063_1_5080692 crossref_primary_10_1103_PhysRevB_109_L121405 crossref_primary_10_1103_PhysRevB_96_180504 crossref_primary_10_1038_ncomms14466 crossref_primary_10_1103_PhysRevB_109_174512 crossref_primary_10_1103_PhysRevB_98_054502 crossref_primary_10_1038_s41535_022_00477_z crossref_primary_10_1103_PhysRevLett_123_097002 crossref_primary_10_1103_PhysRevMaterials_3_034201 crossref_primary_10_1016_j_scib_2020_04_039 crossref_primary_10_1103_PhysRevLett_119_187003 crossref_primary_10_7566_JPSJ_88_041007 crossref_primary_10_1103_PhysRevB_103_085107 crossref_primary_10_1103_PhysRevResearch_2_033302 crossref_primary_10_7566_JPSJ_89_114601 crossref_primary_10_1103_PhysRevB_94_144516 crossref_primary_10_1103_PhysRevLett_124_067001 crossref_primary_10_1103_PhysRevB_104_054506 crossref_primary_10_1103_PhysRevB_106_214502 crossref_primary_10_1007_s11433_020_1653_x crossref_primary_10_1088_1361_648X_aaaca1 crossref_primary_10_1103_PhysRevB_106_174520 crossref_primary_10_1002_smll_202305909 crossref_primary_10_1103_PhysRevB_104_094522 crossref_primary_10_1103_PhysRevB_100_094520 crossref_primary_10_1103_PhysRevMaterials_4_054802 crossref_primary_10_1088_0256_307X_38_10_107403 crossref_primary_10_1103_PhysRevB_108_054513 crossref_primary_10_1002_qute_202100067 crossref_primary_10_1103_PhysRevX_8_041026 crossref_primary_10_1103_PhysRevB_99_144507 crossref_primary_10_1103_PhysRevLett_127_047001 crossref_primary_10_3390_condmat4010002 crossref_primary_10_1103_PhysRevB_100_174502 crossref_primary_10_1103_PhysRevLett_118_127001 crossref_primary_10_1103_PhysRevB_95_224503 crossref_primary_10_1103_PhysRevLett_128_097001 crossref_primary_10_1063_5_0043694 crossref_primary_10_1088_1742_6596_2164_1_012015 crossref_primary_10_1103_PhysRevB_104_214514 crossref_primary_10_1088_1742_6596_2164_1_012019 crossref_primary_10_7566_JPSJ_88_033704 crossref_primary_10_1038_s42005_023_01496_3 crossref_primary_10_1103_PhysRevB_96_075152 crossref_primary_10_1103_PhysRevB_102_024516 crossref_primary_10_1002_adom_202302478 crossref_primary_10_1103_PhysRevMaterials_2_114601 crossref_primary_10_1038_s41598_018_26032_0 crossref_primary_10_1088_1361_6633_aa6ac7 crossref_primary_10_1103_PhysRevB_107_235154 crossref_primary_10_1103_PhysRevB_96_115145 crossref_primary_10_1038_s41535_018_0098_z crossref_primary_10_1103_PhysRevX_7_011009 crossref_primary_10_1016_j_physe_2021_114800 crossref_primary_10_3390_ma12233899 crossref_primary_10_1038_s41598_018_20615_7 crossref_primary_10_1016_j_jssc_2023_124477 crossref_primary_10_1103_PhysRevB_102_024505 crossref_primary_10_1103_PhysRevB_102_094511 crossref_primary_10_1103_PhysRevB_94_134516 crossref_primary_10_7498_aps_69_20190959 crossref_primary_10_1103_PhysRevB_107_064504 crossref_primary_10_1103_PhysRevLett_121_157002 crossref_primary_10_1103_PhysRevB_100_064521 crossref_primary_10_3390_condmat5040081 crossref_primary_10_35848_1347_4065_abfbc0 crossref_primary_10_1088_1361_648X_abf386 crossref_primary_10_1103_PhysRevB_106_094509 crossref_primary_10_1103_PhysRevB_104_014503 crossref_primary_10_1038_srep28632 crossref_primary_10_1073_pnas_2117735119 crossref_primary_10_1038_s41467_020_17913_y crossref_primary_10_1103_PhysRevB_98_220512 crossref_primary_10_1016_j_jpcs_2019_109208 crossref_primary_10_1103_PhysRevB_95_134508 crossref_primary_10_1038_s41535_018_0102_7 crossref_primary_10_1038_s41598_017_07990_3 crossref_primary_10_1103_PhysRevB_96_220505 crossref_primary_10_1103_PhysRevResearch_3_013262 crossref_primary_10_1103_PhysRevB_96_041201 crossref_primary_10_1103_PhysRevB_97_054503 crossref_primary_10_1016_j_physb_2020_412607 crossref_primary_10_1088_1367_2630_ab40d5 crossref_primary_10_21468_SciPostPhysCore_5_1_005 crossref_primary_10_1103_PhysRevB_98_140502 crossref_primary_10_1103_PhysRevResearch_2_043192 crossref_primary_10_1007_s11433_016_0499_x crossref_primary_10_1103_PhysRevB_97_020505 crossref_primary_10_1063_5_0028517 crossref_primary_10_1038_s41467_024_47043_8 crossref_primary_10_1016_j_ceramint_2019_10_206 crossref_primary_10_1073_pnas_1900527116 crossref_primary_10_1103_PhysRevB_94_180510 crossref_primary_10_1103_PhysRevB_99_014510 crossref_primary_10_1103_PhysRevLett_123_237001 crossref_primary_10_1103_PhysRevB_99_214507 crossref_primary_10_7498_aps_69_20191627 crossref_primary_10_1088_1367_2630_ab7fca crossref_primary_10_1088_1361_648X_ab73a8 crossref_primary_10_1103_PhysRevB_97_014510 crossref_primary_10_1038_nphys3932 crossref_primary_10_1103_PhysRevResearch_4_L032004 crossref_primary_10_1103_PhysRevB_105_174504 crossref_primary_10_1103_PhysRevB_98_184509 crossref_primary_10_7566_JPSJ_90_073701 crossref_primary_10_1103_PhysRevB_108_184512 crossref_primary_10_1103_PhysRevB_109_075119 crossref_primary_10_1088_1367_2630_aae595 crossref_primary_10_1103_PhysRevB_97_014504 crossref_primary_10_1007_s10948_022_06430_2 crossref_primary_10_1103_PhysRevB_109_104507 crossref_primary_10_1103_PhysRevX_8_041024 crossref_primary_10_1103_PhysRevLett_122_227001 crossref_primary_10_1016_j_mser_2021_100620 crossref_primary_10_1103_PhysRevB_94_224503 crossref_primary_10_1073_pnas_2020492118 crossref_primary_10_1103_PhysRevB_100_134508 crossref_primary_10_1103_PhysRevLett_125_017001 crossref_primary_10_1088_1674_1056_ac7a10 crossref_primary_10_1007_s11433_019_9395_0 crossref_primary_10_1088_1361_6668_ac74e9 crossref_primary_10_1038_s41467_019_14126_w crossref_primary_10_4131_jshpreview_31_236 |
Cites_doi | 10.1103/PhysRevLett.110.077003 10.1038/srep28632 10.1126/science.1134796 10.1103/PhysRevB.90.100509 10.1103/PhysRevB.88.195107 10.1146/annurev-conmatphys-031214-014501 10.1016/j.physc.2015.02.018 10.1143/JPSJ.76.051004 10.1103/PhysRevLett.107.217001 10.1016/0011-2275(92)90366-I 10.1103/PhysRevLett.104.057001 10.1103/PhysRevB.86.094507 10.1103/PhysRevLett.106.127004 10.1103/PhysRevB.83.104523 10.1103/RevModPhys.72.969 10.1038/nature11178 10.1038/nphys3781 10.1103/PhysRevB.90.184516 10.1126/science.1197358 10.1088/0953-2048/27/10/104002 10.7566/JPSJ.83.063705 10.1103/PhysRevLett.110.117001 10.1063/1.1710696 10.1103/PhysRevLett.88.137005 10.1103/PhysRevLett.104.037002 10.1103/RevModPhys.63.239 10.1103/PhysRevLett.96.237001 10.1103/PhysRevB.59.R9023 10.1103/PhysRev.173.679 10.1103/PhysRevLett.105.097001 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 Copyright Nature Publishing Group Feb 2017 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: Copyright Nature Publishing Group Feb 2017 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PQEST PQQKQ PQUKI Q9U |
DOI | 10.1038/nphys3907 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest Central Student |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 126 |
ExternalDocumentID | 4311961091 10_1038_nphys3907 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABVXF ABZEH ACGFO ACGFS ACGOD ACMJI ADBBV ADFRT AENEX AFBBN AFKRA AFSHS AFWHJ AGAYW AGEZK AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX AAYZH ACBWK CITATION 7U5 7XB 8FD 8FK L7M PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c288t-2e3b8ca0bae5b6f2b2aa0940f78d4c41334235b9a02438cb595cc04d0fa929233 |
ISSN | 1745-2473 |
IngestDate | Tue Nov 19 06:37:04 EST 2024 Fri Nov 22 00:24:26 EST 2024 Fri Oct 11 20:46:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c288t-2e3b8ca0bae5b6f2b2aa0940f78d4c41334235b9a02438cb595cc04d0fa929233 |
ORCID | 0000-0002-7476-3604 0000-0001-5098-5440 0000-0002-3553-3355 |
PQID | 1864492803 |
PQPubID | 27545 |
PageCount | 4 |
ParticipantIDs | proquest_journals_1864492803 crossref_primary_10_1038_nphys3907 springer_journals_10_1038_nphys3907 |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | FuLBergEOdd-parity topological superconductors: theory and application to CuxBi2Se3Phys. Rev. Lett.20101050970012010PhRvL.105i7001F10.1103/PhysRevLett.105.097001 MatanoKSpin-rotation symmetry breaking in the superconducting state of CuxBi2Se3Nat. Phys.20161285285410.1038/nphys3781 LahoudEEvolution of the Fermi surface of a doped topological insulator with carrier concentrationPhys. Rev. B2013881951072013PhRvB..88s5107L10.1103/PhysRevB.88.195107 SigristMUedaKPhenomenological theory of unconventional superconductivityRev. Mod. Phys.1991632393111991RvMP...63..239S10.1103/RevModPhys.63.239 SasakiSTopological superconductivity in CuxBi2Se3Phys. Rev. Lett.20111072170012011PhRvL.107u7001S10.1103/PhysRevLett.107.217001 VorontsovAVekhterINodal structure of quasi-two-dimensional superconductors probed by a magnetic fieldPhys. Rev. Lett.2006962370012006PhRvL..96w7001V10.1103/PhysRevLett.96.237001 BorziRAFormation of a nematic fluid at high fields in Sr3Ru2O7Science20073152142172007Sci...315..214B10.1126/science.1134796 MizushimaTYamakageASatoMTanakaYDirac-fermion-induced parity mixing in superconducting topological insulatorsPhys. Rev. B2014901845162014PhRvB..90r4516M10.1103/PhysRevB.90.184516 AndersonPWBasic Notions of Condensed Matter Physics1997 AnKSign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and dx2−y2 pairing symmetryPhys. Rev. Lett.20101040370022010PhRvL.104c7002A10.1103/PhysRevLett.104.037002 NagaiYNakamuraHMachidaMSuperconducting gap function in the organic superconductor (TMTSF)2ClO4 with anion ordering: First-principles calculations and quasiclassical analysis for angle-resolved heat capacityPhys. Rev. B2011831045232011PhRvB..83j4523N10.1103/PhysRevB.83.104523 AndoYSegawaKKomiyaSLavrovANElectrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductorsPhys. Rev. Lett.2002881370052002PhRvL..88m7005A10.1103/PhysRevLett.88.137005 VelichkovIOn the problem of thermal link resistances in a.c. calorimetryCryogenics1992322852901992Cryo...32..285V10.1016/0011-2275(92)90366-I NagaiYField-angle-dependent low-energy excitations around a vortex in the superconducting topological insulator CuxBi2Se3J. Phys. Soc. Jpn2014830637052014JPSJ...83f3705N10.7566/JPSJ.83.063705 HashimotoTYadaKYamakageASatoMTanakaYEffect of Fermi surface evolution on superconducting gap in superconducting topological insulatorSupercond. Sci. Technol.2014271040022014SuScT..27j4002H10.1088/0953-2048/27/10/104002 HorYSSuperconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulatorPhys. Rev. Lett.20101040570012010PhRvL.104e7001H10.1103/PhysRevLett.104.057001 NagaiYNakamuraHMachidaMRotational isotropy breaking as proof for spin-polarized Cooper pairs in the topological superconductor CuxBi2Se3Phys. Rev. B2012860945072012PhRvB..86i4507N10.1103/PhysRevB.86.094507 PanFRotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experimentsSci. Rep.20166286322016NatSR...628632P10.1038/srep28632 KasaharaSElectronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2Nature20124863823852012Natur.486..382K10.1038/nature11178 LevyNExperimental evidence for s-wave pairing symmetry in superconducting CuxBi2Se3 single crystals using a scanning tunneling microscopePhys. Rev. Lett.20131101170012013PhRvL.110k7001L10.1103/PhysRevLett.110.117001 FuLOdd-parity topological superconductor with nematic order: application to CuxBi2Se3Phys. Rev. B201490100509(R)2014PhRvB..90j0509F10.1103/PhysRevB.90.100509 TsueiCCKirtleyJRPairing symmetry in cuprate superconductorsRev. Mod. Phys.20007296910162000RvMP...72..969T10.1103/RevModPhys.72.969 SasakiSMizushimaTSuperconducting doped topological materialsPhysica C20155142062172015PhyC..514..206S10.1016/j.physc.2015.02.018 YonezawaSKajikawaTMaenoYFirst-order superconducting transition of Sr2RuO4Phys. Rev. Lett.20131100770032013PhRvL.110g7003Y10.1103/PhysRevLett.110.077003 DeguchiKIshiguroTMaenoYField-orientation dependent heat capacity measurements at low temperatures with a vector magnet systemRev. Sci. Instrum.200475118811932004RScI...75.1188D10.1063/1.1710696 AndoYFuLTopological crystalline insulators and topological superconductors: from concepts to materialsAnnu. Rev. Condens. Matter Phys.201563613812015ARCMP...6..361A10.1146/annurev-conmatphys-031214-014501 VekhterIHirschfeldPJCarbotteJPNicolEJAnisotropic thermodynamics of d-wave superconductors in the vortex statePhys. Rev. B199959R9023R90261999PhRvB..59.9023V10.1103/PhysRevB.59.R9023 SakakibaraTNodal structures of heavy fermion superconductors probed by the specific-heat measurements in magnetic fieldsJ. Phys. Soc. Jpn2007760510042007JPSJ...76e1004S10.1143/JPSJ.76.051004 KrienerMSegawaKRenZSasakiSAndoYBulk superconducting phase with a full energy gap in the doped topological insulator CuxBi2Se3Phys. Rev. Lett.20111061270042011PhRvL.106l7004K10.1103/PhysRevLett.106.127004 SullivanPFSeidelGSteady-state, ac-temperature calorimetryPhys. Rev.19681736796851968PhRv..173..679S10.1103/PhysRev.173.679 OkazakiRRotational symmetry breaking in the hidden-order phase of URu2Si2Science20113314394422011Sci...331..439O10.1126/science.1197358 I Velichkov (BFnphys3907_CR28) 1992; 32 Y Nagai (BFnphys3907_CR9) 2012; 86 L Fu (BFnphys3907_CR8) 2014; 90 K An (BFnphys3907_CR23) 2010; 104 RA Borzi (BFnphys3907_CR4) 2007; 315 E Lahoud (BFnphys3907_CR17) 2013; 88 M Sigrist (BFnphys3907_CR2) 1991; 63 Y Ando (BFnphys3907_CR12) 2015; 6 Y Ando (BFnphys3907_CR3) 2002; 88 T Sakakibara (BFnphys3907_CR21) 2007; 76 L Fu (BFnphys3907_CR7) 2010; 105 S Sasaki (BFnphys3907_CR13) 2015; 514 K Deguchi (BFnphys3907_CR19) 2004; 75 YS Hor (BFnphys3907_CR11) 2010; 104 N Levy (BFnphys3907_CR15) 2013; 110 R Okazaki (BFnphys3907_CR6) 2011; 331 T Mizushima (BFnphys3907_CR16) 2014; 90 M Kriener (BFnphys3907_CR25) 2011; 106 T Hashimoto (BFnphys3907_CR31) 2014; 27 S Kasahara (BFnphys3907_CR5) 2012; 486 PF Sullivan (BFnphys3907_CR27) 1968; 173 Y Nagai (BFnphys3907_CR29) 2011; 83 I Vekhter (BFnphys3907_CR20) 1999; 59 K Matano (BFnphys3907_CR18) 2016; 12 F Pan (BFnphys3907_CR24) 2016; 6 S Sasaki (BFnphys3907_CR14) 2011; 107 S Yonezawa (BFnphys3907_CR26) 2013; 110 A Vorontsov (BFnphys3907_CR22) 2006; 96 CC Tsuei (BFnphys3907_CR10) 2000; 72 Y Nagai (BFnphys3907_CR30) 2014; 83 PW Anderson (BFnphys3907_CR1) 1997 |
References_xml | – volume: 110 start-page: 077003 year: 2013 ident: BFnphys3907_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.077003 contributor: fullname: S Yonezawa – volume: 6 start-page: 28632 year: 2016 ident: BFnphys3907_CR24 publication-title: Sci. Rep. doi: 10.1038/srep28632 contributor: fullname: F Pan – volume: 315 start-page: 214 year: 2007 ident: BFnphys3907_CR4 publication-title: Science doi: 10.1126/science.1134796 contributor: fullname: RA Borzi – volume: 90 start-page: 100509(R) year: 2014 ident: BFnphys3907_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.100509 contributor: fullname: L Fu – volume: 88 start-page: 195107 year: 2013 ident: BFnphys3907_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.195107 contributor: fullname: E Lahoud – volume: 6 start-page: 361 year: 2015 ident: BFnphys3907_CR12 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031214-014501 contributor: fullname: Y Ando – volume: 514 start-page: 206 year: 2015 ident: BFnphys3907_CR13 publication-title: Physica C doi: 10.1016/j.physc.2015.02.018 contributor: fullname: S Sasaki – volume: 76 start-page: 051004 year: 2007 ident: BFnphys3907_CR21 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.76.051004 contributor: fullname: T Sakakibara – volume: 107 start-page: 217001 year: 2011 ident: BFnphys3907_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.217001 contributor: fullname: S Sasaki – volume: 32 start-page: 285 year: 1992 ident: BFnphys3907_CR28 publication-title: Cryogenics doi: 10.1016/0011-2275(92)90366-I contributor: fullname: I Velichkov – volume: 104 start-page: 057001 year: 2010 ident: BFnphys3907_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.057001 contributor: fullname: YS Hor – volume-title: Basic Notions of Condensed Matter Physics year: 1997 ident: BFnphys3907_CR1 contributor: fullname: PW Anderson – volume: 86 start-page: 094507 year: 2012 ident: BFnphys3907_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.094507 contributor: fullname: Y Nagai – volume: 106 start-page: 127004 year: 2011 ident: BFnphys3907_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.127004 contributor: fullname: M Kriener – volume: 83 start-page: 104523 year: 2011 ident: BFnphys3907_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.104523 contributor: fullname: Y Nagai – volume: 72 start-page: 969 year: 2000 ident: BFnphys3907_CR10 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.969 contributor: fullname: CC Tsuei – volume: 486 start-page: 382 year: 2012 ident: BFnphys3907_CR5 publication-title: Nature doi: 10.1038/nature11178 contributor: fullname: S Kasahara – volume: 12 start-page: 852 year: 2016 ident: BFnphys3907_CR18 publication-title: Nat. Phys. doi: 10.1038/nphys3781 contributor: fullname: K Matano – volume: 90 start-page: 184516 year: 2014 ident: BFnphys3907_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.184516 contributor: fullname: T Mizushima – volume: 331 start-page: 439 year: 2011 ident: BFnphys3907_CR6 publication-title: Science doi: 10.1126/science.1197358 contributor: fullname: R Okazaki – volume: 27 start-page: 104002 year: 2014 ident: BFnphys3907_CR31 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/10/104002 contributor: fullname: T Hashimoto – volume: 83 start-page: 063705 year: 2014 ident: BFnphys3907_CR30 publication-title: J. Phys. Soc. Jpn doi: 10.7566/JPSJ.83.063705 contributor: fullname: Y Nagai – volume: 110 start-page: 117001 year: 2013 ident: BFnphys3907_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.117001 contributor: fullname: N Levy – volume: 75 start-page: 1188 year: 2004 ident: BFnphys3907_CR19 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1710696 contributor: fullname: K Deguchi – volume: 88 start-page: 137005 year: 2002 ident: BFnphys3907_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.137005 contributor: fullname: Y Ando – volume: 104 start-page: 037002 year: 2010 ident: BFnphys3907_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.037002 contributor: fullname: K An – volume: 63 start-page: 239 year: 1991 ident: BFnphys3907_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.63.239 contributor: fullname: M Sigrist – volume: 96 start-page: 237001 year: 2006 ident: BFnphys3907_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.237001 contributor: fullname: A Vorontsov – volume: 59 start-page: R9023 year: 1999 ident: BFnphys3907_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.R9023 contributor: fullname: I Vekhter – volume: 173 start-page: 679 year: 1968 ident: BFnphys3907_CR27 publication-title: Phys. Rev. doi: 10.1103/PhysRev.173.679 contributor: fullname: PF Sullivan – volume: 105 start-page: 097001 year: 2010 ident: BFnphys3907_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.097001 contributor: fullname: L Fu |
SSID | ssj0042613 |
Score | 2.6421928 |
Snippet | In a nematic liquid crystal, electron orbitals align themselves along one axis, as rods. Thermodynamic observations of such rod-like alignments in Cu
x
Bi
2
Se... In condensed matter physics, spontaneous symmetry breaking has been a key concept, and discoveries of new types of broken symmetries have greatly increased our... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 123 |
SubjectTerms | 639/301/923/919 639/766/119/1003 639/766/119/2792 639/766/119/995 639/766/119/997 Atomic Calorimetry Classical and Continuum Physics Complex Systems Condensed Matter Physics letter Magnetic fields Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Single crystals Specific heat Superconductivity Theoretical Thermodynamics |
Title | Thermodynamic evidence for nematic superconductivity in CuxBi2Se3 |
URI | https://link.springer.com/article/10.1038/nphys3907 https://www.proquest.com/docview/1864492803 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA9zIvgifuJ0SlHfpNol7Zo-Tp0IwhDmwD2VJM1kDruxrSj-9V6a9GPby3zwpZRrG8rdr5e7pPc7hK4YadJIBpEtXeHYMEN5NvcgcfWJF3C10-ukFXJPXb_zRh_abrtSybP-XPavlgYZ2FpVzv7B2vmgIIBzsDkcwepwXNfu089xpBvNX0vTNDT9mzA2_KyzZCKnkAcrqlfdO0KV_iXfd0PclaQcrnZS2k-z_DErPEQsf9hXGnZ21QrWuMj_P4a6dB0ceCHusBHTUWo3eU-mSSF_192w-8loWF5_gDnNWfiXw7zI8qLZde-55FV917Oxq3uW3MiyTPdryV0xKUEOl_xqA5PSFN3QRfYr3l9zvcdKKSTQzXSXyLTTLXdCw_yeDbSJwUWBh9xsvfX7D9ksrjJLootp9atnrFSE3uYPL8YyRYKytKeehiqvu2jH5BhWS4NjD1VkvI-2XrQRD1BrASJWBhELIGIZiFgrELGGsZVD5BD1Htuv90-26aRhC0zp3MaScCqYw5n0eHOAOWZMEScOfBq5AuIYxQPp8YApfkoquBd4Qjhu5AwYhM-YkCNUjQFbx8hS35ogvOmTiLi-G1AGg_tkIDD4AikbNXSR6SScaMKUcEXrNVTPtBWab2cWNijE5oHqllZDl5kGS5eXBzlZ665TtF2gto6q82kiz9DGLErOjcl_AeBqeGw |
link.rule.ids | 315,782,786,27933,27934,48346,48347,48361,49651,49652,49666 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RiNGLv40oaqNeF0e70u6IAsGIXMAETkvbdQkHB2GQ-OfbbqsiJz1va5b32n7vy3vvewAPgrR4rMPY04HyPYNQ1JPUEFdGaChtptfPO-T6Izac8E43cDrbmat2dynJ_KYuGsP5Y2qpvmHorAI1K3KOq1BrT6bTjrt4LRkgRf8j9XDAiBMS2vz4N_z8xJRbadAcXXqH__qvIzgog0jULrx-DDs6PYHdvJhTZafQNr5ffszjYtg80uXgUGTiU5QWGq0oWy_00nBhK_eaz49AsxQ9rz-fZnikyRm897rj575XjkrwFOZ85WFNJFfCl0JT2UqwxEJYZbyE8ThQBqis0B-VobAChFxJGlKl_CD2E2HiI0zIOVTTeaovANljo4hsMRKTgAUhF2ZxRhKFjbO1btbhzlkwWhSKGFGeySY8-rZFHRrOtlF5KLKoyU3wFdpxWHW4d7bceLy9yOWf3rqFvf74bRANXoavV7CPLezmVdUNqK6Wa30NlSxe35Sb5Qsw1b5m |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4IROPFtxFF3ajXhrLbdrdHBCoGQzRo4q3ZVxMOFkIh8ee724ciJ-O57baZzPT7JjPzDcAdJwFTOlSO9qTrGITyHeGbxJUSPxS20uvmE3LDCR2_s_7AyuTQahYm73avSpLFTINVaUqX7blKyiFx1k5t2m-ydVqDhsdIYCKyEb08RKPqJ2wTA1LMQvoO9iipRIXWH_4NRT_8cqMkmiNNtP_vbzyAvZJcom7hDYewpdMj2M6bPGV2DF3jE4uPmSqW0CNdLhRFhreitNBuRdlqrhfmRVYGNt8rgaYp6q0-76d4oskJvEWD197QKVcoOBIztnSwJoJJ7gqufREkWGDOrWJeQpnypAEwKwDoi5BbYUImhR_6UrqechNueBMm5BTq6SzVZ4BsOEkiAkoU8agXMm4OpySR2DiB1p0m3FTWjOeFUkacV7gJi79t0YRWZee4DJYs7jBDykK7JqsJt5Vd1y5vHnL-p7uuYee5H8VPj-PRBexii8Z5s3UL6svFSl9CLVOrq9JvvgDlhscE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+evidence+for+nematic+superconductivity+in+CuxBi2Se3&rft.jtitle=Nature+physics&rft.au=Yonezawa%2C+Shingo&rft.au=Tajiri%2C+Kengo&rft.au=Nakata%2C+Suguru&rft.au=Nagai%2C+Yuki&rft.date=2017-02-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=2&rft.spage=123&rft.epage=126&rft_id=info:doi/10.1038%2Fnphys3907&rft.externalDocID=10_1038_nphys3907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |