Nitrate Catalytic Reduction over Bimetallic Catalysts: Catalyst Optimization

The catalytic removal of nitrate (NO3−) in water using hydrogen as a reducing agent was studied using palladium-copper bimetallic catalysts in different supports. Commercial carbon nanotubes (CNTs), used as received and with different mechanical (CNT (BM 2h)) and chemical modifications (CNT (BM 4h)-...

Full description

Saved in:
Bibliographic Details
Published in:C (Basel) Vol. 6; no. 4; p. 78
Main Authors: Santos, A. Sofia G. G., Restivo, João, Orge, Carla A., Pereira, M. Fernando R., Soares, O. Salomé G. P.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalytic removal of nitrate (NO3−) in water using hydrogen as a reducing agent was studied using palladium-copper bimetallic catalysts in different supports. Commercial carbon nanotubes (CNTs), used as received and with different mechanical (CNT (BM 2h)) and chemical modifications (CNT (BM 4h)-N), titanium dioxide (TiO2) and composite materials (TiO2-CNT) were considered as main supports for the metallic phase. Different metal loadings were studied to synthesize an optimized catalyst with high NO3− conversion rate and considerable selectivity for N2 formation. Among all the studied support materials, the milled carbon nanotubes (sample CNT (BM 2h) was the support that showed the most promising results using 1%Pd-1%Cu as metallic phases. The most active catalysts were 2.5%Pd-2.5%Cu and 5%Pd-2.5%Cu supported on CNT (BM 2h), achieving total conversion after a 120 min reaction with N2 selectivity values of 62% and 60%, respectively. Reutilization experiments allowed us to conclude that these catalysts were stable during several reactions, in terms of NO3− conversion rate. However, the consecutive reuse of the catalyst leads to major changes concerning NH4+ selectivity values.
ISSN:2311-5629
2311-5629
DOI:10.3390/c6040078