Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned...
Saved in:
Published in: | The Journal of chemical physics Vol. 138; no. 16; p. 164125 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
28-04-2013
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions. |
---|---|
AbstractList | We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions. |
Author | Rabani, Eran Levy, Tal J |
Author_xml | – sequence: 1 givenname: Tal J surname: Levy fullname: Levy, Tal J organization: School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel – sequence: 2 givenname: Eran surname: Rabani fullname: Rabani, Eran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23635129$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j81OAyEcxInR2A89-AKGF1gFFljwZhqtJk082HvDwp90TRe2LBz69m79OM38MslMZoEuQwyA0B0lD5TI-pE-cEVYI9gFmlOidNVITWZoMY5fhBDaMH6NZqyWtaBMz1H5zGDcCY_ZZMA2BldsNsEC7gI22MXSHgAfiwm59BNmbFIypyec94DP08fSHbo2dVM6eZO7GKroqz6eHV4ngIB9CfYHzTCkaOz-Bl15cxjh9k-XaPv6sl29VZuP9fvqeVNZpkSuuJBWME9bq7libnrCrdOUCCUVAWiEo0qZRktBQRkuLW-dB3CKet_Umi3R_W_tUNoe3G5IXW_Safd_n30Df-BdPg |
CitedBy_id | crossref_primary_10_1016_j_physe_2019_03_014 crossref_primary_10_1016_j_physb_2018_04_007 crossref_primary_10_1103_PhysRevB_90_235411 crossref_primary_10_1103_PhysRevB_97_085434 crossref_primary_10_1063_1_5096244 crossref_primary_10_1063_1_4979622 crossref_primary_10_1103_PhysRevB_102_115112 crossref_primary_10_1039_C8CP01283K crossref_primary_10_1063_1_4878736 crossref_primary_10_1088_1361_648X_ab5317 crossref_primary_10_1016_j_jsv_2013_11_007 crossref_primary_10_1103_PRXQuantum_2_030102 crossref_primary_10_1021_jp500880j crossref_primary_10_1016_j_ymssp_2015_06_023 crossref_primary_10_1021_acs_jpcc_9b04132 crossref_primary_10_1088_0953_8984_26_45_455301 crossref_primary_10_1103_PhysRevB_107_155141 crossref_primary_10_1002_pssb_202300578 crossref_primary_10_1063_1_4892058 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1063/1.4802752 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 23635129 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CGR CS3 CUY CVF D-I DU5 EBS ECM EIF EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPM NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT WH7 YQT YZZ ~02 |
ID | FETCH-LOGICAL-c285t-456c52f1bc9482d7694cd91058680ee75d188a79651e8a46c4bdfeed81ff7392 |
IngestDate | Sat Sep 28 08:00:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-456c52f1bc9482d7694cd91058680ee75d188a79651e8a46c4bdfeed81ff7392 |
PMID | 23635129 |
ParticipantIDs | pubmed_primary_23635129 |
PublicationCentury | 2000 |
PublicationDate | 2013-Apr-28 |
PublicationDateYYYYMMDD | 2013-04-28 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-Apr-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2013 |
SSID | ssj0001724 |
Score | 2.261322 |
Snippet | We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 164125 |
SubjectTerms | Quantum Dots Quantum Theory Temperature |
Title | Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23635129 |
Volume | 138 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLZaEBoXxMc2YDD5sFtkFid24nBDpYjLJiR62A3FX1IPpAWaA_9-r-04zUBM24FLlNhtFb3PU-fxm_cDoW91KSuquCS2NBVhNVekUoISIXSRqjSVoc729W3585e4nLLpaBTDu9Zj74o0jAHWLnP2P9DufxQG4BwwhyOgDsd_wt0F6OrnxCcKuZhyV8_VpwXMm6RO9KJ1qVIPLRi0vYfLVVI_PtbPMbyjWTTmoZ37RACYh3OPHFlYEvr9JD5QJ3GPw9BjvKtJPhS563QzL3RVrEkQvCi9iI_tkmfOFbl-3yRDlylYoTvidj4J1x-CxRxvE9bRVFSkLEIn0H6hzcWQUcN1EzZtNCRAv1rSQUM578IZE-4Nazb8DNhmee9xzHIQTjT4Tv4--6K6dpwaozFoJSenJz_6JzmIOxarURX59_4eXAXp7nsvdiNelcx20U5nZXwReLCHRqbZRx8msYvfPtq6CUY_QG1gBvbMwANm4HmDaxyYgTtmwOUKe2acY-AF_pMX-DUvsOcFjrzAkRcf0exqOptck67pBlGZ4CsCglrxzFKpKiYyDRgypUFTclGI1JiSaypEXVYFp0bUrFBMagtCS1BrSxDbn9CGu6VDhKXQhloJG4ICNrlVKS2zFc-YyTkI7Tw7Qp-D6e6WobDKXTTq8ZszX9D2mm8naNPCv9acovGTbr967H4Dv3RlUQ |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steady+state+conductance+in+a+double+quantum+dot+array%3A+the+nonequilibrium+equation-of-motion+Green+function+approach&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Levy%2C+Tal+J&rft.au=Rabani%2C+Eran&rft.date=2013-04-28&rft.eissn=1089-7690&rft.volume=138&rft.issue=16&rft.spage=164125&rft_id=info:doi/10.1063%2F1.4802752&rft_id=info%3Apmid%2F23635129&rft_id=info%3Apmid%2F23635129&rft.externalDocID=23635129 |