Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach

We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics Vol. 138; no. 16; p. 164125
Main Authors: Levy, Tal J, Rabani, Eran
Format: Journal Article
Language:English
Published: United States 28-04-2013
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
AbstractList We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Author Rabani, Eran
Levy, Tal J
Author_xml – sequence: 1
  givenname: Tal J
  surname: Levy
  fullname: Levy, Tal J
  organization: School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
– sequence: 2
  givenname: Eran
  surname: Rabani
  fullname: Rabani, Eran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23635129$$D View this record in MEDLINE/PubMed
BookMark eNo1j81OAyEcxInR2A89-AKGF1gFFljwZhqtJk082HvDwp90TRe2LBz69m79OM38MslMZoEuQwyA0B0lD5TI-pE-cEVYI9gFmlOidNVITWZoMY5fhBDaMH6NZqyWtaBMz1H5zGDcCY_ZZMA2BldsNsEC7gI22MXSHgAfiwm59BNmbFIypyec94DP08fSHbo2dVM6eZO7GKroqz6eHV4ngIB9CfYHzTCkaOz-Bl15cxjh9k-XaPv6sl29VZuP9fvqeVNZpkSuuJBWME9bq7libnrCrdOUCCUVAWiEo0qZRktBQRkuLW-dB3CKet_Umi3R_W_tUNoe3G5IXW_Safd_n30Df-BdPg
CitedBy_id crossref_primary_10_1016_j_physe_2019_03_014
crossref_primary_10_1016_j_physb_2018_04_007
crossref_primary_10_1103_PhysRevB_90_235411
crossref_primary_10_1103_PhysRevB_97_085434
crossref_primary_10_1063_1_5096244
crossref_primary_10_1063_1_4979622
crossref_primary_10_1103_PhysRevB_102_115112
crossref_primary_10_1039_C8CP01283K
crossref_primary_10_1063_1_4878736
crossref_primary_10_1088_1361_648X_ab5317
crossref_primary_10_1016_j_jsv_2013_11_007
crossref_primary_10_1103_PRXQuantum_2_030102
crossref_primary_10_1021_jp500880j
crossref_primary_10_1016_j_ymssp_2015_06_023
crossref_primary_10_1021_acs_jpcc_9b04132
crossref_primary_10_1088_0953_8984_26_45_455301
crossref_primary_10_1103_PhysRevB_107_155141
crossref_primary_10_1002_pssb_202300578
crossref_primary_10_1063_1_4892058
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1063/1.4802752
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 23635129
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CGR
CS3
CUY
CVF
D-I
DU5
EBS
ECM
EIF
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
ID FETCH-LOGICAL-c285t-456c52f1bc9482d7694cd91058680ee75d188a79651e8a46c4bdfeed81ff7392
IngestDate Sat Sep 28 08:00:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-456c52f1bc9482d7694cd91058680ee75d188a79651e8a46c4bdfeed81ff7392
PMID 23635129
ParticipantIDs pubmed_primary_23635129
PublicationCentury 2000
PublicationDate 2013-Apr-28
PublicationDateYYYYMMDD 2013-04-28
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-Apr-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2013
SSID ssj0001724
Score 2.261322
Snippet We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This...
SourceID pubmed
SourceType Index Database
StartPage 164125
SubjectTerms Quantum Dots
Quantum Theory
Temperature
Title Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach
URI https://www.ncbi.nlm.nih.gov/pubmed/23635129
Volume 138
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLZaEBoXxMc2YDD5sFtkFid24nBDpYjLJiR62A3FX1IPpAWaA_9-r-04zUBM24FLlNhtFb3PU-fxm_cDoW91KSuquCS2NBVhNVekUoISIXSRqjSVoc729W3585e4nLLpaBTDu9Zj74o0jAHWLnP2P9DufxQG4BwwhyOgDsd_wt0F6OrnxCcKuZhyV8_VpwXMm6RO9KJ1qVIPLRi0vYfLVVI_PtbPMbyjWTTmoZ37RACYh3OPHFlYEvr9JD5QJ3GPw9BjvKtJPhS563QzL3RVrEkQvCi9iI_tkmfOFbl-3yRDlylYoTvidj4J1x-CxRxvE9bRVFSkLEIn0H6hzcWQUcN1EzZtNCRAv1rSQUM578IZE-4Nazb8DNhmee9xzHIQTjT4Tv4--6K6dpwaozFoJSenJz_6JzmIOxarURX59_4eXAXp7nsvdiNelcx20U5nZXwReLCHRqbZRx8msYvfPtq6CUY_QG1gBvbMwANm4HmDaxyYgTtmwOUKe2acY-AF_pMX-DUvsOcFjrzAkRcf0exqOptck67pBlGZ4CsCglrxzFKpKiYyDRgypUFTclGI1JiSaypEXVYFp0bUrFBMagtCS1BrSxDbn9CGu6VDhKXQhloJG4ICNrlVKS2zFc-YyTkI7Tw7Qp-D6e6WobDKXTTq8ZszX9D2mm8naNPCv9acovGTbr967H4Dv3RlUQ
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steady+state+conductance+in+a+double+quantum+dot+array%3A+the+nonequilibrium+equation-of-motion+Green+function+approach&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Levy%2C+Tal+J&rft.au=Rabani%2C+Eran&rft.date=2013-04-28&rft.eissn=1089-7690&rft.volume=138&rft.issue=16&rft.spage=164125&rft_id=info:doi/10.1063%2F1.4802752&rft_id=info%3Apmid%2F23635129&rft_id=info%3Apmid%2F23635129&rft.externalDocID=23635129