Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction

To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65. We used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for...

Full description

Saved in:
Bibliographic Details
Published in:Mayo Clinic proceedings Vol. 96; no. 7; pp. 1835 - 1844
Main Authors: Tseng, Andrew S., Thao, Viengneesee, Borah, Bijan J., Attia, Itzhak Zachi, Medina Inojosa, Jose, Kapa, Suraj, Carter, Rickey E., Friedman, Paul A., Lopez-Jimenez, Francisco, Yao, Xiaoxi, Noseworthy, Peter A.
Format: Journal Article
Language:English
Published: Elsevier Inc 01-07-2021
Elsevier, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65. We used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold. We found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000. Universal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken.
AbstractList To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65. We used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold. We found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000. Universal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken.
OBJECTIVETo evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65. PATIENTS AND METHODSWe used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold. RESULTSWe found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000. CONCLUSIONUniversal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken.
Audience Academic
Author Attia, Itzhak Zachi
Friedman, Paul A.
Kapa, Suraj
Carter, Rickey E.
Lopez-Jimenez, Francisco
Borah, Bijan J.
Yao, Xiaoxi
Noseworthy, Peter A.
Thao, Viengneesee
Tseng, Andrew S.
Medina Inojosa, Jose
Author_xml – sequence: 1
  givenname: Andrew S.
  orcidid: 0000-0002-9181-1970
  surname: Tseng
  fullname: Tseng, Andrew S.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 2
  givenname: Viengneesee
  surname: Thao
  fullname: Thao, Viengneesee
  organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
– sequence: 3
  givenname: Bijan J.
  surname: Borah
  fullname: Borah, Bijan J.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 4
  givenname: Itzhak Zachi
  surname: Attia
  fullname: Attia, Itzhak Zachi
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 5
  givenname: Jose
  orcidid: 0000-0001-8705-0462
  surname: Medina Inojosa
  fullname: Medina Inojosa, Jose
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 6
  givenname: Suraj
  orcidid: 0000-0003-2283-4340
  surname: Kapa
  fullname: Kapa, Suraj
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 7
  givenname: Rickey E.
  orcidid: 0000-0002-0818-273X
  surname: Carter
  fullname: Carter, Rickey E.
  organization: Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
– sequence: 8
  givenname: Paul A.
  orcidid: 0000-0001-5052-2948
  surname: Friedman
  fullname: Friedman, Paul A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 9
  givenname: Francisco
  orcidid: 0000-0001-5788-9734
  surname: Lopez-Jimenez
  fullname: Lopez-Jimenez, Francisco
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 10
  givenname: Xiaoxi
  surname: Yao
  fullname: Yao, Xiaoxi
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 11
  givenname: Peter A.
  surname: Noseworthy
  fullname: Noseworthy, Peter A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
BookMark eNp9kcuu0zAQhi10kOg58AYsvEJsUsaOncsGqeopF6kSG2Bruc64dZXYwXaOlLfHVVmzGmnm--f2P5IHHzwS8p7BlgFrPl23k16DmbcceEmxLdT8FdmwXvBKStE8kA0Al1XD-uYNeUzpCgBt34sNWfchZXqwFk12L-gxJRos1Z4expKKweg4uHCOer44Q58RZ3pEHb3zZ7obzyG6fJloDqWUi4Du0jrNOUw6F_yINtPf6HN0Zhl1pM9rsosvo4J_S15bPSZ89y8-kV9fDj_336rjj6_f97tjZXgnc8VAnrpBsF63J9NapjmDGloGgJJ3vRa25t3QCdNw3bMTQ9HjgFbqWmsYGqifyMd73zmGPwumrCaXDI6j9hiWpLgUIJkUvCnohzt61iOqC-oxX1IYl9u6Se2algNry1YFFHfQxJBSRKvm6CYdV8VA3SxRV3W3RN0sUYypYkmRfb7LsNz74jCqZBx6g4OL5XdqCO7_Df4CwMyZpg
CitedBy_id crossref_primary_10_1007_s12170_023_00723_4
crossref_primary_10_1080_13696998_2023_2277072
crossref_primary_10_1161_CIRCRESAHA_121_319876
crossref_primary_10_1016_j_artmed_2023_102547
crossref_primary_10_1136_bmjopen_2022_070929
crossref_primary_10_1016_j_heliyon_2024_e25318
crossref_primary_10_1186_s44247_024_00088_7
crossref_primary_10_3389_fphar_2023_1220950
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_1038_s41591_022_02053_1
crossref_primary_10_1007_s10741_022_10283_1
crossref_primary_10_15212_CVIA_2023_0024
crossref_primary_10_1007_s40274_021_7797_6
crossref_primary_10_1016_j_cjca_2023_11_044
crossref_primary_10_1016_j_cvdhj_2024_03_005
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_1007_s40273_023_01287_2
Cites_doi 10.1161/CIRCHEARTFAILURE.117.004873
10.1038/s41591-018-0240-2
10.7326/0003-4819-137-2-200207160-00007
10.1111/jce.13889
10.1001/jama.2016.12195
10.7326/0003-4819-148-1-200801010-00002
10.1001/jama.289.2.194
10.1016/j.carage.2017.12.004
10.1007/s10552-019-01178-y
10.7326/0003-4819-138-11-200306030-00012
10.1002/hec.4730030505
10.1016/S0735-1097(97)00104-6
10.1056/NEJM199209033271003
10.1056/NEJM199108013250501
10.1016/j.jchf.2015.12.007
10.1111/j.1524-4733.2008.00425.x
10.1002/clc.22260
10.1016/j.jvs.2005.01.055
10.1161/01.CIR.0000085166.44904.79
ContentType Journal Article
Copyright 2020 Mayo Foundation for Medical Education and Research
COPYRIGHT 2021 Elsevier, Inc.
Copyright_xml – notice: 2020 Mayo Foundation for Medical Education and Research
– notice: COPYRIGHT 2021 Elsevier, Inc.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.mayocp.2020.11.032
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1942-5546
EndPage 1844
ExternalDocumentID A672017285
10_1016_j_mayocp_2020_11_032
S0025619620314737
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Mayo Clinic
  funderid: https://doi.org/10.13039/100000871
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
08P
0R~
18M
1CY
1P~
29M
2WC
354
36B
3O-
3V.
4.4
457
53G
5GY
5RE
7RV
7X7
88E
88I
8AF
8C1
8F7
8FI
8FJ
96U
AAEDT
AAEDW
AAIAV
AAKAS
AALRI
AAQQT
AAQXK
AAWTL
AAXUO
AAYEP
AAYOK
ABCQX
ABJNI
ABLJU
ABMAC
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADFRT
ADMUD
ADZCM
AENEX
AERZD
AEVXI
AFAZI
AFCTW
AFFNX
AFKRA
AFRHN
AFTJW
AGNAY
AHMBA
AHPSJ
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
AZQEC
BAAKF
BAWUL
BCR
BCU
BEC
BENPR
BES
BKEYQ
BKNYI
BKOMP
BLC
BPHCQ
BVXVI
CCPQU
DIK
DU5
DWQXO
E3Z
EBS
EJD
EX3
F8P
F9R
FAC
FAS
FDB
FEDTE
FGOYB
FJW
FYUFA
GNUQQ
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IAO
ICW
IEA
IHR
IHW
INH
INR
IOF
ITC
J5H
K9-
L7B
M0R
M1P
M2P
M2Q
M41
N4W
N95
NAPCQ
O9-
OD.
OHT
OK1
OO~
OVD
P2P
PCD
PEA
PQQKQ
PROAC
PSQYO
R2-
RIG
ROL
RPM
RVF
RWL
RXW
S0X
SEL
SJFOW
TAE
TEORI
TJF
TR2
U5U
UKHRP
UNMZH
VVN
W8F
WH7
WOW
X7M
XH2
XI7
YFH
YOC
Z5R
ZA5
ZGI
ZXP
AAYXX
AFJKZ
ALIPV
CITATION
H13
7X8
ID FETCH-LOGICAL-c285t-105b8d419a7bc7f1a210307100e5289a4f328d84c62a91b1e49edef5a3aa0d603
ISSN 0025-6196
IngestDate Fri Aug 16 06:10:55 EDT 2024
Tue Aug 20 22:03:59 EDT 2024
Thu Sep 26 17:19:31 EDT 2024
Fri Feb 23 02:43:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords AI-ECG
TTE
ICER
ALVD
LVEF
QALY
PSA
QOL
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-105b8d419a7bc7f1a210307100e5289a4f328d84c62a91b1e49edef5a3aa0d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9181-1970
0000-0002-0818-273X
0000-0001-5788-9734
0000-0001-8705-0462
0000-0003-2283-4340
0000-0001-5052-2948
PQID 2540515426
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2540515426
gale_healthsolutions_A672017285
crossref_primary_10_1016_j_mayocp_2020_11_032
elsevier_sciencedirect_doi_10_1016_j_mayocp_2020_11_032
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Mayo Clinic proceedings
PublicationYear 2021
Publisher Elsevier Inc
Elsevier, Inc
Publisher_xml – name: Elsevier Inc
– name: Elsevier, Inc
References Jackson, Tong, King, Loustalot, Hong, Ritchey (bib1) 2018; 11
Accessed May 1, 2020.
Tosteson, Stout, Fryback (bib23) 2008; 148
Attia, Kapa, Lopez-Jimenez (bib5) 2019; 25
Heidenreich, Lee, Massie (bib14) 1997; 30
Voigt, John, Taylor, Krucoff, Reynolds, Michael Gibson (bib19) 2014; 37
HCUPnet: A Tool for Identifying, Tracking, and Analyzing National Hospital Statistics. Agency for Healthcare Research and Quality.
Roger (bib3) 2016; 4
(bib20) 2012
Rim, Allaire, Ekwueme (bib22) 2019; 30
Attia, Kapa, Lopez-Jimenez (bib7) 2019; 25
Wang, Levy, Benjamin, Vasan (bib2) 2003; 138
McDonagh, Cunningham, Morrison (bib4) 2001; 86
Yusuf, Pitt, Davis, Hood, Cohn (bib11) 1992; 327
Pignone, Saha, Hoerger, Mandelblatt (bib25) 2002; 137
Wanhainen, Lundkvist, Bergqvist, Bjorck (bib24) 2005; 41
Göhler, Geisler, Manne (bib15) 2009; 12
Wang, Evans, Benjamin, Levy, LeRoy, Vasan (bib10) 2003; 108
CY 2019 Medicare Physician Fee Schedule Final Rule (CMS-1694-F). United States Federal Register Online via the Government Publishing Office. 2019.
Yusuf, Pitt, Davis, Hood, Cohn (bib12) 1991; 325
Redfield, Jacobsen, Burnett, Mahoney, Bailey, Rodeheffer (bib9) 2003; 289
EKGs and Exercise Stress Tests. Choosing Wisely. 2016.
Attia, Kapa, Yao (bib6) 2019; 30
Sanders, Neumann, Basu (bib8) 2016; 316
Van Hout, Al, Gordon, Rutten (bib21) 1994; 3
Arias (bib13) 2019; 68
Wang (10.1016/j.mayocp.2020.11.032_bib10) 2003; 108
Redfield (10.1016/j.mayocp.2020.11.032_bib9) 2003; 289
Van Hout (10.1016/j.mayocp.2020.11.032_bib21) 1994; 3
Arias (10.1016/j.mayocp.2020.11.032_bib13) 2019; 68
Attia (10.1016/j.mayocp.2020.11.032_bib5) 2019; 25
Wanhainen (10.1016/j.mayocp.2020.11.032_bib24) 2005; 41
Rim (10.1016/j.mayocp.2020.11.032_bib22) 2019; 30
Attia (10.1016/j.mayocp.2020.11.032_bib7) 2019; 25
Sanders (10.1016/j.mayocp.2020.11.032_bib8) 2016; 316
Tosteson (10.1016/j.mayocp.2020.11.032_bib23) 2008; 148
McDonagh (10.1016/j.mayocp.2020.11.032_bib4) 2001; 86
Wang (10.1016/j.mayocp.2020.11.032_bib2) 2003; 138
Yusuf (10.1016/j.mayocp.2020.11.032_bib12) 1991; 325
10.1016/j.mayocp.2020.11.032_bib18
Yusuf (10.1016/j.mayocp.2020.11.032_bib11) 1992; 327
10.1016/j.mayocp.2020.11.032_bib17
10.1016/j.mayocp.2020.11.032_bib16
Heidenreich (10.1016/j.mayocp.2020.11.032_bib14) 1997; 30
(10.1016/j.mayocp.2020.11.032_bib20) 2012
Göhler (10.1016/j.mayocp.2020.11.032_bib15) 2009; 12
Jackson (10.1016/j.mayocp.2020.11.032_bib1) 2018; 11
Pignone (10.1016/j.mayocp.2020.11.032_bib25) 2002; 137
Roger (10.1016/j.mayocp.2020.11.032_bib3) 2016; 4
Voigt (10.1016/j.mayocp.2020.11.032_bib19) 2014; 37
Attia (10.1016/j.mayocp.2020.11.032_bib6) 2019; 30
References_xml – volume: 148
  start-page: 1
  year: 2008
  end-page: 10
  ident: bib23
  article-title: Cost-effectiveness of digital mammography breast cancer screening
  publication-title: Ann Intern Med
  contributor:
    fullname: Fryback
– volume: 108
  start-page: 977
  year: 2003
  end-page: 982
  ident: bib10
  article-title: Natural history of asymptomatic left ventricular systolic dysfunction in the community
  publication-title: Circulation
  contributor:
    fullname: Vasan
– volume: 30
  start-page: 819
  year: 2019
  end-page: 826
  ident: bib22
  article-title: Cost-effectiveness of breast cancer screening in the National Breast and Cervical Cancer Early Detection Program
  publication-title: Cancer Causes Control
  contributor:
    fullname: Ekwueme
– volume: 41
  start-page: 741
  year: 2005
  end-page: 751
  ident: bib24
  article-title: Cost-effectiveness of different screening strategies for abdominal aortic aneurysm
  publication-title: J Vasc Surg
  contributor:
    fullname: Bjorck
– volume: 25
  start-page: 70
  year: 2019
  end-page: 74
  ident: bib5
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat Med
  contributor:
    fullname: Lopez-Jimenez
– volume: 137
  start-page: 96
  year: 2002
  end-page: 104
  ident: bib25
  article-title: Cost-effectiveness analyses of colorectal cancer screening: A systematic review for the U.S. Preventive Services Task Force
  publication-title: Ann Intern Med
  contributor:
    fullname: Mandelblatt
– volume: 327
  start-page: 685
  year: 1992
  end-page: 691
  ident: bib11
  article-title: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions
  publication-title: N Engl J Med
  contributor:
    fullname: Cohn
– volume: 12
  start-page: 185
  year: 2009
  end-page: 187
  ident: bib15
  article-title: Utility estimates for decision–Analytic modeling in chronic heart failure—Health states based on New York Heart Association classes and number of rehospitalizations
  publication-title: Value Health
  contributor:
    fullname: Manne
– year: 2012
  ident: bib20
  article-title: National health expenditure data
– volume: 138
  start-page: 907
  year: 2003
  end-page: 916
  ident: bib2
  article-title: The epidemiology of “asymptomatic” left ventricular systolic dysfunction: Implications for screening
  publication-title: Ann Intern Med
  contributor:
    fullname: Vasan
– volume: 86
  start-page: 21
  year: 2001
  end-page: 26
  ident: bib4
  article-title: Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population
  publication-title: Heart
  contributor:
    fullname: Morrison
– volume: 30
  start-page: 668
  year: 2019
  end-page: 674
  ident: bib6
  article-title: Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction
  publication-title: J Cardiovasc Electrophysiol
  contributor:
    fullname: Yao
– volume: 325
  start-page: 293
  year: 1991
  end-page: 302
  ident: bib12
  article-title: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure
  publication-title: N Engl J Med
  contributor:
    fullname: Cohn
– volume: 3
  start-page: 309
  year: 1994
  end-page: 319
  ident: bib21
  article-title: Costs, effects and C/E-ratios alongside a clinical trial
  publication-title: Health economics
  contributor:
    fullname: Rutten
– volume: 11
  start-page: e004873
  year: 2018
  ident: bib1
  article-title: National burden of heart failure events in the United States, 2006 to 2014
  publication-title: Circ Heart Fail
  contributor:
    fullname: Ritchey
– volume: 68
  start-page: 1
  year: 2019
  end-page: 66
  ident: bib13
  article-title: United States Life Tables, 2017
  publication-title: National Vital Statistics Reports
  contributor:
    fullname: Arias
– volume: 4
  start-page: 249
  year: 2016
  end-page: 251
  ident: bib3
  article-title: Asymptomatic left ventricular dysfunction: To screen or not to screen?
  publication-title: JACC Heart Fail
  contributor:
    fullname: Roger
– volume: 30
  start-page: 27
  year: 1997
  end-page: 34
  ident: bib14
  article-title: Effect of beta-blockade on mortality in patients with heart failure: A meta-analysis of randomized clinical trials
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Massie
– volume: 316
  start-page: 1093
  year: 2016
  end-page: 1103
  ident: bib8
  article-title: Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness in health and medicine
  publication-title: JAMA
  contributor:
    fullname: Basu
– volume: 37
  start-page: 312
  year: 2014
  end-page: 321
  ident: bib19
  article-title: A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States
  publication-title: Clin Cardiol
  contributor:
    fullname: Michael Gibson
– volume: 289
  start-page: 194
  year: 2003
  end-page: 202
  ident: bib9
  article-title: Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic
  publication-title: JAMA
  contributor:
    fullname: Rodeheffer
– volume: 25
  start-page: 70
  year: 2019
  end-page: 74
  ident: bib7
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat Med
  contributor:
    fullname: Lopez-Jimenez
– volume: 11
  start-page: e004873
  issue: 12
  year: 2018
  ident: 10.1016/j.mayocp.2020.11.032_bib1
  article-title: National burden of heart failure events in the United States, 2006 to 2014
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.117.004873
  contributor:
    fullname: Jackson
– year: 2012
  ident: 10.1016/j.mayocp.2020.11.032_bib20
– volume: 25
  start-page: 70
  issue: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.11.032_bib7
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0240-2
  contributor:
    fullname: Attia
– volume: 137
  start-page: 96
  issue: 2
  year: 2002
  ident: 10.1016/j.mayocp.2020.11.032_bib25
  article-title: Cost-effectiveness analyses of colorectal cancer screening: A systematic review for the U.S. Preventive Services Task Force
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-137-2-200207160-00007
  contributor:
    fullname: Pignone
– volume: 30
  start-page: 668
  issue: 5
  year: 2019
  ident: 10.1016/j.mayocp.2020.11.032_bib6
  article-title: Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction
  publication-title: J Cardiovasc Electrophysiol
  doi: 10.1111/jce.13889
  contributor:
    fullname: Attia
– volume: 316
  start-page: 1093
  issue: 10
  year: 2016
  ident: 10.1016/j.mayocp.2020.11.032_bib8
  article-title: Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness in health and medicine
  publication-title: JAMA
  doi: 10.1001/jama.2016.12195
  contributor:
    fullname: Sanders
– volume: 148
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.mayocp.2020.11.032_bib23
  article-title: Cost-effectiveness of digital mammography breast cancer screening
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-148-1-200801010-00002
  contributor:
    fullname: Tosteson
– volume: 289
  start-page: 194
  issue: 2
  year: 2003
  ident: 10.1016/j.mayocp.2020.11.032_bib9
  article-title: Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic
  publication-title: JAMA
  doi: 10.1001/jama.289.2.194
  contributor:
    fullname: Redfield
– ident: 10.1016/j.mayocp.2020.11.032_bib17
  doi: 10.1016/j.carage.2017.12.004
– volume: 25
  start-page: 70
  issue: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.11.032_bib5
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0240-2
  contributor:
    fullname: Attia
– volume: 30
  start-page: 819
  issue: 8
  year: 2019
  ident: 10.1016/j.mayocp.2020.11.032_bib22
  article-title: Cost-effectiveness of breast cancer screening in the National Breast and Cervical Cancer Early Detection Program
  publication-title: Cancer Causes Control
  doi: 10.1007/s10552-019-01178-y
  contributor:
    fullname: Rim
– volume: 138
  start-page: 907
  issue: 11
  year: 2003
  ident: 10.1016/j.mayocp.2020.11.032_bib2
  article-title: The epidemiology of “asymptomatic” left ventricular systolic dysfunction: Implications for screening
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-138-11-200306030-00012
  contributor:
    fullname: Wang
– volume: 3
  start-page: 309
  issue: 5
  year: 1994
  ident: 10.1016/j.mayocp.2020.11.032_bib21
  article-title: Costs, effects and C/E-ratios alongside a clinical trial
  publication-title: Health economics
  doi: 10.1002/hec.4730030505
  contributor:
    fullname: Van Hout
– volume: 30
  start-page: 27
  issue: 1
  year: 1997
  ident: 10.1016/j.mayocp.2020.11.032_bib14
  article-title: Effect of beta-blockade on mortality in patients with heart failure: A meta-analysis of randomized clinical trials
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(97)00104-6
  contributor:
    fullname: Heidenreich
– ident: 10.1016/j.mayocp.2020.11.032_bib16
– volume: 327
  start-page: 685
  issue: 10
  year: 1992
  ident: 10.1016/j.mayocp.2020.11.032_bib11
  article-title: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199209033271003
  contributor:
    fullname: Yusuf
– volume: 325
  start-page: 293
  issue: 5
  year: 1991
  ident: 10.1016/j.mayocp.2020.11.032_bib12
  article-title: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199108013250501
  contributor:
    fullname: Yusuf
– volume: 68
  start-page: 1
  issue: 7
  year: 2019
  ident: 10.1016/j.mayocp.2020.11.032_bib13
  article-title: United States Life Tables, 2017
  publication-title: National Vital Statistics Reports
  contributor:
    fullname: Arias
– volume: 4
  start-page: 249
  issue: 4
  year: 2016
  ident: 10.1016/j.mayocp.2020.11.032_bib3
  article-title: Asymptomatic left ventricular dysfunction: To screen or not to screen?
  publication-title: JACC Heart Fail
  doi: 10.1016/j.jchf.2015.12.007
  contributor:
    fullname: Roger
– ident: 10.1016/j.mayocp.2020.11.032_bib18
– volume: 12
  start-page: 185
  issue: 1
  year: 2009
  ident: 10.1016/j.mayocp.2020.11.032_bib15
  article-title: Utility estimates for decision–Analytic modeling in chronic heart failure—Health states based on New York Heart Association classes and number of rehospitalizations
  publication-title: Value Health
  doi: 10.1111/j.1524-4733.2008.00425.x
  contributor:
    fullname: Göhler
– volume: 37
  start-page: 312
  issue: 5
  year: 2014
  ident: 10.1016/j.mayocp.2020.11.032_bib19
  article-title: A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States
  publication-title: Clin Cardiol
  doi: 10.1002/clc.22260
  contributor:
    fullname: Voigt
– volume: 41
  start-page: 741
  issue: 5
  year: 2005
  ident: 10.1016/j.mayocp.2020.11.032_bib24
  article-title: Cost-effectiveness of different screening strategies for abdominal aortic aneurysm
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2005.01.055
  contributor:
    fullname: Wanhainen
– volume: 86
  start-page: 21
  issue: 1
  year: 2001
  ident: 10.1016/j.mayocp.2020.11.032_bib4
  article-title: Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population
  publication-title: Heart
  contributor:
    fullname: McDonagh
– volume: 108
  start-page: 977
  issue: 8
  year: 2003
  ident: 10.1016/j.mayocp.2020.11.032_bib10
  article-title: Natural history of asymptomatic left ventricular systolic dysfunction in the community
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000085166.44904.79
  contributor:
    fullname: Wang
SSID ssj0007994
Score 2.3974776
Snippet To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for...
OBJECTIVETo evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when...
SourceID proquest
gale
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1835
SubjectTerms Cardiovascular diseases
Diagnosis
Electrocardiogram
Electrocardiography
Left ventricular function
Prices and rates
Technology application
Testing
Title Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction
URI https://dx.doi.org/10.1016/j.mayocp.2020.11.032
https://search.proquest.com/docview/2540515426
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZLZReSp803T5U6M04xIoVycewSdlC20OTLmUvQnbkbNLGDmvnkP31nbEsx6EpfUAvJgg7Dvq-jEajb2YIeasNuAFJiNk4gvthGkhfJlz6gySWMQeHNx5icvLFVHz6KseTcNLpuPY3-7H_ijSMAdaYOfsXaDdfCgPwGTCHK6AO1z_C_TwvSs_WJHaGDI_6M29iG94klQC1qlO9TMDcmI2rsbrwRt8X-c2yvF6jRzo2eL4A-O3WmzK3lV0_mLT0LjEgvLT61fGuwJWxQdf1htK73LMlR739Etm477PCWBNj5ZTetLfXp-gqdnsJFmeRGVOY_ak_2sWKjssV5lw1z4zK0ip-35e31_qbd4X60HY0gwWN8rUOsbk0mwMVaNVzF3Z6dc1sa6kjIBhK7NqmvL7DUla07DIYLt5a42FbGx5dP2woY9VbwzQlWM6U4aLS69cx2MPK3NPKYYSfxbAHgBiIE3KHgb1DZekV_9w4BCKKQtc5GG93GZyVzPDnN_3KQzruMlR-0OwBuV9vYOjIMu8h6ZjsEbn7sZZoPCY7JCA9ICDNU6ozeoyAFAlIHQFpQ0Ba5tQSkLYJSJGAtEVA2iLgE_Ll3WR2fuHX_T38hEleggfAYzkPg0iLOBFpoBn2vMNyU4YzGekwHTA5l2EyZDoK4sCEkZmblOuB1v35sD94Sk6zPDPPCI36YSKFiGJsMal1HPU11xLsUCxTE-i4S3w3p2pjy7gop29cKYuBQgxgR6wAgy4RbuJV7YpaF1MBU37z5GvESdk05saiqNFQMIy3SN4lbxyECmw5HtDpzOTbQjHcPsGehg2f__P7z8i9_f_qBTktb7bmJTkp5ttXFSt_ANDjxuo
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost+Effectiveness+of+an+Electrocardiographic+Deep+Learning+Algorithm+to+Detect+Asymptomatic+Left+Ventricular+Dysfunction&rft.jtitle=Mayo+Clinic+proceedings&rft.au=Tseng%2C+Andrew+S.&rft.au=Thao%2C+Viengneesee&rft.au=Borah%2C+Bijan+J.&rft.au=Attia%2C+Itzhak+Zachi&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0025-6196&rft.eissn=1942-5546&rft.volume=96&rft.issue=7&rft.spage=1835&rft.epage=1844&rft_id=info:doi/10.1016%2Fj.mayocp.2020.11.032&rft.externalDocID=S0025619620314737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6196&client=summon