Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction
To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65. We used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for...
Saved in:
Published in: | Mayo Clinic proceedings Vol. 96; no. 7; pp. 1835 - 1844 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-07-2021
Elsevier, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65.
We used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold.
We found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000.
Universal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken. |
---|---|
AbstractList | To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65.
We used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold.
We found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000.
Universal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken. OBJECTIVETo evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65. PATIENTS AND METHODSWe used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold. RESULTSWe found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000. CONCLUSIONUniversal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken. |
Audience | Academic |
Author | Attia, Itzhak Zachi Friedman, Paul A. Kapa, Suraj Carter, Rickey E. Lopez-Jimenez, Francisco Borah, Bijan J. Yao, Xiaoxi Noseworthy, Peter A. Thao, Viengneesee Tseng, Andrew S. Medina Inojosa, Jose |
Author_xml | – sequence: 1 givenname: Andrew S. orcidid: 0000-0002-9181-1970 surname: Tseng fullname: Tseng, Andrew S. organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 2 givenname: Viengneesee surname: Thao fullname: Thao, Viengneesee organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN – sequence: 3 givenname: Bijan J. surname: Borah fullname: Borah, Bijan J. organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 4 givenname: Itzhak Zachi surname: Attia fullname: Attia, Itzhak Zachi organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 5 givenname: Jose orcidid: 0000-0001-8705-0462 surname: Medina Inojosa fullname: Medina Inojosa, Jose organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 6 givenname: Suraj orcidid: 0000-0003-2283-4340 surname: Kapa fullname: Kapa, Suraj organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 7 givenname: Rickey E. orcidid: 0000-0002-0818-273X surname: Carter fullname: Carter, Rickey E. organization: Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL – sequence: 8 givenname: Paul A. orcidid: 0000-0001-5052-2948 surname: Friedman fullname: Friedman, Paul A. organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 9 givenname: Francisco orcidid: 0000-0001-5788-9734 surname: Lopez-Jimenez fullname: Lopez-Jimenez, Francisco organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 10 givenname: Xiaoxi surname: Yao fullname: Yao, Xiaoxi organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN – sequence: 11 givenname: Peter A. surname: Noseworthy fullname: Noseworthy, Peter A. organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN |
BookMark | eNp9kcuu0zAQhi10kOg58AYsvEJsUsaOncsGqeopF6kSG2Bruc64dZXYwXaOlLfHVVmzGmnm--f2P5IHHzwS8p7BlgFrPl23k16DmbcceEmxLdT8FdmwXvBKStE8kA0Al1XD-uYNeUzpCgBt34sNWfchZXqwFk12L-gxJRos1Z4expKKweg4uHCOer44Q58RZ3pEHb3zZ7obzyG6fJloDqWUi4Du0jrNOUw6F_yINtPf6HN0Zhl1pM9rsosvo4J_S15bPSZ89y8-kV9fDj_336rjj6_f97tjZXgnc8VAnrpBsF63J9NapjmDGloGgJJ3vRa25t3QCdNw3bMTQ9HjgFbqWmsYGqifyMd73zmGPwumrCaXDI6j9hiWpLgUIJkUvCnohzt61iOqC-oxX1IYl9u6Se2algNry1YFFHfQxJBSRKvm6CYdV8VA3SxRV3W3RN0sUYypYkmRfb7LsNz74jCqZBx6g4OL5XdqCO7_Df4CwMyZpg |
CitedBy_id | crossref_primary_10_1007_s12170_023_00723_4 crossref_primary_10_1080_13696998_2023_2277072 crossref_primary_10_1161_CIRCRESAHA_121_319876 crossref_primary_10_1016_j_artmed_2023_102547 crossref_primary_10_1136_bmjopen_2022_070929 crossref_primary_10_1016_j_heliyon_2024_e25318 crossref_primary_10_1186_s44247_024_00088_7 crossref_primary_10_3389_fphar_2023_1220950 crossref_primary_10_1007_s11886_024_02062_1 crossref_primary_10_1038_s41591_022_02053_1 crossref_primary_10_1007_s10741_022_10283_1 crossref_primary_10_15212_CVIA_2023_0024 crossref_primary_10_1007_s40274_021_7797_6 crossref_primary_10_1016_j_cjca_2023_11_044 crossref_primary_10_1016_j_cvdhj_2024_03_005 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_1007_s40273_023_01287_2 |
Cites_doi | 10.1161/CIRCHEARTFAILURE.117.004873 10.1038/s41591-018-0240-2 10.7326/0003-4819-137-2-200207160-00007 10.1111/jce.13889 10.1001/jama.2016.12195 10.7326/0003-4819-148-1-200801010-00002 10.1001/jama.289.2.194 10.1016/j.carage.2017.12.004 10.1007/s10552-019-01178-y 10.7326/0003-4819-138-11-200306030-00012 10.1002/hec.4730030505 10.1016/S0735-1097(97)00104-6 10.1056/NEJM199209033271003 10.1056/NEJM199108013250501 10.1016/j.jchf.2015.12.007 10.1111/j.1524-4733.2008.00425.x 10.1002/clc.22260 10.1016/j.jvs.2005.01.055 10.1161/01.CIR.0000085166.44904.79 |
ContentType | Journal Article |
Copyright | 2020 Mayo Foundation for Medical Education and Research COPYRIGHT 2021 Elsevier, Inc. |
Copyright_xml | – notice: 2020 Mayo Foundation for Medical Education and Research – notice: COPYRIGHT 2021 Elsevier, Inc. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.mayocp.2020.11.032 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1942-5546 |
EndPage | 1844 |
ExternalDocumentID | A672017285 10_1016_j_mayocp_2020_11_032 S0025619620314737 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Mayo Clinic funderid: https://doi.org/10.13039/100000871 |
GroupedDBID | --- --K .1- .55 .FO .GJ 08P 0R~ 18M 1CY 1P~ 29M 2WC 354 36B 3O- 3V. 4.4 457 53G 5GY 5RE 7RV 7X7 88E 88I 8AF 8C1 8F7 8FI 8FJ 96U AAEDT AAEDW AAIAV AAKAS AALRI AAQQT AAQXK AAWTL AAXUO AAYEP AAYOK ABCQX ABJNI ABLJU ABMAC ABUWG ACGFO ACGOD ACPRK ADBBV ADFRT ADMUD ADZCM AENEX AERZD AEVXI AFAZI AFCTW AFFNX AFKRA AFRHN AFTJW AGNAY AHMBA AHPSJ AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN AZQEC BAAKF BAWUL BCR BCU BEC BENPR BES BKEYQ BKNYI BKOMP BLC BPHCQ BVXVI CCPQU DIK DU5 DWQXO E3Z EBS EJD EX3 F8P F9R FAC FAS FDB FEDTE FGOYB FJW FYUFA GNUQQ GX1 HCIFZ HMCUK HVGLF HYE HZ~ IAO ICW IEA IHR IHW INH INR IOF ITC J5H K9- L7B M0R M1P M2P M2Q M41 N4W N95 NAPCQ O9- OD. OHT OK1 OO~ OVD P2P PCD PEA PQQKQ PROAC PSQYO R2- RIG ROL RPM RVF RWL RXW S0X SEL SJFOW TAE TEORI TJF TR2 U5U UKHRP UNMZH VVN W8F WH7 WOW X7M XH2 XI7 YFH YOC Z5R ZA5 ZGI ZXP AAYXX AFJKZ ALIPV CITATION H13 7X8 |
ID | FETCH-LOGICAL-c285t-105b8d419a7bc7f1a210307100e5289a4f328d84c62a91b1e49edef5a3aa0d603 |
ISSN | 0025-6196 |
IngestDate | Fri Aug 16 06:10:55 EDT 2024 Tue Aug 20 22:03:59 EDT 2024 Thu Sep 26 17:19:31 EDT 2024 Fri Feb 23 02:43:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | AI-ECG TTE ICER ALVD LVEF QALY PSA QOL |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-105b8d419a7bc7f1a210307100e5289a4f328d84c62a91b1e49edef5a3aa0d603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9181-1970 0000-0002-0818-273X 0000-0001-5788-9734 0000-0001-8705-0462 0000-0003-2283-4340 0000-0001-5052-2948 |
PQID | 2540515426 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2540515426 gale_healthsolutions_A672017285 crossref_primary_10_1016_j_mayocp_2020_11_032 elsevier_sciencedirect_doi_10_1016_j_mayocp_2020_11_032 |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Mayo Clinic proceedings |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier, Inc |
Publisher_xml | – name: Elsevier Inc – name: Elsevier, Inc |
References | Jackson, Tong, King, Loustalot, Hong, Ritchey (bib1) 2018; 11 Accessed May 1, 2020. Tosteson, Stout, Fryback (bib23) 2008; 148 Attia, Kapa, Lopez-Jimenez (bib5) 2019; 25 Heidenreich, Lee, Massie (bib14) 1997; 30 Voigt, John, Taylor, Krucoff, Reynolds, Michael Gibson (bib19) 2014; 37 HCUPnet: A Tool for Identifying, Tracking, and Analyzing National Hospital Statistics. Agency for Healthcare Research and Quality. Roger (bib3) 2016; 4 (bib20) 2012 Rim, Allaire, Ekwueme (bib22) 2019; 30 Attia, Kapa, Lopez-Jimenez (bib7) 2019; 25 Wang, Levy, Benjamin, Vasan (bib2) 2003; 138 McDonagh, Cunningham, Morrison (bib4) 2001; 86 Yusuf, Pitt, Davis, Hood, Cohn (bib11) 1992; 327 Pignone, Saha, Hoerger, Mandelblatt (bib25) 2002; 137 Wanhainen, Lundkvist, Bergqvist, Bjorck (bib24) 2005; 41 Göhler, Geisler, Manne (bib15) 2009; 12 Wang, Evans, Benjamin, Levy, LeRoy, Vasan (bib10) 2003; 108 CY 2019 Medicare Physician Fee Schedule Final Rule (CMS-1694-F). United States Federal Register Online via the Government Publishing Office. 2019. Yusuf, Pitt, Davis, Hood, Cohn (bib12) 1991; 325 Redfield, Jacobsen, Burnett, Mahoney, Bailey, Rodeheffer (bib9) 2003; 289 EKGs and Exercise Stress Tests. Choosing Wisely. 2016. Attia, Kapa, Yao (bib6) 2019; 30 Sanders, Neumann, Basu (bib8) 2016; 316 Van Hout, Al, Gordon, Rutten (bib21) 1994; 3 Arias (bib13) 2019; 68 Wang (10.1016/j.mayocp.2020.11.032_bib10) 2003; 108 Redfield (10.1016/j.mayocp.2020.11.032_bib9) 2003; 289 Van Hout (10.1016/j.mayocp.2020.11.032_bib21) 1994; 3 Arias (10.1016/j.mayocp.2020.11.032_bib13) 2019; 68 Attia (10.1016/j.mayocp.2020.11.032_bib5) 2019; 25 Wanhainen (10.1016/j.mayocp.2020.11.032_bib24) 2005; 41 Rim (10.1016/j.mayocp.2020.11.032_bib22) 2019; 30 Attia (10.1016/j.mayocp.2020.11.032_bib7) 2019; 25 Sanders (10.1016/j.mayocp.2020.11.032_bib8) 2016; 316 Tosteson (10.1016/j.mayocp.2020.11.032_bib23) 2008; 148 McDonagh (10.1016/j.mayocp.2020.11.032_bib4) 2001; 86 Wang (10.1016/j.mayocp.2020.11.032_bib2) 2003; 138 Yusuf (10.1016/j.mayocp.2020.11.032_bib12) 1991; 325 10.1016/j.mayocp.2020.11.032_bib18 Yusuf (10.1016/j.mayocp.2020.11.032_bib11) 1992; 327 10.1016/j.mayocp.2020.11.032_bib17 10.1016/j.mayocp.2020.11.032_bib16 Heidenreich (10.1016/j.mayocp.2020.11.032_bib14) 1997; 30 (10.1016/j.mayocp.2020.11.032_bib20) 2012 Göhler (10.1016/j.mayocp.2020.11.032_bib15) 2009; 12 Jackson (10.1016/j.mayocp.2020.11.032_bib1) 2018; 11 Pignone (10.1016/j.mayocp.2020.11.032_bib25) 2002; 137 Roger (10.1016/j.mayocp.2020.11.032_bib3) 2016; 4 Voigt (10.1016/j.mayocp.2020.11.032_bib19) 2014; 37 Attia (10.1016/j.mayocp.2020.11.032_bib6) 2019; 30 |
References_xml | – volume: 148 start-page: 1 year: 2008 end-page: 10 ident: bib23 article-title: Cost-effectiveness of digital mammography breast cancer screening publication-title: Ann Intern Med contributor: fullname: Fryback – volume: 108 start-page: 977 year: 2003 end-page: 982 ident: bib10 article-title: Natural history of asymptomatic left ventricular systolic dysfunction in the community publication-title: Circulation contributor: fullname: Vasan – volume: 30 start-page: 819 year: 2019 end-page: 826 ident: bib22 article-title: Cost-effectiveness of breast cancer screening in the National Breast and Cervical Cancer Early Detection Program publication-title: Cancer Causes Control contributor: fullname: Ekwueme – volume: 41 start-page: 741 year: 2005 end-page: 751 ident: bib24 article-title: Cost-effectiveness of different screening strategies for abdominal aortic aneurysm publication-title: J Vasc Surg contributor: fullname: Bjorck – volume: 25 start-page: 70 year: 2019 end-page: 74 ident: bib5 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram publication-title: Nat Med contributor: fullname: Lopez-Jimenez – volume: 137 start-page: 96 year: 2002 end-page: 104 ident: bib25 article-title: Cost-effectiveness analyses of colorectal cancer screening: A systematic review for the U.S. Preventive Services Task Force publication-title: Ann Intern Med contributor: fullname: Mandelblatt – volume: 327 start-page: 685 year: 1992 end-page: 691 ident: bib11 article-title: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions publication-title: N Engl J Med contributor: fullname: Cohn – volume: 12 start-page: 185 year: 2009 end-page: 187 ident: bib15 article-title: Utility estimates for decision–Analytic modeling in chronic heart failure—Health states based on New York Heart Association classes and number of rehospitalizations publication-title: Value Health contributor: fullname: Manne – year: 2012 ident: bib20 article-title: National health expenditure data – volume: 138 start-page: 907 year: 2003 end-page: 916 ident: bib2 article-title: The epidemiology of “asymptomatic” left ventricular systolic dysfunction: Implications for screening publication-title: Ann Intern Med contributor: fullname: Vasan – volume: 86 start-page: 21 year: 2001 end-page: 26 ident: bib4 article-title: Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population publication-title: Heart contributor: fullname: Morrison – volume: 30 start-page: 668 year: 2019 end-page: 674 ident: bib6 article-title: Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction publication-title: J Cardiovasc Electrophysiol contributor: fullname: Yao – volume: 325 start-page: 293 year: 1991 end-page: 302 ident: bib12 article-title: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure publication-title: N Engl J Med contributor: fullname: Cohn – volume: 3 start-page: 309 year: 1994 end-page: 319 ident: bib21 article-title: Costs, effects and C/E-ratios alongside a clinical trial publication-title: Health economics contributor: fullname: Rutten – volume: 11 start-page: e004873 year: 2018 ident: bib1 article-title: National burden of heart failure events in the United States, 2006 to 2014 publication-title: Circ Heart Fail contributor: fullname: Ritchey – volume: 68 start-page: 1 year: 2019 end-page: 66 ident: bib13 article-title: United States Life Tables, 2017 publication-title: National Vital Statistics Reports contributor: fullname: Arias – volume: 4 start-page: 249 year: 2016 end-page: 251 ident: bib3 article-title: Asymptomatic left ventricular dysfunction: To screen or not to screen? publication-title: JACC Heart Fail contributor: fullname: Roger – volume: 30 start-page: 27 year: 1997 end-page: 34 ident: bib14 article-title: Effect of beta-blockade on mortality in patients with heart failure: A meta-analysis of randomized clinical trials publication-title: J Am Coll Cardiol contributor: fullname: Massie – volume: 316 start-page: 1093 year: 2016 end-page: 1103 ident: bib8 article-title: Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness in health and medicine publication-title: JAMA contributor: fullname: Basu – volume: 37 start-page: 312 year: 2014 end-page: 321 ident: bib19 article-title: A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States publication-title: Clin Cardiol contributor: fullname: Michael Gibson – volume: 289 start-page: 194 year: 2003 end-page: 202 ident: bib9 article-title: Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic publication-title: JAMA contributor: fullname: Rodeheffer – volume: 25 start-page: 70 year: 2019 end-page: 74 ident: bib7 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram publication-title: Nat Med contributor: fullname: Lopez-Jimenez – volume: 11 start-page: e004873 issue: 12 year: 2018 ident: 10.1016/j.mayocp.2020.11.032_bib1 article-title: National burden of heart failure events in the United States, 2006 to 2014 publication-title: Circ Heart Fail doi: 10.1161/CIRCHEARTFAILURE.117.004873 contributor: fullname: Jackson – year: 2012 ident: 10.1016/j.mayocp.2020.11.032_bib20 – volume: 25 start-page: 70 issue: 1 year: 2019 ident: 10.1016/j.mayocp.2020.11.032_bib7 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram publication-title: Nat Med doi: 10.1038/s41591-018-0240-2 contributor: fullname: Attia – volume: 137 start-page: 96 issue: 2 year: 2002 ident: 10.1016/j.mayocp.2020.11.032_bib25 article-title: Cost-effectiveness analyses of colorectal cancer screening: A systematic review for the U.S. Preventive Services Task Force publication-title: Ann Intern Med doi: 10.7326/0003-4819-137-2-200207160-00007 contributor: fullname: Pignone – volume: 30 start-page: 668 issue: 5 year: 2019 ident: 10.1016/j.mayocp.2020.11.032_bib6 article-title: Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.13889 contributor: fullname: Attia – volume: 316 start-page: 1093 issue: 10 year: 2016 ident: 10.1016/j.mayocp.2020.11.032_bib8 article-title: Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness in health and medicine publication-title: JAMA doi: 10.1001/jama.2016.12195 contributor: fullname: Sanders – volume: 148 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.mayocp.2020.11.032_bib23 article-title: Cost-effectiveness of digital mammography breast cancer screening publication-title: Ann Intern Med doi: 10.7326/0003-4819-148-1-200801010-00002 contributor: fullname: Tosteson – volume: 289 start-page: 194 issue: 2 year: 2003 ident: 10.1016/j.mayocp.2020.11.032_bib9 article-title: Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic publication-title: JAMA doi: 10.1001/jama.289.2.194 contributor: fullname: Redfield – ident: 10.1016/j.mayocp.2020.11.032_bib17 doi: 10.1016/j.carage.2017.12.004 – volume: 25 start-page: 70 issue: 1 year: 2019 ident: 10.1016/j.mayocp.2020.11.032_bib5 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram publication-title: Nat Med doi: 10.1038/s41591-018-0240-2 contributor: fullname: Attia – volume: 30 start-page: 819 issue: 8 year: 2019 ident: 10.1016/j.mayocp.2020.11.032_bib22 article-title: Cost-effectiveness of breast cancer screening in the National Breast and Cervical Cancer Early Detection Program publication-title: Cancer Causes Control doi: 10.1007/s10552-019-01178-y contributor: fullname: Rim – volume: 138 start-page: 907 issue: 11 year: 2003 ident: 10.1016/j.mayocp.2020.11.032_bib2 article-title: The epidemiology of “asymptomatic” left ventricular systolic dysfunction: Implications for screening publication-title: Ann Intern Med doi: 10.7326/0003-4819-138-11-200306030-00012 contributor: fullname: Wang – volume: 3 start-page: 309 issue: 5 year: 1994 ident: 10.1016/j.mayocp.2020.11.032_bib21 article-title: Costs, effects and C/E-ratios alongside a clinical trial publication-title: Health economics doi: 10.1002/hec.4730030505 contributor: fullname: Van Hout – volume: 30 start-page: 27 issue: 1 year: 1997 ident: 10.1016/j.mayocp.2020.11.032_bib14 article-title: Effect of beta-blockade on mortality in patients with heart failure: A meta-analysis of randomized clinical trials publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(97)00104-6 contributor: fullname: Heidenreich – ident: 10.1016/j.mayocp.2020.11.032_bib16 – volume: 327 start-page: 685 issue: 10 year: 1992 ident: 10.1016/j.mayocp.2020.11.032_bib11 article-title: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions publication-title: N Engl J Med doi: 10.1056/NEJM199209033271003 contributor: fullname: Yusuf – volume: 325 start-page: 293 issue: 5 year: 1991 ident: 10.1016/j.mayocp.2020.11.032_bib12 article-title: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure publication-title: N Engl J Med doi: 10.1056/NEJM199108013250501 contributor: fullname: Yusuf – volume: 68 start-page: 1 issue: 7 year: 2019 ident: 10.1016/j.mayocp.2020.11.032_bib13 article-title: United States Life Tables, 2017 publication-title: National Vital Statistics Reports contributor: fullname: Arias – volume: 4 start-page: 249 issue: 4 year: 2016 ident: 10.1016/j.mayocp.2020.11.032_bib3 article-title: Asymptomatic left ventricular dysfunction: To screen or not to screen? publication-title: JACC Heart Fail doi: 10.1016/j.jchf.2015.12.007 contributor: fullname: Roger – ident: 10.1016/j.mayocp.2020.11.032_bib18 – volume: 12 start-page: 185 issue: 1 year: 2009 ident: 10.1016/j.mayocp.2020.11.032_bib15 article-title: Utility estimates for decision–Analytic modeling in chronic heart failure—Health states based on New York Heart Association classes and number of rehospitalizations publication-title: Value Health doi: 10.1111/j.1524-4733.2008.00425.x contributor: fullname: Göhler – volume: 37 start-page: 312 issue: 5 year: 2014 ident: 10.1016/j.mayocp.2020.11.032_bib19 article-title: A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States publication-title: Clin Cardiol doi: 10.1002/clc.22260 contributor: fullname: Voigt – volume: 41 start-page: 741 issue: 5 year: 2005 ident: 10.1016/j.mayocp.2020.11.032_bib24 article-title: Cost-effectiveness of different screening strategies for abdominal aortic aneurysm publication-title: J Vasc Surg doi: 10.1016/j.jvs.2005.01.055 contributor: fullname: Wanhainen – volume: 86 start-page: 21 issue: 1 year: 2001 ident: 10.1016/j.mayocp.2020.11.032_bib4 article-title: Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population publication-title: Heart contributor: fullname: McDonagh – volume: 108 start-page: 977 issue: 8 year: 2003 ident: 10.1016/j.mayocp.2020.11.032_bib10 article-title: Natural history of asymptomatic left ventricular systolic dysfunction in the community publication-title: Circulation doi: 10.1161/01.CIR.0000085166.44904.79 contributor: fullname: Wang |
SSID | ssj0007994 |
Score | 2.3974776 |
Snippet | To evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for... OBJECTIVETo evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when... |
SourceID | proquest gale crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1835 |
SubjectTerms | Cardiovascular diseases Diagnosis Electrocardiogram Electrocardiography Left ventricular function Prices and rates Technology application Testing |
Title | Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction |
URI | https://dx.doi.org/10.1016/j.mayocp.2020.11.032 https://search.proquest.com/docview/2540515426 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZLZReSp803T5U6M04xIoVycewSdlC20OTLmUvQnbkbNLGDmvnkP31nbEsx6EpfUAvJgg7Dvq-jEajb2YIeasNuAFJiNk4gvthGkhfJlz6gySWMQeHNx5icvLFVHz6KseTcNLpuPY3-7H_ijSMAdaYOfsXaDdfCgPwGTCHK6AO1z_C_TwvSs_WJHaGDI_6M29iG94klQC1qlO9TMDcmI2rsbrwRt8X-c2yvF6jRzo2eL4A-O3WmzK3lV0_mLT0LjEgvLT61fGuwJWxQdf1htK73LMlR739Etm477PCWBNj5ZTetLfXp-gqdnsJFmeRGVOY_ak_2sWKjssV5lw1z4zK0ip-35e31_qbd4X60HY0gwWN8rUOsbk0mwMVaNVzF3Z6dc1sa6kjIBhK7NqmvL7DUla07DIYLt5a42FbGx5dP2woY9VbwzQlWM6U4aLS69cx2MPK3NPKYYSfxbAHgBiIE3KHgb1DZekV_9w4BCKKQtc5GG93GZyVzPDnN_3KQzruMlR-0OwBuV9vYOjIMu8h6ZjsEbn7sZZoPCY7JCA9ICDNU6ozeoyAFAlIHQFpQ0Ba5tQSkLYJSJGAtEVA2iLgE_Ll3WR2fuHX_T38hEleggfAYzkPg0iLOBFpoBn2vMNyU4YzGekwHTA5l2EyZDoK4sCEkZmblOuB1v35sD94Sk6zPDPPCI36YSKFiGJsMal1HPU11xLsUCxTE-i4S3w3p2pjy7gop29cKYuBQgxgR6wAgy4RbuJV7YpaF1MBU37z5GvESdk05saiqNFQMIy3SN4lbxyECmw5HtDpzOTbQjHcPsGehg2f__P7z8i9_f_qBTktb7bmJTkp5ttXFSt_ANDjxuo |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost+Effectiveness+of+an+Electrocardiographic+Deep+Learning+Algorithm+to+Detect+Asymptomatic+Left+Ventricular+Dysfunction&rft.jtitle=Mayo+Clinic+proceedings&rft.au=Tseng%2C+Andrew+S.&rft.au=Thao%2C+Viengneesee&rft.au=Borah%2C+Bijan+J.&rft.au=Attia%2C+Itzhak+Zachi&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0025-6196&rft.eissn=1942-5546&rft.volume=96&rft.issue=7&rft.spage=1835&rft.epage=1844&rft_id=info:doi/10.1016%2Fj.mayocp.2020.11.032&rft.externalDocID=S0025619620314737 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6196&client=summon |