The Design of Low‐Cost Stand‐Alone Microcontroller‐Based Wireless Ultrasonic System for Process Monitoring and Analysis

Objectives Ultrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation, nondestructive effect on the material to be applied, and low cost of the needed components give an advantage to the ultrasonic systems when compared to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ultrasound in medicine Vol. 41; no. 10; pp. 2577 - 2589
Main Authors: Keskinoğlu, Cemil, Aydın, Ahmet
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-10-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objectives Ultrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation, nondestructive effect on the material to be applied, and low cost of the needed components give an advantage to the ultrasonic systems when compared to other methods for analysis and process monitoring studies. However, the current ultrasonic analysis setups used in the studies require additional devices such as a signal generator and oscilloscope. These devices used in the setup increase the cost, size, usage difficulty of the system and, most importantly, decrease the portability and stability. In order to prevent these disadvantages, an ultrasonic system that can work in real‐time and its software are developed to be used in analysis and process monitoring without any additional devices. Methods This system was designed by using a microcontroller. The developed system is portable, has a small size, and a Bluetooth Low Energy connection. It has a battery for using standalone. Results Therefore, it can be easily used in different small and closed measurement environments such as incubators and controlled remotely. In addition, a mixture was analyzed with both the designed system and a commercial module. When the results are compared, two systems are found highly correlated r2=1. Conclusion In this study, an embedded ultrasonic measurement system and its software are developed to be used in analysis studies, density measurements, and real‐time process monitoring as a stand‐alone device.
AbstractList Ultrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation, nondestructive effect on the material to be applied, and low cost of the needed components give an advantage to the ultrasonic systems when compared to other methods for analysis and process monitoring studies. However, the current ultrasonic analysis setups used in the studies require additional devices such as a signal generator and oscilloscope. These devices used in the setup increase the cost, size, usage difficulty of the system and, most importantly, decrease the portability and stability. In order to prevent these disadvantages, an ultrasonic system that can work in real-time and its software are developed to be used in analysis and process monitoring without any additional devices. This system was designed by using a microcontroller. The developed system is portable, has a small size, and a Bluetooth Low Energy connection. It has a battery for using standalone. Therefore, it can be easily used in different small and closed measurement environments such as incubators and controlled remotely. In addition, a mixture was analyzed with both the designed system and a commercial module. When the results are compared, two systems are found highly correlated CONCLUSION: In this study, an embedded ultrasonic measurement system and its software are developed to be used in analysis studies, density measurements, and real-time process monitoring as a stand-alone device.
OBJECTIVESUltrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation, nondestructive effect on the material to be applied, and low cost of the needed components give an advantage to the ultrasonic systems when compared to other methods for analysis and process monitoring studies. However, the current ultrasonic analysis setups used in the studies require additional devices such as a signal generator and oscilloscope. These devices used in the setup increase the cost, size, usage difficulty of the system and, most importantly, decrease the portability and stability. In order to prevent these disadvantages, an ultrasonic system that can work in real-time and its software are developed to be used in analysis and process monitoring without any additional devices. METHODSThis system was designed by using a microcontroller. The developed system is portable, has a small size, and a Bluetooth Low Energy connection. It has a battery for using standalone. RESULTSTherefore, it can be easily used in different small and closed measurement environments such as incubators and controlled remotely. In addition, a mixture was analyzed with both the designed system and a commercial module. When the results are compared, two systems are found highly correlated r 2 = 1 . CONCLUSION: In this study, an embedded ultrasonic measurement system and its software are developed to be used in analysis studies, density measurements, and real-time process monitoring as a stand-alone device.
Objectives Ultrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation, nondestructive effect on the material to be applied, and low cost of the needed components give an advantage to the ultrasonic systems when compared to other methods for analysis and process monitoring studies. However, the current ultrasonic analysis setups used in the studies require additional devices such as a signal generator and oscilloscope. These devices used in the setup increase the cost, size, usage difficulty of the system and, most importantly, decrease the portability and stability. In order to prevent these disadvantages, an ultrasonic system that can work in real‐time and its software are developed to be used in analysis and process monitoring without any additional devices. Methods This system was designed by using a microcontroller. The developed system is portable, has a small size, and a Bluetooth Low Energy connection. It has a battery for using standalone. Results Therefore, it can be easily used in different small and closed measurement environments such as incubators and controlled remotely. In addition, a mixture was analyzed with both the designed system and a commercial module. When the results are compared, two systems are found highly correlated r2=1. Conclusion In this study, an embedded ultrasonic measurement system and its software are developed to be used in analysis studies, density measurements, and real‐time process monitoring as a stand‐alone device.
Author Keskinoğlu, Cemil
Aydın, Ahmet
Author_xml – sequence: 1
  givenname: Cemil
  orcidid: 0000-0003-3161-3427
  surname: Keskinoğlu
  fullname: Keskinoğlu, Cemil
  email: ckeskinoglu@cu.edu.tr
  organization: Cukurova University
– sequence: 2
  givenname: Ahmet
  orcidid: 0000-0003-2390-7556
  surname: Aydın
  fullname: Aydın, Ahmet
  organization: Cukurova University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35103346$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtuEzEUhi3UiqaFBS-AvITFtL5mPMsQrlUikNqI5cjjOVNceezWZ6IqCyQegWfkSXCblh2rI5__82f5PyYHMUUg5BVnp5wxcXa9HU-5bpR5RmZca1Y1cy4PyIyJ2lRKNPUROUa8LijjtXpOjqTmTEo1n5Gflz-Avgf0V5Gmga7S3Z9fv5cJJ3ox2diXwyKUx-jau5xcilNOIUAu-3cWoafffYYAiHQTpmwxRe_oxQ4nGOmQMv1WLt2n6xJMKft4RYuVLqINO_T4ghwONiC8fJwnZPPxw-Xyc7X6-unLcrGqnDDaVMCEACv6xorB9AysNbV0AFqZDng3aOiGTjkpau6UUcrVTVM76xh0uquFkSfkzd57k9PtFnBqR48OQrAR0hZbMRdqrqXSsqBv92j5L2KGob3JfrR513LW3rfdlrbbh7YL-_pRu-1G6P-RT_UW4GwP3PkAu_-b2vPNeq_8C1sFkII
Cites_doi 10.1016/j.jfoodeng.2020.110373
10.1109/TTHZ.2018.2867816
10.1016/S0260-8774(98)00027-2
10.1088/1757-899X/260/1/012034
10.1016/j.matpr.2021.01.568
10.1016/j.jfoodeng.2019.05.032
10.1080/00319104.2017.1385075
10.1016/j.ijpharm.2016.04.064
10.1016/j.foodres.2003.12.013
10.1007/s00217-006-0448-0
10.1016/j.jfoodeng.2021.110481
10.1002/352760054X
10.1080/10739149.2017.1394878
10.1016/j.heliyon.2019.e02203
10.1038/s41378-018-0006-5
10.1016/S0309-1740(00)00113-3
10.1016/j.phpro.2015.08.225
10.3390/s20071813
10.1016/S0301-5629(98)00091-X
10.1002/bit.23023
10.1016/j.vacuum.2017.12.042
10.3390/s120911734
10.1021/jf981349x
10.1016/j.jfoodeng.2017.03.032
10.1016/j.molliq.2019.01.155
10.1016/j.trac.2020.116147
10.1121/10.0004993
10.1016/j.ultras.2014.04.004
10.3728/ICUltrasonics.2007.Vienna.1398_nazario
10.1016/j.ijpharm.2012.08.050
10.1021/acs.analchem.8b05890
ContentType Journal Article
Copyright 2022 American Institute of Ultrasound in Medicine.
Copyright_xml – notice: 2022 American Institute of Ultrasound in Medicine.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1002/jum.15948
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1550-9613
EndPage 2589
ExternalDocumentID 10_1002_jum_15948
35103346
JUM15948
Genre article
Journal Article
GroupedDBID ---
.55
.GJ
0R~
18M
1KJ
1OB
1OC
33P
34G
39C
53G
5GY
5RE
5VS
6PF
AAHHS
AANLZ
AAWTL
AAZKR
ABCUV
ABDQB
ABJNI
ABLJU
ABOCM
ABQWH
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXQS
ADBBV
ADBTR
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
C45
DCZOG
DU5
EBS
EJD
F5P
G8K
H13
HDBZQ
HGLYW
KQ8
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
N4W
O9-
OK1
OVD
P2P
P2W
RHF
RHI
ROL
RS9
SAMSI
SUPJJ
TEORI
TUL
TWZ
USG
WIH
WIJ
WIK
WOHZO
WXSBR
X7M
ZGI
ZVN
ZXP
ZZTAW
NPM
AAMNL
AAYXX
ABDPE
CITATION
7X8
ID FETCH-LOGICAL-c2858-e022ea2d9a2f8d0eaa873cee548be1bf5ebfb4c3271c4844c7997cac0eb5b7283
IEDL.DBID 33P
ISSN 0278-4297
IngestDate Wed Jul 24 17:41:54 EDT 2024
Thu Nov 21 22:22:20 EST 2024
Sat Sep 28 08:25:54 EDT 2024
Sat Aug 24 00:52:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords noninvasive analysis
time of flight
integrated system
wireless measurement
ultrasonic analysis
Language English
License 2022 American Institute of Ultrasound in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2858-e022ea2d9a2f8d0eaa873cee548be1bf5ebfb4c3271c4844c7997cac0eb5b7283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3161-3427
0000-0003-2390-7556
PMID 35103346
PQID 2624653453
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2624653453
crossref_primary_10_1002_jum_15948
pubmed_primary_35103346
wiley_primary_10_1002_jum_15948_JUM15948
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
PublicationTitle Journal of ultrasound in medicine
PublicationTitleAlternate J Ultrasound Med
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 47
2007; 225
2019; 91
2019; 5
2020; 64
2020; 20
2015; 70
2019; 57
2021; 149
1999; 47
2016; 507
2013; 442
2007
2004; 1
2002
2012; 12
2019; 263
2018; 46
1998; 24
2017; 209
2018; 8
2011; 108
2018; 150
2018; 4
2004; 37
2021; 292
2019
2019; 279
2017; 260
2005; 1
2020; 135
2014
2013
2021; 297
2001; 57
2014; 54
1998; 35
Mason TJ (e_1_2_6_34_1) 2002
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Cha Y‐L (e_1_2_6_17_1) 2004; 1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
Aydın A (e_1_2_6_19_1) 2020; 64
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
Kudryashov E (e_1_2_6_26_1) 2005; 1
e_1_2_6_27_1
References_xml – start-page: 1
  year: 2007
  end-page: 4
– volume: 1
  start-page: 1
  year: 2005
  end-page: 4
  article-title: High resolution ultrasonic spectroscopy for the analysis of raw material and formulations used in pharmaceutical industry
  publication-title: Pharm Technol Eur
– volume: 209
  start-page: 83
  year: 2017
  end-page: 88
  article-title: Evaluation of ultrasonic techniques for on line coagulation monitoring in cheesemaking
  publication-title: J Food Eng
– volume: 292
  year: 2021
  article-title: Characterisation of water in honey using a microwave cylindrical cavity resonator sensor
  publication-title: J Food Eng
– start-page: 3
  year: 2002
  end-page: 4
– volume: 297
  year: 2021
  article-title: Use of air‐coupled ultrasound for the non‐invasive characterization of the textural properties of pork burger patties
  publication-title: J Food Eng
– volume: 260
  year: 2017
  article-title: Determining the time of flight and speed of sound on different types of edible oil
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 108
  start-page: 1215
  year: 2011
  end-page: 1221
  article-title: Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in‐line Raman spectroscopy probe
  publication-title: Biotechnol Bioeng
– volume: 20
  start-page: 1813
  year: 2020
  article-title: Monitoring mixing processes using ultrasonic sensors and machine learning
  publication-title: Sensors
– volume: 91
  start-page: 4140
  year: 2019
  end-page: 4148
  article-title: Quantification of cell death using an impedance‐based microfluidic device
  publication-title: Anal Chem
– volume: 47
  start-page: 4686
  year: 1999
  end-page: 4692
  article-title: Ultrasonic determination of chicken composition
  publication-title: J Agric Food Chem
– volume: 149
  start-page: 3345
  year: 2021
  end-page: 3351
  article-title: Ultrasound based noninvasive real‐time cell proliferation process monitoring
  publication-title: J Acoust Soc Am
– volume: 1
  start-page: 16
  year: 2004
  end-page: 29
  article-title: Ultrasonic measurements and its evaluation for the monitoring of cultivation
  publication-title: Bioautomation
– volume: 37
  start-page: 595
  year: 2004
  end-page: 601
  article-title: Use of ultrasonics for the composition assessment of olive mill wastewater (alpechin)
  publication-title: Food Res Int
– volume: 4
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Integrating impedance‐based growth‐rate monitoring into a microfluidic cell culture platform for live‐cell microscopy
  publication-title: Microsyst Nanoeng
– volume: 47
  start-page: 722
  year: 2021
  end-page: 727
  article-title: Density, viscosity and ultrasonic velocity study: binary mixtures of 3‐bromoanisole and methanol at different temperatures
  publication-title: Mater Today Proc
– year: 2014
– volume: 12
  start-page: 11734
  year: 2012
  article-title: Overview and evaluation of bluetooth low energy: an emerging low‐power wireless technology
  publication-title: Sensors
– volume: 507
  start-page: 83
  year: 2016
  end-page: 89
  article-title: Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing
  publication-title: Int J Pharm
– volume: 279
  start-page: 561
  year: 2019
  end-page: 570
  article-title: A thermodynamic investigation of solute‐solvent interactions through volumetric, ultrasonic, dielectric, refractive and excess properties of binary mixtures of tri‐n‐butyl phosphate with dichloro, trichloro and tetrachloromethane at 298.15 K
  publication-title: J Mol Liq
– volume: 263
  start-page: 87
  year: 2019
  end-page: 95
  article-title: Ultrasonic online monitoring of the ham salting process. Methods for signal analysis: time of flight calculation
  publication-title: J Food Eng
– volume: 24
  start-page: 1065
  year: 1998
  end-page: 1068
  article-title: A simple and accurate formula for the sound velocity in water
  publication-title: Ultrasound Med Biol
– volume: 8
  start-page: 696
  year: 2018
  end-page: 701
  article-title: Qualitative and quantitative identification of components in mixture by terahertz spectroscopy
  publication-title: IEEE Trans Terahertz Sci Technol
– volume: 225
  start-page: 525
  year: 2007
  end-page: 532
  article-title: Ultrasonic velocity measurements in ethanol–water and methanol–water mixtures
  publication-title: Eur Food Res Technol
– volume: 46
  start-page: 387
  year: 2018
  end-page: 407
  article-title: Design and implementation of an ultrasonic sensor for rapid monitoring of industrial malolactic fermentation of wines
  publication-title: Instrum Sci Technol
– volume: 70
  start-page: 1057
  year: 2015
  end-page: 1060
  article-title: Monitoring of lactic fermentation process by ultrasonic technique
  publication-title: Phys Procedia
– volume: 150
  start-page: 207
  year: 2018
  end-page: 215
  article-title: Application of molecular force for mass analysis of krypton/xenon mixture in low‐pressure MEMS gas sensor
  publication-title: Vacuum
– volume: 64
  start-page: 41
  year: 2020
  end-page: 52
  article-title: Noninvasive determination of the amount of ethanol in liquid mixtures by ultrasound using bilinear interpolation method
  publication-title: J Mex Chem Soc
– volume: 57
  start-page: 365
  year: 2001
  end-page: 370
  article-title: Composition assessment of raw meat mixtures using ultrasonics
  publication-title: Meat Sci
– volume: 442
  start-page: 35
  year: 2013
  end-page: 41
  article-title: Wireless transmission of ultrasonic waveforms for monitoring drug tablet properties and defects
  publication-title: Int J Pharm
– volume: 54
  start-page: 1575
  year: 2014
  end-page: 1580
  article-title: Ultrasonic monitoring of malolactic fermentation in red wines
  publication-title: Ultrasonics
– volume: 57
  start-page: 1
  year: 2019
  end-page: 18
  article-title: Ultrasonic study of binary aqueous mixtures of three common eutectic solvents
  publication-title: Phys Chem Liquids
– volume: 5
  year: 2019
  article-title: Ultrasonic velocity, density, viscosity for the ternary mixture of (benzene + chloroform + cyclohexane) at different temperatures
  publication-title: Heliyon
– volume: 35
  start-page: 323
  year: 1998
  end-page: 337
  article-title: Ultrasonic determination of fish composition
  publication-title: J Food Eng
– year: 2019
– volume: 135
  year: 2020
  article-title: Review of sensing technologies for measuring powder density variations during pharmaceutical solid dosage form manufacturing
  publication-title: Trends Analyt Chem
– year: 2013
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jfoodeng.2020.110373
– ident: e_1_2_6_2_1
  doi: 10.1109/TTHZ.2018.2867816
– ident: e_1_2_6_11_1
  doi: 10.1016/S0260-8774(98)00027-2
– ident: e_1_2_6_33_1
  doi: 10.1088/1757-899X/260/1/012034
– ident: e_1_2_6_23_1
  doi: 10.1016/j.matpr.2021.01.568
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jfoodeng.2019.05.032
– ident: e_1_2_6_20_1
  doi: 10.1080/00319104.2017.1385075
– ident: e_1_2_6_29_1
  doi: 10.1016/j.ijpharm.2016.04.064
– ident: e_1_2_6_9_1
  doi: 10.1016/j.foodres.2003.12.013
– ident: e_1_2_6_21_1
  doi: 10.1007/s00217-006-0448-0
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jfoodeng.2021.110481
– start-page: 3
  volume-title: Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing
  year: 2002
  ident: e_1_2_6_34_1
  doi: 10.1002/352760054X
  contributor:
    fullname: Mason TJ
– ident: e_1_2_6_40_1
– ident: e_1_2_6_14_1
  doi: 10.1080/10739149.2017.1394878
– ident: e_1_2_6_22_1
  doi: 10.1016/j.heliyon.2019.e02203
– ident: e_1_2_6_7_1
  doi: 10.1038/s41378-018-0006-5
– ident: e_1_2_6_8_1
  doi: 10.1016/S0309-1740(00)00113-3
– ident: e_1_2_6_15_1
  doi: 10.1016/j.phpro.2015.08.225
– ident: e_1_2_6_25_1
  doi: 10.3390/s20071813
– ident: e_1_2_6_39_1
  doi: 10.1016/S0301-5629(98)00091-X
– volume: 1
  start-page: 16
  year: 2004
  ident: e_1_2_6_17_1
  article-title: Ultrasonic measurements and its evaluation for the monitoring of Saccharomyces cerevisiae cultivation
  publication-title: Bioautomation
  contributor:
    fullname: Cha Y‐L
– ident: e_1_2_6_6_1
  doi: 10.1002/bit.23023
– ident: e_1_2_6_36_1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.vacuum.2017.12.042
– ident: e_1_2_6_37_1
  doi: 10.3390/s120911734
– ident: e_1_2_6_10_1
  doi: 10.1021/jf981349x
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jfoodeng.2017.03.032
– ident: e_1_2_6_41_1
– volume: 64
  start-page: 41
  year: 2020
  ident: e_1_2_6_19_1
  article-title: Noninvasive determination of the amount of ethanol in liquid mixtures by ultrasound using bilinear interpolation method
  publication-title: J Mex Chem Soc
  contributor:
    fullname: Aydın A
– ident: e_1_2_6_24_1
  doi: 10.1016/j.molliq.2019.01.155
– ident: e_1_2_6_27_1
– ident: e_1_2_6_30_1
  doi: 10.1016/j.trac.2020.116147
– ident: e_1_2_6_18_1
  doi: 10.1121/10.0004993
– volume: 1
  start-page: 1
  year: 2005
  ident: e_1_2_6_26_1
  article-title: High resolution ultrasonic spectroscopy for the analysis of raw material and formulations used in pharmaceutical industry
  publication-title: Pharm Technol Eur
  contributor:
    fullname: Kudryashov E
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ultras.2014.04.004
– ident: e_1_2_6_38_1
– ident: e_1_2_6_35_1
– ident: e_1_2_6_12_1
  doi: 10.3728/ICUltrasonics.2007.Vienna.1398_nazario
– ident: e_1_2_6_28_1
  doi: 10.1016/j.ijpharm.2012.08.050
– ident: e_1_2_6_5_1
  doi: 10.1021/acs.analchem.8b05890
SSID ssj0020174
Score 2.3880475
Snippet Objectives Ultrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation,...
Ultrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation, nondestructive effect...
OBJECTIVESUltrasound technology is currently used in many areas, such as imaging, analysis, and process monitoring. The noninvasive implementation,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2577
SubjectTerms integrated system
noninvasive analysis
time of flight
ultrasonic analysis
wireless measurement
Title The Design of Low‐Cost Stand‐Alone Microcontroller‐Based Wireless Ultrasonic System for Process Monitoring and Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjum.15948
https://www.ncbi.nlm.nih.gov/pubmed/35103346
https://search.proquest.com/docview/2624653453
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aQEMvTZq2yeZR1NJDLm5sSV7J5JQnoXRLoVnIzegxPoTNOqx36anQn5DfmF-SkWxvCaFQ6MXYxhZCo5n5Rpr5BPAJ0yFPjcNEmkzTpcoSi9Inlc9d5QvUGHlmL36ob1f69CzQ5Bz2tTAtP8RywS1oRrTXQcGNbQ7-kIZeL24-Z4FshOwvRQmxfEN8XwZbacfAzClKIpurelahlB8s_3zsi54AzMd4NTqc87X_6uo6vOpwJjtqJ8ZreIbTDVgddTvpG_Aipn665g38opnCTmMiB6sr9rX-ef_77qRu5iycMOzp4WhST5GNQupel9k-wRm9PyYP6FnIn52QvWTjyXxmmkC1y1oedEaAmHWVCKw1HmEVkVGrrCdDeQvj87PLk4ukO5QhcVznOkFy-mi4LwyvtE_RGK0EeVqKfCxmtsrRVlY6wVXmpJbSqaJQzrgUbW4VgZl3sDKlXm8BEyrLqqFwHLmXwnmrU0uAyqqCYhhCWgP42IunvG25N8qWZZmXNKRlHNIBfOgFV5JmhO0OM8V60ZR8yAN5nMzFADZbiS6bEYFIUMjhAPaj4P7efvllPIo32__-6Q685KFKIub87cLKfLbAPXje-MX7OEkfAI7a7ZY
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIh6XAoXClpdBHLiEJrYTOxKX0ocW2K2Q6ErcIj8mh2rZoM2uOCHxE_iN_BLGTrKoQkhIXKIkSizLM575xp75DPAC04KnxmEiTabpUmeJRemT2ueu9iVqjDyz44_q7JM-Pgk0Oa-HWpiOH2Kz4BZmRrTXYYKHBemD36yhF-vPr7LANrIFV2VBihgKOMSHTbiV9hzMnOIksrpq4BVK-cHm18ve6A-IeRmxRpdzeuv_OnsbdnqoyQ473bgDV3CxC9en_Wb6LlyL2Z-uvQvfSFnYcczlYE3NJs3Xn99_HDXtioVDhj09HM6bBbJpyN7rk9vnuKT3b8gJehZSaOdkMtlsvlqaNrDtso4KnREmZn0xAuvsR1hIZNQqG_hQ7sHs9OT8aJz05zIkjutcJ0h-Hw33peG19ikao5UgZ0vBj8XM1jna2konuMqc1FI6VZbKGZeiza0iPLMH2wvq9QNgQmVZXQjHkXspnLc6tYSprCopjCGwNYLng3yqLx39RtURLfOKhrSKQzqCZ4PkKpocYcfDLLBZtxUveOCPk7kYwf1OpJtmROASFLIYwcsoub-3X72bTePN_r9_-hRujM-nk2ry9uz9Q7jJQ9FETAF8BNur5Rofw1br10-ixv4ChALxvg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHfYiKCy2F0qUUDOLAJW1iO2tHnNpuVwW6VSVYiVvk56HabqrNrjgh8RP4jfwSxk6yqKqQKvUSJVFiWR57Hvb4M8B7l_ZpqoxLuMokXnyWaMdt4m1uvC2cdJEze_ZVXHyXg9OAyfnY7YVp-BDLCbcwMqK-DgP8xvrDf9DQq8X1QRZgI6uwztEND-B8xi6X0VbaIpgphkmodEWHFUrp4fLX28bojod522GNFme4-aC6bsGT1tEkR03PeAorbroNG6N2KX0bHsXcT1M_g5_YVcggZnKQypPz6sefX79PqnpOwhHDFh-OJtXUkVHI3WtT2yduhu-P0QRaEhJoJ6gwyXgyn6k6sHZJA0In6BGTdisCabRHmEYkWCrpaCjPYTw8_XZylrSnMiSGylwmDq2-U9QWinppU6eUFAxNLYY-2mXa5057zQ2jIjNccm5EUQijTOp0rgV6MzuwNsVa7wJhIst8nxnqqOXMWC1TjR6VFgUGMehq9eBdJ57ypoFvlA1mmZbYpGVs0h687QRX4tAI6x1q6qpFXdI-DfQ4nrMevGgkuiyGBZIg4_0efIiC-3_55efxKN68vP-nb2DjcjAszz9dfNmDxzTsmIj5f69gbT5buH1Yre3ideyvfwGtZfBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Design+of+Low%E2%80%90Cost+Stand%E2%80%90Alone+Microcontroller%E2%80%90Based+Wireless+Ultrasonic+System+for+Process+Monitoring+and+Analysis&rft.jtitle=Journal+of+ultrasound+in+medicine&rft.au=Keskino%C4%9Flu%2C+Cemil&rft.au=Ayd%C4%B1n%2C+Ahmet&rft.date=2022-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0278-4297&rft.eissn=1550-9613&rft.volume=41&rft.issue=10&rft.spage=2577&rft.epage=2589&rft_id=info:doi/10.1002%2Fjum.15948&rft.externalDBID=10.1002%252Fjum.15948&rft.externalDocID=JUM15948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-4297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-4297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-4297&client=summon