Scalable Implementation of Temporal and Phase Encoding QKD with Phase‐Randomized States

Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a...

Full description

Saved in:
Bibliographic Details
Published in:Advanced quantum technologies (Online) Vol. 7; no. 2
Main Authors: Francesconi, Saverio, De Lazzari, Claudia, Ribezzo, Domenico, Vagniluca, Ilaria, Biagi, Nicola, Occhipinti, Tommaso, Zavatta, Alessandro, Bacco, Davide
Format: Journal Article
Language:English
Published: 01-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a random phase for each quantum state in order to achieve the highest level of security. In particular, the time‐bin and phase encoding techniques are mainly exploiting laser in gain‐switching modes combined with asymmetric interferometers or multiple laser sources in a master–slave configuration, which present limitations in terms of stability and scalability. In this work, a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on the time‐bin encoding protocol with a decoy‐state method employing phase‐randomized weak coherent states is proposed and demonstrated. The scheme is tested and validated up to 26 dB‐attenuation channel using standard single‐photon detectors working in the telecom wavelength range. Quantum key distribution (QKD), exchanging cryptographic keys exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated lasers, which present limitations in terms of stability and scalability. This work demonstrates a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on time‐bin encoding and decoy‐state employing phase‐randomized weak states.
AbstractList Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a random phase for each quantum state in order to achieve the highest level of security. In particular, the time‐bin and phase encoding techniques are mainly exploiting laser in gain‐switching modes combined with asymmetric interferometers or multiple laser sources in a master–slave configuration, which present limitations in terms of stability and scalability. In this work, a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on the time‐bin encoding protocol with a decoy‐state method employing phase‐randomized weak coherent states is proposed and demonstrated. The scheme is tested and validated up to 26 dB‐attenuation channel using standard single‐photon detectors working in the telecom wavelength range. Quantum key distribution (QKD), exchanging cryptographic keys exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated lasers, which present limitations in terms of stability and scalability. This work demonstrates a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on time‐bin encoding and decoy‐state employing phase‐randomized weak states.
Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a random phase for each quantum state in order to achieve the highest level of security. In particular, the time‐bin and phase encoding techniques are mainly exploiting laser in gain‐switching modes combined with asymmetric interferometers or multiple laser sources in a master–slave configuration, which present limitations in terms of stability and scalability. In this work, a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on the time‐bin encoding protocol with a decoy‐state method employing phase‐randomized weak coherent states is proposed and demonstrated. The scheme is tested and validated up to 26 dB‐attenuation channel using standard single‐photon detectors working in the telecom wavelength range.
Author Francesconi, Saverio
Ribezzo, Domenico
Zavatta, Alessandro
Occhipinti, Tommaso
Biagi, Nicola
Bacco, Davide
De Lazzari, Claudia
Vagniluca, Ilaria
Author_xml – sequence: 1
  givenname: Saverio
  surname: Francesconi
  fullname: Francesconi, Saverio
  organization: QTI S.r.l
– sequence: 2
  givenname: Claudia
  surname: De Lazzari
  fullname: De Lazzari, Claudia
  organization: QTI S.r.l
– sequence: 3
  givenname: Domenico
  surname: Ribezzo
  fullname: Ribezzo, Domenico
  organization: Università degli Studi di Napoli Federico II
– sequence: 4
  givenname: Ilaria
  surname: Vagniluca
  fullname: Vagniluca, Ilaria
  organization: QTI S.r.l
– sequence: 5
  givenname: Nicola
  surname: Biagi
  fullname: Biagi, Nicola
  organization: QTI S.r.l
– sequence: 6
  givenname: Tommaso
  surname: Occhipinti
  fullname: Occhipinti, Tommaso
  organization: QTI S.r.l
– sequence: 7
  givenname: Alessandro
  surname: Zavatta
  fullname: Zavatta, Alessandro
  organization: Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR‐INO)
– sequence: 8
  givenname: Davide
  orcidid: 0000-0002-7757-4331
  surname: Bacco
  fullname: Bacco, Davide
  email: davide.bacco@unifi.it
  organization: University of Florence
BookMark eNqFkE1OwzAQhS1UJErplrUvkOC_OM0SlQIVlaC0XbCKnHhCgxK7xKmqsuIInJGT4CoI2LGaN6P3nkbfKeoZawChc0pCSgi7eN22EDLCuF-YOEJ9FlEaJESI3h99gobOvRDv4ZSLmPfR0yJXlcoqwNN6U0ENplVtaQ22BV5CvbGNqrAyGj-slQM8MbnVpXnG87srvCvbdXf_fP949CZbl2-g8cJXgDtDx4WqHAy_5wCtrifL8W0wu7-Zji9nQc5GQgRKCqZFookGITXlRLMM4owpCYn2L2ZK8FhGOoohAklkMfKi0FqymOmCRHyAwq43b6xzDRTppilr1exTStIDm_TAJv1h4wNJF9iVFez_cafz1XLym_0CWoVrlQ
Cites_doi 10.1103/PhysRevLett.94.230504
10.1038/s41534-017-0057-8
10.1103/PhysRevA.98.052336
10.1088/1367-2630/17/5/053014
10.1103/PhysRevApplied.14.014051
10.1140/epjqt/s40507-019-0075-x
10.1103/PhysRevA.90.032320
10.1364/OPTICA.4.000163
10.1126/sciadv.1701491
10.1103/RevModPhys.81.1301
10.1063/1.5023340
10.1063/5.0128445
10.1103/PhysRevLett.85.1330
10.1038/nature23655
10.1103/PhysRevA.88.022308
10.1063/1.5027030
10.1364/AOP.361502
10.1038/s41566-019-0377-7
10.1103/PhysRevLett.94.230503
10.1063/1.4746061
10.1364/OE.21.024550
10.1364/OE.18.023584
10.1103/PhysRevLett.121.190502
10.1038/508441a
10.1103/PhysRevLett.91.057901
10.1038/srep35149
10.1002/qute.202200061
10.1002/qute.202100062
10.1109/JLT.2018.2843136
10.1103/PhysRevLett.120.030501
10.1103/PhysRevLett.112.190503
10.1002/qute.201900038
ContentType Journal Article
Copyright 2023 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH
DBID 24P
WIN
AAYXX
CITATION
DOI 10.1002/qute.202300224
DatabaseName Wiley Online Library Open Access
Wiley Online Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202300224
QUTE202300224
Genre article
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
AANLZ
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WIN
WXSBR
ZZTAW
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c2844-a642d49d0de46d130d2be7b2a6e9d473ba43765d57e5e606f87e5fdd6272df053
IEDL.DBID 33P
ISSN 2511-9044
IngestDate Thu Nov 21 21:43:31 EST 2024
Sat Aug 24 00:54:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2844-a642d49d0de46d130d2be7b2a6e9d473ba43765d57e5e606f87e5fdd6272df053
ORCID 0000-0002-7757-4331
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300224
PageCount 7
ParticipantIDs crossref_primary_10_1002_qute_202300224
wiley_primary_10_1002_qute_202300224_QUTE202300224
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2024
References 2018; 120
2018; 121
2015; 17
2021; 4
2017; 3
2014; 90
2019; 6
2017; 4
2009; 81
2013; 88
2013; 21
2023; 6
2019; 2
2010; 18
2019; 13
2023; 8
2000; 85
2012; 1469
2020; 14
2020; 12
2004
2014; 112
2017; 549
2016; 6
2014; 508
2003; 91
2018; 4
2022
2018; 112
1984
2016
2005; 94
2018; 98
2014; 104
2018; 36
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_22_1
Yuan Z. (e_1_2_10_30_1) 2016; 6
e_1_2_10_20_1
De Touzalin A. (e_1_2_10_5_1) 2016
Yuan Z. (e_1_2_10_24_1) 2014; 104
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 36
  start-page: 3427
  year: 2018
  publication-title: J. Lightwave Technol.
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 8
  year: 2018
  publication-title: npj Quantum Inf.
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– start-page: 175
  year: 1984
  end-page: 179
– volume: 1469
  start-page: 50
  year: 2012
  article-title: QKD standardization at ETSI
  publication-title: AIP Conf. Proc.
– start-page: 136
  year: 2004
– volume: 2
  year: 2019
  publication-title: Adv. Quantum Technol.
– volume: 85
  start-page: 1330
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 1301
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 508
  start-page: 441
  year: 2014
  publication-title: Nature
– volume: 8
  year: 2023
  publication-title: APL Photonics
– volume: 549
  start-page: 43
  year: 2017
  publication-title: Nature
– volume: 4
  year: 2021
  publication-title: Adv. Quantum Technol.
– volume: 14
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 18
  year: 2010
  publication-title: Opt. Express
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 4
  start-page: 163
  year: 2017
  publication-title: Optica
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 334
  year: 2019
  publication-title: Nat. Photonics
– volume: 12
  start-page: 1012
  year: 2020
  publication-title: Adv. Opt. Photonics
– volume: 94
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 88
  year: 2013
  publication-title: Phys. Rev. A
– year: 2022
– volume: 6
  start-page: 5
  year: 2019
  publication-title: EPJ Quantum Technol.
– volume: 6
  year: 2023
  publication-title: Adv. Quantum Technol.
– volume: 104
  start-page: 26
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 120
  year: 2018
  publication-title: et al. Phys. Rev. Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. A
– volume: 90
  year: 2014
  publication-title: Phys. Rev. A
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– start-page: 1
  year: 2016
  publication-title: European Comission
– start-page: 1
  year: 2016
  ident: e_1_2_10_5_1
  publication-title: European Comission
  contributor:
    fullname: De Touzalin A.
– ident: e_1_2_10_10_1
  doi: 10.1103/PhysRevLett.94.230504
– ident: e_1_2_10_29_1
  doi: 10.1038/s41534-017-0057-8
– ident: e_1_2_10_33_1
– ident: e_1_2_10_37_1
  doi: 10.1103/PhysRevA.98.052336
– ident: e_1_2_10_23_1
  doi: 10.1088/1367-2630/17/5/053014
– ident: e_1_2_10_26_1
  doi: 10.1103/PhysRevApplied.14.014051
– ident: e_1_2_10_38_1
  doi: 10.1140/epjqt/s40507-019-0075-x
– ident: e_1_2_10_25_1
  doi: 10.1103/PhysRevA.90.032320
– ident: e_1_2_10_14_1
  doi: 10.1364/OPTICA.4.000163
– ident: e_1_2_10_16_1
  doi: 10.1126/sciadv.1701491
– ident: e_1_2_10_2_1
  doi: 10.1103/RevModPhys.81.1301
– ident: e_1_2_10_36_1
  doi: 10.1063/1.5023340
– volume: 104
  start-page: 26
  year: 2014
  ident: e_1_2_10_24_1
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Yuan Z.
– ident: e_1_2_10_32_1
  doi: 10.1063/5.0128445
– ident: e_1_2_10_8_1
  doi: 10.1103/PhysRevLett.85.1330
– ident: e_1_2_10_15_1
  doi: 10.1038/nature23655
– ident: e_1_2_10_21_1
  doi: 10.1103/PhysRevA.88.022308
– ident: e_1_2_10_28_1
  doi: 10.1063/1.5027030
– ident: e_1_2_10_3_1
  doi: 10.1364/AOP.361502
– ident: e_1_2_10_20_1
– ident: e_1_2_10_31_1
  doi: 10.1038/s41566-019-0377-7
– ident: e_1_2_10_11_1
  doi: 10.1103/PhysRevLett.94.230503
– ident: e_1_2_10_6_1
  doi: 10.1063/1.4746061
– ident: e_1_2_10_12_1
  doi: 10.1364/OE.21.024550
– ident: e_1_2_10_1_1
– ident: e_1_2_10_35_1
  doi: 10.1364/OE.18.023584
– ident: e_1_2_10_19_1
  doi: 10.1103/PhysRevLett.121.190502
– ident: e_1_2_10_4_1
  doi: 10.1038/508441a
– ident: e_1_2_10_9_1
  doi: 10.1103/PhysRevLett.91.057901
– ident: e_1_2_10_13_1
  doi: 10.1038/srep35149
– volume: 6
  year: 2016
  ident: e_1_2_10_30_1
  publication-title: Phys. Rev. X
  contributor:
    fullname: Yuan Z.
– ident: e_1_2_10_7_1
  doi: 10.1002/qute.202200061
– ident: e_1_2_10_34_1
  doi: 10.1002/qute.202100062
– ident: e_1_2_10_17_1
  doi: 10.1109/JLT.2018.2843136
– ident: e_1_2_10_18_1
  doi: 10.1103/PhysRevLett.120.030501
– ident: e_1_2_10_22_1
  doi: 10.1103/PhysRevLett.112.190503
– ident: e_1_2_10_27_1
  doi: 10.1002/qute.201900038
SSID ssj0002313473
Score 2.304142
Snippet Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms phase randomization
quantum communication
quantum Key Distribution
quantum photonics
security of QKD
Title Scalable Implementation of Temporal and Phase Encoding QKD with Phase‐Randomized States
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300224
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aELz4FuuLHARPoW02-zqK3VIQpLUt6GnJZrIo2F117cWTP8Hf6C9xkrSrPQl6S5bsssxm5vsyyXxLyFloJI2UiBkgvjERgWCRwK7nqyySEQKM1dLrj8Lr26ibGJmcuorf6UPUCTfjGTZeGweXWdX6Fg19nlmZS6TQBoYwCONSwdZweIM6yYLkxRN2l9kwaRa3hVgIN7Z5a_kJS8D0k6hapOlt_v8dt8jGnGXSCzcttsmKLnbImj3tqapdcjfCL2NqpqgVB57O648KWuZ07LSqHqksgA7uEeRoUqjSQBwdXnWpSdy665_vHzc4qJw-vGmgjrXukUkvGV_22fwfC0whMAkmcf0BIoY2aBEAAhrwTIcZl4GOAU2XSYEhyAc_1L7GxU4eYSMHCHjIIUcP3ieNoiz0AaFKByLnSDd9PxSKB1LnGB06uae5Vh2pmuR8YeD0yUlppE40mafGUGltqCbh1qq_DEuHk3FS9w7_ctMRWce2cMewj0nj9WWmT8hqBbNTO5O-AHs8yBQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BEYILO6KsPiBxito6znasaKqilqqlqQSnKLUdgUQToPTCiU_gG_kSxnYb6AkJcYstJ4rGM37PE88LwLmnJI04CyyB-GYxXzDLZ9i0HT7yEx8BRmvptQZe99ZvhEompz6vhTH6EEXCTUWGXq9VgKuEdOVbNfR5qnUukUMrHFqGFeaiN6oqDrtXpFmQvthMf2dWXNoKqozNpRurtLL4iAVo-klVNdY0N__hLbdgY0Y0Sd14xjYsyWwHVvWBTz7ZhbsBTo4qmyJaH3g8K0HKSJ6SyMhVPZIkE6R3jzhHwoznCuVIv90gKndr-j_fP25wUD5-eJOCGOK6B8NmGF22rNlvFiyO2MSsBLcgggWiKiRzBWKaoCPpjWjiykCg7UYJw1XIEY4nHYn7ndTHi1QIl3pUpBjE-1DK8kweAOHSZSlFxuk4HuPUTWSKU1JLbUklryW8DBdzC8dPRk0jNrrJNFaGigtDlYFqs_4yLO4Po7BoHf7lpjNYa0XXnbhz1W0fwTr2M3Mq-xhKry9TeQLLEzE91W71BT4RzDw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsMwELSgCMSFN6I8fUDiFLV1nNcR0VRFRVVLWwlOUeq1BRJNCqUXTnwC38iXsLbbQE9IcIstJ4omXs9k450Qch5oSyPBIweQ3xweAndCjk3XE8MwDZFgjJdesxe078J6rG1yiip-6w9RJNx0ZJj1Wgf4GFTl2zT0eWpsLlFCaxpaJisctbh2z3fdTpFlQfXicvOZWUtpJ6pyPndurLLK4iUWmOmnUjVU09j8_01ukY2ZzKSXdl5skyWZ7ZBVs91TTHbJfQ8fjS6aosYdeDQrQMpormjfmlU90TQD2nlAlqNxJnLNcbTbqlOdubX9n-8ftzgoHz2-SaBWtu6RQSPuXzWd2U8WHIHMxJ0UX0CAR1AFyX1ARgM2lMGQpb6MAKEbphzXIA-8QHoSEVYhHigAnwUMFIbwPilleSYPCBXS54qh3vS8gAvmp1Lh8lBTrmRS1FJRJhdzgJOx9dJIrGsySzRQSQFUmTCD6i_Dku6gHxetw7-cdEbWOvVGcnPdbh2Rdezmdkv2MSm9vkzlCVmewPTUTKov5eDK4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Implementation+of+Temporal+and+Phase+Encoding+QKD+with+Phase%E2%80%90Randomized+States&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Francesconi%2C+Saverio&rft.au=De+Lazzari%2C+Claudia&rft.au=Ribezzo%2C+Domenico&rft.au=Vagniluca%2C+Ilaria&rft.date=2024-02-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202300224&rft.externalDBID=10.1002%252Fqute.202300224&rft.externalDocID=QUTE202300224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon