Scalable Implementation of Temporal and Phase Encoding QKD with Phase‐Randomized States
Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a...
Saved in:
Published in: | Advanced quantum technologies (Online) Vol. 7; no. 2 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a random phase for each quantum state in order to achieve the highest level of security. In particular, the time‐bin and phase encoding techniques are mainly exploiting laser in gain‐switching modes combined with asymmetric interferometers or multiple laser sources in a master–slave configuration, which present limitations in terms of stability and scalability. In this work, a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on the time‐bin encoding protocol with a decoy‐state method employing phase‐randomized weak coherent states is proposed and demonstrated. The scheme is tested and validated up to 26 dB‐attenuation channel using standard single‐photon detectors working in the telecom wavelength range.
Quantum key distribution (QKD), exchanging cryptographic keys exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated lasers, which present limitations in terms of stability and scalability. This work demonstrates a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on time‐bin encoding and decoy‐state employing phase‐randomized weak states. |
---|---|
AbstractList | Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a random phase for each quantum state in order to achieve the highest level of security. In particular, the time‐bin and phase encoding techniques are mainly exploiting laser in gain‐switching modes combined with asymmetric interferometers or multiple laser sources in a master–slave configuration, which present limitations in terms of stability and scalability. In this work, a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on the time‐bin encoding protocol with a decoy‐state method employing phase‐randomized weak coherent states is proposed and demonstrated. The scheme is tested and validated up to 26 dB‐attenuation channel using standard single‐photon detectors working in the telecom wavelength range.
Quantum key distribution (QKD), exchanging cryptographic keys exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated lasers, which present limitations in terms of stability and scalability. This work demonstrates a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on time‐bin encoding and decoy‐state employing phase‐randomized weak states. Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a reality in our society. Current implementations are based on attenuated laser technique, a practical replacement of single photons which requires a random phase for each quantum state in order to achieve the highest level of security. In particular, the time‐bin and phase encoding techniques are mainly exploiting laser in gain‐switching modes combined with asymmetric interferometers or multiple laser sources in a master–slave configuration, which present limitations in terms of stability and scalability. In this work, a novel scheme for implementing a reconfigurable and scalable QKD transmitter based on the time‐bin encoding protocol with a decoy‐state method employing phase‐randomized weak coherent states is proposed and demonstrated. The scheme is tested and validated up to 26 dB‐attenuation channel using standard single‐photon detectors working in the telecom wavelength range. |
Author | Francesconi, Saverio Ribezzo, Domenico Zavatta, Alessandro Occhipinti, Tommaso Biagi, Nicola Bacco, Davide De Lazzari, Claudia Vagniluca, Ilaria |
Author_xml | – sequence: 1 givenname: Saverio surname: Francesconi fullname: Francesconi, Saverio organization: QTI S.r.l – sequence: 2 givenname: Claudia surname: De Lazzari fullname: De Lazzari, Claudia organization: QTI S.r.l – sequence: 3 givenname: Domenico surname: Ribezzo fullname: Ribezzo, Domenico organization: Università degli Studi di Napoli Federico II – sequence: 4 givenname: Ilaria surname: Vagniluca fullname: Vagniluca, Ilaria organization: QTI S.r.l – sequence: 5 givenname: Nicola surname: Biagi fullname: Biagi, Nicola organization: QTI S.r.l – sequence: 6 givenname: Tommaso surname: Occhipinti fullname: Occhipinti, Tommaso organization: QTI S.r.l – sequence: 7 givenname: Alessandro surname: Zavatta fullname: Zavatta, Alessandro organization: Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR‐INO) – sequence: 8 givenname: Davide orcidid: 0000-0002-7757-4331 surname: Bacco fullname: Bacco, Davide email: davide.bacco@unifi.it organization: University of Florence |
BookMark | eNqFkE1OwzAQhS1UJErplrUvkOC_OM0SlQIVlaC0XbCKnHhCgxK7xKmqsuIInJGT4CoI2LGaN6P3nkbfKeoZawChc0pCSgi7eN22EDLCuF-YOEJ9FlEaJESI3h99gobOvRDv4ZSLmPfR0yJXlcoqwNN6U0ENplVtaQ22BV5CvbGNqrAyGj-slQM8MbnVpXnG87srvCvbdXf_fP949CZbl2-g8cJXgDtDx4WqHAy_5wCtrifL8W0wu7-Zji9nQc5GQgRKCqZFookGITXlRLMM4owpCYn2L2ZK8FhGOoohAklkMfKi0FqymOmCRHyAwq43b6xzDRTppilr1exTStIDm_TAJv1h4wNJF9iVFez_cafz1XLym_0CWoVrlQ |
Cites_doi | 10.1103/PhysRevLett.94.230504 10.1038/s41534-017-0057-8 10.1103/PhysRevA.98.052336 10.1088/1367-2630/17/5/053014 10.1103/PhysRevApplied.14.014051 10.1140/epjqt/s40507-019-0075-x 10.1103/PhysRevA.90.032320 10.1364/OPTICA.4.000163 10.1126/sciadv.1701491 10.1103/RevModPhys.81.1301 10.1063/1.5023340 10.1063/5.0128445 10.1103/PhysRevLett.85.1330 10.1038/nature23655 10.1103/PhysRevA.88.022308 10.1063/1.5027030 10.1364/AOP.361502 10.1038/s41566-019-0377-7 10.1103/PhysRevLett.94.230503 10.1063/1.4746061 10.1364/OE.21.024550 10.1364/OE.18.023584 10.1103/PhysRevLett.121.190502 10.1038/508441a 10.1103/PhysRevLett.91.057901 10.1038/srep35149 10.1002/qute.202200061 10.1002/qute.202100062 10.1109/JLT.2018.2843136 10.1103/PhysRevLett.120.030501 10.1103/PhysRevLett.112.190503 10.1002/qute.201900038 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH |
DBID | 24P WIN AAYXX CITATION |
DOI | 10.1002/qute.202300224 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_202300224 QUTE202300224 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS AANLZ AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WIN WXSBR ZZTAW AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c2844-a642d49d0de46d130d2be7b2a6e9d473ba43765d57e5e606f87e5fdd6272df053 |
IEDL.DBID | 33P |
ISSN | 2511-9044 |
IngestDate | Thu Nov 21 21:43:31 EST 2024 Sat Aug 24 00:54:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2844-a642d49d0de46d130d2be7b2a6e9d473ba43765d57e5e606f87e5fdd6272df053 |
ORCID | 0000-0002-7757-4331 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300224 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1002_qute_202300224 wiley_primary_10_1002_qute_202300224_QUTE202300224 |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2024 |
References | 2018; 120 2018; 121 2015; 17 2021; 4 2017; 3 2014; 90 2019; 6 2017; 4 2009; 81 2013; 88 2013; 21 2023; 6 2019; 2 2010; 18 2019; 13 2023; 8 2000; 85 2012; 1469 2020; 14 2020; 12 2004 2014; 112 2017; 549 2016; 6 2014; 508 2003; 91 2018; 4 2022 2018; 112 1984 2016 2005; 94 2018; 98 2014; 104 2018; 36 e_1_2_10_23_1 e_1_2_10_21_1 e_1_2_10_22_1 Yuan Z. (e_1_2_10_30_1) 2016; 6 e_1_2_10_20_1 De Touzalin A. (e_1_2_10_5_1) 2016 Yuan Z. (e_1_2_10_24_1) 2014; 104 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 36 start-page: 3427 year: 2018 publication-title: J. Lightwave Technol. – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 8 year: 2018 publication-title: npj Quantum Inf. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – start-page: 175 year: 1984 end-page: 179 – volume: 1469 start-page: 50 year: 2012 article-title: QKD standardization at ETSI publication-title: AIP Conf. Proc. – start-page: 136 year: 2004 – volume: 2 year: 2019 publication-title: Adv. Quantum Technol. – volume: 85 start-page: 1330 year: 2000 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 1301 year: 2009 publication-title: Rev. Mod. Phys. – volume: 508 start-page: 441 year: 2014 publication-title: Nature – volume: 8 year: 2023 publication-title: APL Photonics – volume: 549 start-page: 43 year: 2017 publication-title: Nature – volume: 4 year: 2021 publication-title: Adv. Quantum Technol. – volume: 14 year: 2020 publication-title: Phys. Rev. Appl. – volume: 18 year: 2010 publication-title: Opt. Express – volume: 21 year: 2013 publication-title: Opt. Express – volume: 4 start-page: 163 year: 2017 publication-title: Optica – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 6 year: 2016 publication-title: Phys. Rev. X – volume: 13 start-page: 334 year: 2019 publication-title: Nat. Photonics – volume: 12 start-page: 1012 year: 2020 publication-title: Adv. Opt. Photonics – volume: 94 year: 2005 publication-title: Phys. Rev. Lett. – volume: 88 year: 2013 publication-title: Phys. Rev. A – year: 2022 – volume: 6 start-page: 5 year: 2019 publication-title: EPJ Quantum Technol. – volume: 6 year: 2023 publication-title: Adv. Quantum Technol. – volume: 104 start-page: 26 year: 2014 publication-title: Appl. Phys. Lett. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 120 year: 2018 publication-title: et al. Phys. Rev. Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 98 year: 2018 publication-title: Phys. Rev. A – volume: 90 year: 2014 publication-title: Phys. Rev. A – volume: 17 year: 2015 publication-title: New J. Phys. – start-page: 1 year: 2016 publication-title: European Comission – start-page: 1 year: 2016 ident: e_1_2_10_5_1 publication-title: European Comission contributor: fullname: De Touzalin A. – ident: e_1_2_10_10_1 doi: 10.1103/PhysRevLett.94.230504 – ident: e_1_2_10_29_1 doi: 10.1038/s41534-017-0057-8 – ident: e_1_2_10_33_1 – ident: e_1_2_10_37_1 doi: 10.1103/PhysRevA.98.052336 – ident: e_1_2_10_23_1 doi: 10.1088/1367-2630/17/5/053014 – ident: e_1_2_10_26_1 doi: 10.1103/PhysRevApplied.14.014051 – ident: e_1_2_10_38_1 doi: 10.1140/epjqt/s40507-019-0075-x – ident: e_1_2_10_25_1 doi: 10.1103/PhysRevA.90.032320 – ident: e_1_2_10_14_1 doi: 10.1364/OPTICA.4.000163 – ident: e_1_2_10_16_1 doi: 10.1126/sciadv.1701491 – ident: e_1_2_10_2_1 doi: 10.1103/RevModPhys.81.1301 – ident: e_1_2_10_36_1 doi: 10.1063/1.5023340 – volume: 104 start-page: 26 year: 2014 ident: e_1_2_10_24_1 publication-title: Appl. Phys. Lett. contributor: fullname: Yuan Z. – ident: e_1_2_10_32_1 doi: 10.1063/5.0128445 – ident: e_1_2_10_8_1 doi: 10.1103/PhysRevLett.85.1330 – ident: e_1_2_10_15_1 doi: 10.1038/nature23655 – ident: e_1_2_10_21_1 doi: 10.1103/PhysRevA.88.022308 – ident: e_1_2_10_28_1 doi: 10.1063/1.5027030 – ident: e_1_2_10_3_1 doi: 10.1364/AOP.361502 – ident: e_1_2_10_20_1 – ident: e_1_2_10_31_1 doi: 10.1038/s41566-019-0377-7 – ident: e_1_2_10_11_1 doi: 10.1103/PhysRevLett.94.230503 – ident: e_1_2_10_6_1 doi: 10.1063/1.4746061 – ident: e_1_2_10_12_1 doi: 10.1364/OE.21.024550 – ident: e_1_2_10_1_1 – ident: e_1_2_10_35_1 doi: 10.1364/OE.18.023584 – ident: e_1_2_10_19_1 doi: 10.1103/PhysRevLett.121.190502 – ident: e_1_2_10_4_1 doi: 10.1038/508441a – ident: e_1_2_10_9_1 doi: 10.1103/PhysRevLett.91.057901 – ident: e_1_2_10_13_1 doi: 10.1038/srep35149 – volume: 6 year: 2016 ident: e_1_2_10_30_1 publication-title: Phys. Rev. X contributor: fullname: Yuan Z. – ident: e_1_2_10_7_1 doi: 10.1002/qute.202200061 – ident: e_1_2_10_34_1 doi: 10.1002/qute.202100062 – ident: e_1_2_10_17_1 doi: 10.1109/JLT.2018.2843136 – ident: e_1_2_10_18_1 doi: 10.1103/PhysRevLett.120.030501 – ident: e_1_2_10_22_1 doi: 10.1103/PhysRevLett.112.190503 – ident: e_1_2_10_27_1 doi: 10.1002/qute.201900038 |
SSID | ssj0002313473 |
Score | 2.304142 |
Snippet | Quantum key distribution (QKD), that is, exchanging cryptographic keys encoded in quantum particles exploiting the laws of quantum physics, is already a... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | phase randomization quantum communication quantum Key Distribution quantum photonics security of QKD |
Title | Scalable Implementation of Temporal and Phase Encoding QKD with Phase‐Randomized States |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300224 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aELz4FuuLHARPoW02-zqK3VIQpLUt6GnJZrIo2F117cWTP8Hf6C9xkrSrPQl6S5bsssxm5vsyyXxLyFloJI2UiBkgvjERgWCRwK7nqyySEQKM1dLrj8Lr26ibGJmcuorf6UPUCTfjGTZeGweXWdX6Fg19nlmZS6TQBoYwCONSwdZweIM6yYLkxRN2l9kwaRa3hVgIN7Z5a_kJS8D0k6hapOlt_v8dt8jGnGXSCzcttsmKLnbImj3tqapdcjfCL2NqpqgVB57O648KWuZ07LSqHqksgA7uEeRoUqjSQBwdXnWpSdy665_vHzc4qJw-vGmgjrXukUkvGV_22fwfC0whMAkmcf0BIoY2aBEAAhrwTIcZl4GOAU2XSYEhyAc_1L7GxU4eYSMHCHjIIUcP3ieNoiz0AaFKByLnSDd9PxSKB1LnGB06uae5Vh2pmuR8YeD0yUlppE40mafGUGltqCbh1qq_DEuHk3FS9w7_ctMRWce2cMewj0nj9WWmT8hqBbNTO5O-AHs8yBQ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BEYILO6KsPiBxito6znasaKqilqqlqQSnKLUdgUQToPTCiU_gG_kSxnYb6AkJcYstJ4rGM37PE88LwLmnJI04CyyB-GYxXzDLZ9i0HT7yEx8BRmvptQZe99ZvhEompz6vhTH6EEXCTUWGXq9VgKuEdOVbNfR5qnUukUMrHFqGFeaiN6oqDrtXpFmQvthMf2dWXNoKqozNpRurtLL4iAVo-klVNdY0N__hLbdgY0Y0Sd14xjYsyWwHVvWBTz7ZhbsBTo4qmyJaH3g8K0HKSJ6SyMhVPZIkE6R3jzhHwoznCuVIv90gKndr-j_fP25wUD5-eJOCGOK6B8NmGF22rNlvFiyO2MSsBLcgggWiKiRzBWKaoCPpjWjiykCg7UYJw1XIEY4nHYn7ndTHi1QIl3pUpBjE-1DK8kweAOHSZSlFxuk4HuPUTWSKU1JLbUklryW8DBdzC8dPRk0jNrrJNFaGigtDlYFqs_4yLO4Po7BoHf7lpjNYa0XXnbhz1W0fwTr2M3Mq-xhKry9TeQLLEzE91W71BT4RzDw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsMwELSgCMSFN6I8fUDiFLV1nNcR0VRFRVVLWwlOUeq1BRJNCqUXTnwC38iXsLbbQE9IcIstJ4omXs9k450Qch5oSyPBIweQ3xweAndCjk3XE8MwDZFgjJdesxe078J6rG1yiip-6w9RJNx0ZJj1Wgf4GFTl2zT0eWpsLlFCaxpaJisctbh2z3fdTpFlQfXicvOZWUtpJ6pyPndurLLK4iUWmOmnUjVU09j8_01ukY2ZzKSXdl5skyWZ7ZBVs91TTHbJfQ8fjS6aosYdeDQrQMpormjfmlU90TQD2nlAlqNxJnLNcbTbqlOdubX9n-8ftzgoHz2-SaBWtu6RQSPuXzWd2U8WHIHMxJ0UX0CAR1AFyX1ARgM2lMGQpb6MAKEbphzXIA-8QHoSEVYhHigAnwUMFIbwPilleSYPCBXS54qh3vS8gAvmp1Lh8lBTrmRS1FJRJhdzgJOx9dJIrGsySzRQSQFUmTCD6i_Dku6gHxetw7-cdEbWOvVGcnPdbh2Rdezmdkv2MSm9vkzlCVmewPTUTKov5eDK4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Implementation+of+Temporal+and+Phase+Encoding+QKD+with+Phase%E2%80%90Randomized+States&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Francesconi%2C+Saverio&rft.au=De+Lazzari%2C+Claudia&rft.au=Ribezzo%2C+Domenico&rft.au=Vagniluca%2C+Ilaria&rft.date=2024-02-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202300224&rft.externalDBID=10.1002%252Fqute.202300224&rft.externalDocID=QUTE202300224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |