On-line Voltage and Power Flow Contingencies Ranking Using Enhanced Radial Basis Function Neural Network and Kernel Principal Component Analysis
Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the cont...
Saved in:
Published in: | Electric power components and systems Vol. 40; no. 5; pp. 534 - 555 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
Taylor & Francis Group
01-03-2012
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the contingencies expected to cause steady-state bus voltage and power flow violations. Hidden layer neurons have been selected with the proposed algorithm, which has the advantage of being able to automatically choose optimal centers and radii. The proposed radial basis function neural network based security assessment algorithm has very small training time and space in comparison with multi-layer perceptron neural networks, support vector machines, and other machine learning based algorithms. A feature extraction technique based on kernel principal component analysis has been employed to identify the relevant inputs for the neural network. Also, the proposed feature extraction algorithm has been compared with Fisher-like criterion, the class separability index, and the correlation coefficient technique. The competence of the proposed approaches has been demonstrated on IEEE 14-bus and IEEE 118-bus power systems. The simulation results show the effectiveness and the stability of the proposed scheme for on-line voltage and power flow contingencies ranking procedures of large-scale power systems. |
---|---|
AbstractList | Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the contingencies expected to cause steady-state bus voltage and power flow violations. Hidden layer neurons have been selected with the proposed algorithm, which has the advantage of being able to automatically choose optimal centers and radii. The proposed radial basis function neural network based security assessment algorithm has very small training time and space in comparison with multi-layer perceptron neural networks, support vector machines, and other machine learning based algorithms. A feature extraction technique based on kernel principal component analysis has been employed to identify the relevant inputs for the neural network. Also, the proposed feature extraction algorithm has been compared with Fisher-like criterion, the class separability index, and the correlation coefficient technique. The competence of the proposed approaches has been demonstrated on IEEE 14-bus and IEEE 118-bus power systems. The simulation results show the effectiveness and the stability of the proposed scheme for on-line voltage and power flow contingencies ranking procedures of large-scale power systems. Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the contingencies expected to cause steady-state bus voltage and power flow violations. Hidden layer neurons have been selected with the proposed algorithm, which has the advantage of being able to automatically choose optimal centers and radii. The proposed radial basis function neural network based security assessment algorithm has very small training time and space in comparison with multi-layer perceptron neural networks, support vector machines, and other machine learning based algorithms. A feature extraction technique based on kernel principal component analysis has been employed to identify the relevant inputs for the neural network. Also, the proposed feature extraction algorithm has been compared with Fisher-like criterion, the class separability index, and the correlation coefficient technique. The competence of the proposed approaches has been demonstrated on IEEE 14-bus and IEEE 118-bus power systems. The simulation results show the effectiveness and the stability of the proposed scheme for on-line voltage and power flow contingencies ranking procedures of large-scale power systems. [PUBLICATION ABSTRACT] |
Author | Rajabi Mashhadi, H. Toussi, S. Ashkezari Rouhani, M. Javan, D. Seyed |
Author_xml | – sequence: 1 givenname: D. Seyed surname: Javan fullname: Javan, D. Seyed organization: Electrical Engineering Department , Ferdowsi University of Mashhad – sequence: 2 givenname: H. surname: Rajabi Mashhadi fullname: Rajabi Mashhadi, H. organization: Electrical Engineering Department , Ferdowsi University of Mashhad – sequence: 3 givenname: S. Ashkezari surname: Toussi fullname: Toussi, S. Ashkezari organization: Computer Engineering Department , Ferdowsi University of Mashhad – sequence: 4 givenname: M. surname: Rouhani fullname: Rouhani, M. organization: Islamic Azad University, Gonabad Branch |
BookMark | eNp9UctuFDEQtFCQSAJ_wMHixGWWtuflOaGwygIiSiJeV8vraQcn3vZiz2i1f8En42WBAwdkqe0uV5XsrjN2QpGQsecCFgIUvBJtLVsAtZAgxKJretnAI3Z6gKsWRHfy9wzqCTvL-R5AyGGQp-zHDVXBE_KvMUzmDrmhkd_GHSa-CnHHl5EmT3dI1mPmHw09lI5_yYd6Sd8MWRwLPHoT-BuTfearmezkI_FrnFNBr3HaxfTwy_gDJsLAb5MvfttyuYybbfkLTfyCTNgX_VP22JmQ8dnv_Zx9Wl1-Xr6rrm7evl9eXFVWKjlVzrp1b5wqC1y3hlEiGmttB0pZpyTKTji7FqKph1oBwND2opVDNzrbrutz9vLouk3x-4x50hufLYZgCOOctYBayb4eZFuoL_6h3sc5lddmPchukKrvmkJqjiSbYs4Jnd4mvzFpX5z0ISP9JyN9yEgfMyqy10eZJxfTxpRBhVFPZh9icqkM12dd_9fhJ1tkm2A |
CitedBy_id | crossref_primary_10_1016_j_neucom_2015_02_006 crossref_primary_10_1002_etep_2263 crossref_primary_10_1049_gtd2_12927 crossref_primary_10_1016_j_chemosphere_2012_11_062 crossref_primary_10_1108_COMPEL_01_2020_0031 crossref_primary_10_1016_j_neunet_2015_12_011 crossref_primary_10_1080_15325008_2012_749553 crossref_primary_10_1016_j_neucom_2016_07_046 crossref_primary_10_3390_en15155631 |
Cites_doi | 10.1080/01431160701442070 10.1109/59.852118 10.1007/978-1-4757-1904-8 10.1109/3477.826944 10.1109/TNN.2007.911746 10.1049/iet-gtd.2010.0201 10.1049/ip-gtd:20045289 10.1049/iet-gtd:20060265 10.1080/15325000490441390 10.1109/TPWRS.2004.826018 10.1007/BF02287921 10.1109/MPAE.2004.1338120 10.1080/15325000600748855 10.1049/iet-gtd.2008.0374 10.1080/15325008.2010.492448 10.1109/TPWRD.2009.2035422 10.1016/j.ijepes.2009.06.011 10.1109/TPWRS.2009.2035507 10.1109/TPWRS.2009.2031224 10.1109/TSMCC.2010.2091630 10.1080/10543400903572720 10.1016/j.ijepes.2011.06.008 10.1049/iet-gtd.2010.0157 10.1016/j.patcog.2009.04.011 10.1109/72.977291 10.1016/j.eswa.2010.02.113 10.1016/j.epsr.2011.09.004 10.1016/j.epsr.2004.10.004 10.1162/089976698300017467 10.1007/BF00337288 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor & Francis Ltd. 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor & Francis Ltd. 2012 |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M 7QO P64 |
DOI | 10.1080/15325008.2011.647240 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1532-5016 |
EndPage | 555 |
ExternalDocumentID | 2605644371 10_1080_15325008_2011_647240 647240 |
Genre | Original Articles |
GroupedDBID | .7F .QJ 0BK 0R~ 29G 2DF 30N 3YN 4.4 5GY 5VS 8VB AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B FUNRP FVPDL FYQZC GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 NX~ O9- PQEST PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TNC TTHFI TWF UT5 UU3 V1K ZGOLN ZL0 ~S~ AAYXX ABJNI ABPAQ ABXYU ACTTO ADUMR AFION AGVKY AGWUF AHDZW ALRRR BWMZZ CAG CITATION COF CYRSC DAOYK LJTGL NUSFT OPCYK TBQAZ TDBHL TUROJ 7SP 7TB 8FD FR3 KR7 L7M 7QO P64 |
ID | FETCH-LOGICAL-c282t-fcfb7af8f8f0f6b0d2eeaccc6088cf82e261fcb114393800095715296dfc5b3 |
IEDL.DBID | TFW |
ISSN | 1532-5008 |
IngestDate | Sat Oct 26 01:04:35 EDT 2024 Mon Nov 04 02:20:51 EST 2024 Fri Aug 23 00:38:23 EDT 2024 Tue Jun 13 19:30:38 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-fcfb7af8f8f0f6b0d2eeaccc6088cf82e261fcb114393800095715296dfc5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 926928764 |
PQPubID | 52905 |
PageCount | 22 |
ParticipantIDs | proquest_journals_926928764 informaworld_taylorfrancis_310_1080_15325008_2011_647240 crossref_primary_10_1080_15325008_2011_647240 proquest_miscellaneous_1038273925 |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Electric power components and systems |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0012 CIT0011 Jolliffe I. T. (CIT0031) 1986 Pearson K. (CIT0029) 1901; 6 Milano F. (CIT0034) CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 Lei H. S. (CIT0022) 2005; 3541 Schölkopf B. (CIT0033) 2002 CIT0021 CIT0020 CIT0001 CIT0023 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 Fatih Kucuktezcan C. (CIT0009) 2011; 83 CIT0026 CIT0007 CIT0006 CIT0028 CIT0008 |
References_xml | – ident: CIT0025 doi: 10.1080/01431160701442070 – ident: CIT0036 doi: 10.1109/59.852118 – volume-title: Principal Component Analysis year: 1986 ident: CIT0031 doi: 10.1007/978-1-4757-1904-8 contributor: fullname: Jolliffe I. T. – ident: CIT0023 doi: 10.1109/3477.826944 – ident: CIT0017 – ident: CIT0006 doi: 10.1109/TNN.2007.911746 – ident: CIT0014 doi: 10.1049/iet-gtd.2010.0201 – ident: CIT0002 doi: 10.1049/ip-gtd:20045289 – volume: 6 start-page: 559 issue: 2 year: 1901 ident: CIT0029 publication-title: Philosoph. Mag. contributor: fullname: Pearson K. – ident: CIT0008 doi: 10.1049/iet-gtd:20060265 – ident: CIT0011 doi: 10.1080/15325000490441390 – ident: CIT0019 doi: 10.1109/TPWRS.2004.826018 – volume-title: Learning with Kernels, Support Vector Machines, Regularization, Optimization, and Beyond year: 2002 ident: CIT0033 contributor: fullname: Schölkopf B. – ident: CIT0030 doi: 10.1007/BF02287921 – ident: CIT0001 doi: 10.1109/MPAE.2004.1338120 – ident: CIT0016 doi: 10.1080/15325000600748855 – volume-title: “Matlab power system simulation package,” ident: CIT0034 contributor: fullname: Milano F. – ident: CIT0021 doi: 10.1049/iet-gtd.2008.0374 – ident: CIT0003 doi: 10.1080/15325008.2010.492448 – ident: CIT0012 doi: 10.1109/TPWRD.2009.2035422 – ident: CIT0018 – ident: CIT0004 doi: 10.1016/j.ijepes.2009.06.011 – ident: CIT0010 – ident: CIT0015 doi: 10.1109/TPWRS.2009.2035507 – ident: CIT0037 doi: 10.1109/TPWRS.2009.2031224 – ident: CIT0020 doi: 10.1109/TSMCC.2010.2091630 – ident: CIT0026 doi: 10.1080/10543400903572720 – ident: CIT0005 doi: 10.1016/j.ijepes.2011.06.008 – ident: CIT0013 doi: 10.1049/iet-gtd.2010.0157 – ident: CIT0027 doi: 10.1016/j.patcog.2009.04.011 – ident: CIT0028 doi: 10.1109/72.977291 – ident: CIT0035 doi: 10.1016/j.eswa.2010.02.113 – volume: 83 start-page: 1 issue: 1 year: 2011 ident: CIT0009 publication-title: Elect. Power Syst. Res. doi: 10.1016/j.epsr.2011.09.004 contributor: fullname: Fatih Kucuktezcan C. – ident: CIT0007 doi: 10.1016/j.epsr.2004.10.004 – volume: 3541 volume-title: Lecture Notes in Computer Science year: 2005 ident: CIT0022 contributor: fullname: Lei H. S. – ident: CIT0032 doi: 10.1162/089976698300017467 – ident: CIT0024 doi: 10.1007/BF00337288 |
SSID | ssj0012992 |
Score | 1.9715545 |
Snippet | Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout.... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 534 |
SubjectTerms | Algorithms contingency Effectiveness Electric power feature extraction Neural networks performance index radial basis function neural network Simulation static security assessment |
Title | On-line Voltage and Power Flow Contingencies Ranking Using Enhanced Radial Basis Function Neural Network and Kernel Principal Component Analysis |
URI | https://www.tandfonline.com/doi/abs/10.1080/15325008.2011.647240 https://www.proquest.com/docview/926928764 https://search.proquest.com/docview/1038273925 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66J33wLs6pRPC12KW39NHLiiDM4Yb6Fto0QWG0snb4N_zJnpO0Y0P0QelTkyYpybnkJOd8h5CLyFVcAfEAf-sYDBSpnFi6PjAeC6QGqmEMg5PvxtHwhd8OECZnEcWPbpVoQ2sLFGFkNTJ3mlWtR9wlMCkobpdbAE7EP_fRaEfIbSDoSfK8uEYAWcssYCpYXNCijZ37oZMV3bSCXPpNUhv1k2z__8d3yFaz9aRXllZ2yZoq9sjmEiDhPvl8KBzslz6V0xokDYWh6AgTqdFkWn5QxLIy0VggESr6mJq8C9S4HdBB8Wq8CaAYg1HodVq9VTQBvYlrTxEFBEqH1u3cdHyvZoWa0pE974dKFE5lAWqQtlgpB2ScDCY3d06Ts8GRYLzVjpY6i1LN4XF1mLk5UyDapQxBmknNmQKLTcsMrDAv9rjZ4UV9vPvNtQwy75B0ChjniNAAquG72E895ef9mKd5luc81FkaeBl3u8Rp10q8W2AO0W_wTtt5FjjPws5zl_DlBRW1ORDRNnuJ8H5v2msXXzQcXomYhTFYm6HfJeeLWmBNvG9JC1XOK4HY87A7jFlw_PfBe2QD3ph1ezshnXo2V6dkvcrnZ4bWvwD03fxl |
link.rule.ids | 315,782,786,1455,1509,27935,27936,58024,59737,60526 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYKPQAHKC-xBVpX4hqRdR7rHHlstBWwRbCC3qzEsQXSKovIrvo3-pP7jb1BIFQOCOVmJ3Zke2b82TPfMHbQC400WDyQb5sBoGgTZDqMIXgi0RarRggKTh5c94a_5WmfaHKO2lgYcqskDG09UYTT1STcdBjdusQdQkphuUPpGTiJAD0Gav-MvXFE-GuU3z5dJEDbCk-ZCsyFT9rouf-08sI6veAufaWrnQHK1z7g17-w1fnukx_55bLOPpl6g6084yTcZH9_1QE1zG8m4ymUDUdf_JJyqfF8PPnDic7KBWRBKTT8qnCpF7jzPOD9-s45FKCY4lH4cdHcNzyH6aTp50QEgtKh9zx3DZ-Zx9qM-aU_8kcl6adJDUvIW7qULXad90cng2CetiHQwG_TwGpb9gor8YQ2LcNKGGh3rVMoNG2lMABtVpcAYlEWSbfJ63Xp-reyOimjbbZYo58dxhNU470sLiITV91MFlVZVTK1ZZFEpQw7LGgnSz14bg7VnVOetuOsaJyVH-cOk89nVE3dmYj1CUxU9Panu-3sq7mQNyoTaQbAmcYd9uOpFtJJVy5FbSazRhH9PDaImUi-vr_z72xpMLo4V-c_h2e7bBk1wnvB7bHF6ePM7LOFppp9cwv_H-j-AJs |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA6ugqwP6rorjreN4GvZTnqZ9NHLFEWZHVZZfQttmqAwdMTO4N_wJ_udZDooi_ug9C1pk5Jzy0nO-Q5jh73QSAPmgXzbDA6KNkGmwxiCJxJtwTVCUHLy2VVvcCtP-wSTM8_ip7BK8qGtB4pwupqE-6GybUTcLwgpDHcoPQAn4Z_HcNqXEgl7A46-zm_m9whQtsIjpsLlwidt8tw7o7wxTm-gS_9R1c7-5Guf__N1tjrbe_Ijzyzf2IKpN9jKK0TC7-z5dx3QuPzveDSBquGYig-pkhrPR-MnTmBWLh0LKqHhfwpXeIG7uAPer-9cOAGaKRuFHxfNfcNzGE4iPicYELQOfNy5G_jCPNZmxIf-wB-dpJ3GNewgb8FSfrCrvH99chbMijYEGt7bJLDalr3CSjyhTcuwEga6XesU6kxbKQxcNqtLuGFRFkm3xet16fK3sjopo022WGOeLcYTdOO9LC4iE1fdTBZVWVUytWWRRKUMOyxoaaUePDKH6s4AT9t1VrTOyq9zh8nXBFUTdyJiffkSFf3_052W-Gom4o3KRJrB3UzjDjuY90I26cKlqM142igCn8f2MBPJ9scn_8mWh6e5ujwfXOywr-gQPgRuly1OHqdmj31pqum-Y_sXum__MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-line+Voltage+and+Power+Flow+Contingencies+Ranking+Using+Enhanced+Radial+Basis+Function+Neural+Network+and+Kernel+Principal+Component+Analysis&rft.jtitle=Electric+power+components+and+systems&rft.au=Javan%2C+D.+Seyed&rft.au=Rajabi+Mashhadi%2C+H.&rft.au=Toussi%2C+S.+Ashkezari&rft.au=Rouhani%2C+M.&rft.date=2012-03-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=40&rft.issue=5&rft.spage=534&rft.epage=555&rft_id=info:doi/10.1080%2F15325008.2011.647240&rft.externalDocID=647240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon |