On-line Voltage and Power Flow Contingencies Ranking Using Enhanced Radial Basis Function Neural Network and Kernel Principal Component Analysis

Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the cont...

Full description

Saved in:
Bibliographic Details
Published in:Electric power components and systems Vol. 40; no. 5; pp. 534 - 555
Main Authors: Javan, D. Seyed, Rajabi Mashhadi, H., Toussi, S. Ashkezari, Rouhani, M.
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis Group 01-03-2012
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the contingencies expected to cause steady-state bus voltage and power flow violations. Hidden layer neurons have been selected with the proposed algorithm, which has the advantage of being able to automatically choose optimal centers and radii. The proposed radial basis function neural network based security assessment algorithm has very small training time and space in comparison with multi-layer perceptron neural networks, support vector machines, and other machine learning based algorithms. A feature extraction technique based on kernel principal component analysis has been employed to identify the relevant inputs for the neural network. Also, the proposed feature extraction algorithm has been compared with Fisher-like criterion, the class separability index, and the correlation coefficient technique. The competence of the proposed approaches has been demonstrated on IEEE 14-bus and IEEE 118-bus power systems. The simulation results show the effectiveness and the stability of the proposed scheme for on-line voltage and power flow contingencies ranking procedures of large-scale power systems.
AbstractList Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the contingencies expected to cause steady-state bus voltage and power flow violations. Hidden layer neurons have been selected with the proposed algorithm, which has the advantage of being able to automatically choose optimal centers and radii. The proposed radial basis function neural network based security assessment algorithm has very small training time and space in comparison with multi-layer perceptron neural networks, support vector machines, and other machine learning based algorithms. A feature extraction technique based on kernel principal component analysis has been employed to identify the relevant inputs for the neural network. Also, the proposed feature extraction algorithm has been compared with Fisher-like criterion, the class separability index, and the correlation coefficient technique. The competence of the proposed approaches has been demonstrated on IEEE 14-bus and IEEE 118-bus power systems. The simulation results show the effectiveness and the stability of the proposed scheme for on-line voltage and power flow contingencies ranking procedures of large-scale power systems.
Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout. This article presents an enhanced radial basis function neural network based on a modified training algorithm for on-line ranking of the contingencies expected to cause steady-state bus voltage and power flow violations. Hidden layer neurons have been selected with the proposed algorithm, which has the advantage of being able to automatically choose optimal centers and radii. The proposed radial basis function neural network based security assessment algorithm has very small training time and space in comparison with multi-layer perceptron neural networks, support vector machines, and other machine learning based algorithms. A feature extraction technique based on kernel principal component analysis has been employed to identify the relevant inputs for the neural network. Also, the proposed feature extraction algorithm has been compared with Fisher-like criterion, the class separability index, and the correlation coefficient technique. The competence of the proposed approaches has been demonstrated on IEEE 14-bus and IEEE 118-bus power systems. The simulation results show the effectiveness and the stability of the proposed scheme for on-line voltage and power flow contingencies ranking procedures of large-scale power systems. [PUBLICATION ABSTRACT]
Author Rajabi Mashhadi, H.
Toussi, S. Ashkezari
Rouhani, M.
Javan, D. Seyed
Author_xml – sequence: 1
  givenname: D. Seyed
  surname: Javan
  fullname: Javan, D. Seyed
  organization: Electrical Engineering Department , Ferdowsi University of Mashhad
– sequence: 2
  givenname: H.
  surname: Rajabi Mashhadi
  fullname: Rajabi Mashhadi, H.
  organization: Electrical Engineering Department , Ferdowsi University of Mashhad
– sequence: 3
  givenname: S. Ashkezari
  surname: Toussi
  fullname: Toussi, S. Ashkezari
  organization: Computer Engineering Department , Ferdowsi University of Mashhad
– sequence: 4
  givenname: M.
  surname: Rouhani
  fullname: Rouhani, M.
  organization: Islamic Azad University, Gonabad Branch
BookMark eNp9UctuFDEQtFCQSAJ_wMHixGWWtuflOaGwygIiSiJeV8vraQcn3vZiz2i1f8En42WBAwdkqe0uV5XsrjN2QpGQsecCFgIUvBJtLVsAtZAgxKJretnAI3Z6gKsWRHfy9wzqCTvL-R5AyGGQp-zHDVXBE_KvMUzmDrmhkd_GHSa-CnHHl5EmT3dI1mPmHw09lI5_yYd6Sd8MWRwLPHoT-BuTfearmezkI_FrnFNBr3HaxfTwy_gDJsLAb5MvfttyuYybbfkLTfyCTNgX_VP22JmQ8dnv_Zx9Wl1-Xr6rrm7evl9eXFVWKjlVzrp1b5wqC1y3hlEiGmttB0pZpyTKTji7FqKph1oBwND2opVDNzrbrutz9vLouk3x-4x50hufLYZgCOOctYBayb4eZFuoL_6h3sc5lddmPchukKrvmkJqjiSbYs4Jnd4mvzFpX5z0ISP9JyN9yEgfMyqy10eZJxfTxpRBhVFPZh9icqkM12dd_9fhJ1tkm2A
CitedBy_id crossref_primary_10_1016_j_neucom_2015_02_006
crossref_primary_10_1002_etep_2263
crossref_primary_10_1049_gtd2_12927
crossref_primary_10_1016_j_chemosphere_2012_11_062
crossref_primary_10_1108_COMPEL_01_2020_0031
crossref_primary_10_1016_j_neunet_2015_12_011
crossref_primary_10_1080_15325008_2012_749553
crossref_primary_10_1016_j_neucom_2016_07_046
crossref_primary_10_3390_en15155631
Cites_doi 10.1080/01431160701442070
10.1109/59.852118
10.1007/978-1-4757-1904-8
10.1109/3477.826944
10.1109/TNN.2007.911746
10.1049/iet-gtd.2010.0201
10.1049/ip-gtd:20045289
10.1049/iet-gtd:20060265
10.1080/15325000490441390
10.1109/TPWRS.2004.826018
10.1007/BF02287921
10.1109/MPAE.2004.1338120
10.1080/15325000600748855
10.1049/iet-gtd.2008.0374
10.1080/15325008.2010.492448
10.1109/TPWRD.2009.2035422
10.1016/j.ijepes.2009.06.011
10.1109/TPWRS.2009.2035507
10.1109/TPWRS.2009.2031224
10.1109/TSMCC.2010.2091630
10.1080/10543400903572720
10.1016/j.ijepes.2011.06.008
10.1049/iet-gtd.2010.0157
10.1016/j.patcog.2009.04.011
10.1109/72.977291
10.1016/j.eswa.2010.02.113
10.1016/j.epsr.2011.09.004
10.1016/j.epsr.2004.10.004
10.1162/089976698300017467
10.1007/BF00337288
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor & Francis Ltd. 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor & Francis Ltd. 2012
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
7QO
P64
DOI 10.1080/15325008.2011.647240
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-5016
EndPage 555
ExternalDocumentID 2605644371
10_1080_15325008_2011_647240
647240
Genre Original Articles
GroupedDBID .7F
.QJ
0BK
0R~
29G
2DF
30N
3YN
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
FYQZC
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NX~
O9-
PQEST
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TNC
TTHFI
TWF
UT5
UU3
V1K
ZGOLN
ZL0
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
ACTTO
ADUMR
AFION
AGVKY
AGWUF
AHDZW
ALRRR
BWMZZ
CAG
CITATION
COF
CYRSC
DAOYK
LJTGL
NUSFT
OPCYK
TBQAZ
TDBHL
TUROJ
7SP
7TB
8FD
FR3
KR7
L7M
7QO
P64
ID FETCH-LOGICAL-c282t-fcfb7af8f8f0f6b0d2eeaccc6088cf82e261fcb114393800095715296dfc5b3
IEDL.DBID TFW
ISSN 1532-5008
IngestDate Sat Oct 26 01:04:35 EDT 2024
Mon Nov 04 02:20:51 EST 2024
Fri Aug 23 00:38:23 EDT 2024
Tue Jun 13 19:30:38 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-fcfb7af8f8f0f6b0d2eeaccc6088cf82e261fcb114393800095715296dfc5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 926928764
PQPubID 52905
PageCount 22
ParticipantIDs proquest_journals_926928764
informaworld_taylorfrancis_310_1080_15325008_2011_647240
crossref_primary_10_1080_15325008_2011_647240
proquest_miscellaneous_1038273925
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Electric power components and systems
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0012
CIT0011
Jolliffe I. T. (CIT0031) 1986
Pearson K. (CIT0029) 1901; 6
Milano F. (CIT0034)
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
Lei H. S. (CIT0022) 2005; 3541
Schölkopf B. (CIT0033) 2002
CIT0021
CIT0020
CIT0001
CIT0023
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
Fatih Kucuktezcan C. (CIT0009) 2011; 83
CIT0026
CIT0007
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0025
  doi: 10.1080/01431160701442070
– ident: CIT0036
  doi: 10.1109/59.852118
– volume-title: Principal Component Analysis
  year: 1986
  ident: CIT0031
  doi: 10.1007/978-1-4757-1904-8
  contributor:
    fullname: Jolliffe I. T.
– ident: CIT0023
  doi: 10.1109/3477.826944
– ident: CIT0017
– ident: CIT0006
  doi: 10.1109/TNN.2007.911746
– ident: CIT0014
  doi: 10.1049/iet-gtd.2010.0201
– ident: CIT0002
  doi: 10.1049/ip-gtd:20045289
– volume: 6
  start-page: 559
  issue: 2
  year: 1901
  ident: CIT0029
  publication-title: Philosoph. Mag.
  contributor:
    fullname: Pearson K.
– ident: CIT0008
  doi: 10.1049/iet-gtd:20060265
– ident: CIT0011
  doi: 10.1080/15325000490441390
– ident: CIT0019
  doi: 10.1109/TPWRS.2004.826018
– volume-title: Learning with Kernels, Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2002
  ident: CIT0033
  contributor:
    fullname: Schölkopf B.
– ident: CIT0030
  doi: 10.1007/BF02287921
– ident: CIT0001
  doi: 10.1109/MPAE.2004.1338120
– ident: CIT0016
  doi: 10.1080/15325000600748855
– volume-title: “Matlab power system simulation package,”
  ident: CIT0034
  contributor:
    fullname: Milano F.
– ident: CIT0021
  doi: 10.1049/iet-gtd.2008.0374
– ident: CIT0003
  doi: 10.1080/15325008.2010.492448
– ident: CIT0012
  doi: 10.1109/TPWRD.2009.2035422
– ident: CIT0018
– ident: CIT0004
  doi: 10.1016/j.ijepes.2009.06.011
– ident: CIT0010
– ident: CIT0015
  doi: 10.1109/TPWRS.2009.2035507
– ident: CIT0037
  doi: 10.1109/TPWRS.2009.2031224
– ident: CIT0020
  doi: 10.1109/TSMCC.2010.2091630
– ident: CIT0026
  doi: 10.1080/10543400903572720
– ident: CIT0005
  doi: 10.1016/j.ijepes.2011.06.008
– ident: CIT0013
  doi: 10.1049/iet-gtd.2010.0157
– ident: CIT0027
  doi: 10.1016/j.patcog.2009.04.011
– ident: CIT0028
  doi: 10.1109/72.977291
– ident: CIT0035
  doi: 10.1016/j.eswa.2010.02.113
– volume: 83
  start-page: 1
  issue: 1
  year: 2011
  ident: CIT0009
  publication-title: Elect. Power Syst. Res.
  doi: 10.1016/j.epsr.2011.09.004
  contributor:
    fullname: Fatih Kucuktezcan C.
– ident: CIT0007
  doi: 10.1016/j.epsr.2004.10.004
– volume: 3541
  volume-title: Lecture Notes in Computer Science
  year: 2005
  ident: CIT0022
  contributor:
    fullname: Lei H. S.
– ident: CIT0032
  doi: 10.1162/089976698300017467
– ident: CIT0024
  doi: 10.1007/BF00337288
SSID ssj0012992
Score 1.9715545
Snippet Timely and accurate assessment of voltage and power flow security is necessary to detect post-contingency problems in order to prevent a large-scale blackout....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 534
SubjectTerms Algorithms
contingency
Effectiveness
Electric power
feature extraction
Neural networks
performance index
radial basis function neural network
Simulation
static security assessment
Title On-line Voltage and Power Flow Contingencies Ranking Using Enhanced Radial Basis Function Neural Network and Kernel Principal Component Analysis
URI https://www.tandfonline.com/doi/abs/10.1080/15325008.2011.647240
https://www.proquest.com/docview/926928764
https://search.proquest.com/docview/1038273925
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66J33wLs6pRPC12KW39NHLiiDM4Yb6Fto0QWG0snb4N_zJnpO0Y0P0QelTkyYpybnkJOd8h5CLyFVcAfEAf-sYDBSpnFi6PjAeC6QGqmEMg5PvxtHwhd8OECZnEcWPbpVoQ2sLFGFkNTJ3mlWtR9wlMCkobpdbAE7EP_fRaEfIbSDoSfK8uEYAWcssYCpYXNCijZ37oZMV3bSCXPpNUhv1k2z__8d3yFaz9aRXllZ2yZoq9sjmEiDhPvl8KBzslz6V0xokDYWh6AgTqdFkWn5QxLIy0VggESr6mJq8C9S4HdBB8Wq8CaAYg1HodVq9VTQBvYlrTxEFBEqH1u3cdHyvZoWa0pE974dKFE5lAWqQtlgpB2ScDCY3d06Ts8GRYLzVjpY6i1LN4XF1mLk5UyDapQxBmknNmQKLTcsMrDAv9rjZ4UV9vPvNtQwy75B0ChjniNAAquG72E895ef9mKd5luc81FkaeBl3u8Rp10q8W2AO0W_wTtt5FjjPws5zl_DlBRW1ORDRNnuJ8H5v2msXXzQcXomYhTFYm6HfJeeLWmBNvG9JC1XOK4HY87A7jFlw_PfBe2QD3ph1ezshnXo2V6dkvcrnZ4bWvwD03fxl
link.rule.ids 315,782,786,1455,1509,27935,27936,58024,59737,60526
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYKPQAHKC-xBVpX4hqRdR7rHHlstBWwRbCC3qzEsQXSKovIrvo3-pP7jb1BIFQOCOVmJ3Zke2b82TPfMHbQC400WDyQb5sBoGgTZDqMIXgi0RarRggKTh5c94a_5WmfaHKO2lgYcqskDG09UYTT1STcdBjdusQdQkphuUPpGTiJAD0Gav-MvXFE-GuU3z5dJEDbCk-ZCsyFT9rouf-08sI6veAufaWrnQHK1z7g17-w1fnukx_55bLOPpl6g6084yTcZH9_1QE1zG8m4ymUDUdf_JJyqfF8PPnDic7KBWRBKTT8qnCpF7jzPOD9-s45FKCY4lH4cdHcNzyH6aTp50QEgtKh9zx3DZ-Zx9qM-aU_8kcl6adJDUvIW7qULXad90cng2CetiHQwG_TwGpb9gor8YQ2LcNKGGh3rVMoNG2lMABtVpcAYlEWSbfJ63Xp-reyOimjbbZYo58dxhNU470sLiITV91MFlVZVTK1ZZFEpQw7LGgnSz14bg7VnVOetuOsaJyVH-cOk89nVE3dmYj1CUxU9Panu-3sq7mQNyoTaQbAmcYd9uOpFtJJVy5FbSazRhH9PDaImUi-vr_z72xpMLo4V-c_h2e7bBk1wnvB7bHF6ePM7LOFppp9cwv_H-j-AJs
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA6ugqwP6rorjreN4GvZTnqZ9NHLFEWZHVZZfQttmqAwdMTO4N_wJ_udZDooi_ug9C1pk5Jzy0nO-Q5jh73QSAPmgXzbDA6KNkGmwxiCJxJtwTVCUHLy2VVvcCtP-wSTM8_ip7BK8qGtB4pwupqE-6GybUTcLwgpDHcoPQAn4Z_HcNqXEgl7A46-zm_m9whQtsIjpsLlwidt8tw7o7wxTm-gS_9R1c7-5Guf__N1tjrbe_Ijzyzf2IKpN9jKK0TC7-z5dx3QuPzveDSBquGYig-pkhrPR-MnTmBWLh0LKqHhfwpXeIG7uAPer-9cOAGaKRuFHxfNfcNzGE4iPicYELQOfNy5G_jCPNZmxIf-wB-dpJ3GNewgb8FSfrCrvH99chbMijYEGt7bJLDalr3CSjyhTcuwEga6XesU6kxbKQxcNqtLuGFRFkm3xet16fK3sjopo022WGOeLcYTdOO9LC4iE1fdTBZVWVUytWWRRKUMOyxoaaUePDKH6s4AT9t1VrTOyq9zh8nXBFUTdyJiffkSFf3_052W-Gom4o3KRJrB3UzjDjuY90I26cKlqM142igCn8f2MBPJ9scn_8mWh6e5ujwfXOywr-gQPgRuly1OHqdmj31pqum-Y_sXum__MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-line+Voltage+and+Power+Flow+Contingencies+Ranking+Using+Enhanced+Radial+Basis+Function+Neural+Network+and+Kernel+Principal+Component+Analysis&rft.jtitle=Electric+power+components+and+systems&rft.au=Javan%2C+D.+Seyed&rft.au=Rajabi+Mashhadi%2C+H.&rft.au=Toussi%2C+S.+Ashkezari&rft.au=Rouhani%2C+M.&rft.date=2012-03-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=40&rft.issue=5&rft.spage=534&rft.epage=555&rft_id=info:doi/10.1080%2F15325008.2011.647240&rft.externalDocID=647240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon