Characteristics of products of thermal and catalytic cracking of heavy oil asphaltenes under supercritical water conditions
This work deals with the reactivity and structural changes of asphaltenes during cracking in supercritical water using water-soluble salts Co and Ni. Cracking of the asphaltenes was carried out in an autoclave with a volume of 12 cm3 at a temperature of 450 °C, the process time was 80 min and the pr...
Saved in:
Published in: | The Journal of supercritical fluids Vol. 192; p. 105784 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This work deals with the reactivity and structural changes of asphaltenes during cracking in supercritical water using water-soluble salts Co and Ni. Cracking of the asphaltenes was carried out in an autoclave with a volume of 12 cm3 at a temperature of 450 °C, the process time was 80 min and the pressure was ≈ 29–30,8 MPa. The reactivity and structural changes of the asphaltenes were evaluated based on the yield and composition of the products (gas, maltenes, and coke) and the characteristics of the residual asphaltenes obtained by the method of structural group analysis based on elemental analysis, the values of molecular weight and 1H nuclear magnetic resonance (1H NMR), and XRD. Under supercritical water conditions, coke formation reactions are slowed down, with increasing diameter of the carbon stack structure. It is found out that the cobalt-containing catalyst promotes the formation of additional amounts of lower molecular weight components, i.e. maltenes and gas. In this case, the structure of secondary asphaltenes refers to the "island", and the number of packs and the total height in the asphaltene cluster increase.
[Display omitted]
•Transformation of medium asphaltene molecules into SCW in the presence of Ni and Co catalysts was studied.•The conversion of asphaltenes to SCW with cobalt is more intense.•The use of a Co-containing catalyst made it possible to obtain up to 65 % of light components from asphaltenes in SCW.•In the presence of Co-containing catalyst the structure asphaltenes consists of one block and refers to the "island".•XRD analysis method in the structure asphaltenes the number of packs and the total height in the asphaltene cluster increase. |
---|---|
AbstractList | This work deals with the reactivity and structural changes of asphaltenes during cracking in supercritical water using water-soluble salts Co and Ni. Cracking of the asphaltenes was carried out in an autoclave with a volume of 12 cm3 at a temperature of 450 °C, the process time was 80 min and the pressure was ≈ 29–30,8 MPa. The reactivity and structural changes of the asphaltenes were evaluated based on the yield and composition of the products (gas, maltenes, and coke) and the characteristics of the residual asphaltenes obtained by the method of structural group analysis based on elemental analysis, the values of molecular weight and 1H nuclear magnetic resonance (1H NMR), and XRD. Under supercritical water conditions, coke formation reactions are slowed down, with increasing diameter of the carbon stack structure. It is found out that the cobalt-containing catalyst promotes the formation of additional amounts of lower molecular weight components, i.e. maltenes and gas. In this case, the structure of secondary asphaltenes refers to the "island", and the number of packs and the total height in the asphaltene cluster increase.
[Display omitted]
•Transformation of medium asphaltene molecules into SCW in the presence of Ni and Co catalysts was studied.•The conversion of asphaltenes to SCW with cobalt is more intense.•The use of a Co-containing catalyst made it possible to obtain up to 65 % of light components from asphaltenes in SCW.•In the presence of Co-containing catalyst the structure asphaltenes consists of one block and refers to the "island".•XRD analysis method in the structure asphaltenes the number of packs and the total height in the asphaltene cluster increase. |
ArticleNumber | 105784 |
Author | Sviridenko, Nikita N. Akimov, Akim S. |
Author_xml | – sequence: 1 givenname: Nikita N. surname: Sviridenko fullname: Sviridenko, Nikita N. email: nikita26sviridenko@gmail.com – sequence: 2 givenname: Akim S. surname: Akimov fullname: Akimov, Akim S. |
BookMark | eNp9kM1OwzAQhC1UJFrgDTj4BVL8l8S5IKGKP6kSFzhbrr0hLqld2UlRxcvjEs6cdjWab3Y1CzTzwQNCN5QsKaHV7XaZxn3bj0tGGMtSWUtxhuZU1qyQtGIzNCeyqQopRHWBFiltCSEloXyOvledjtoMEF0anEk4tHgfgx3N8LsPHcSd7rH2Fhs96P6YXdhk5NP5j5OjA3044uCyJ-073Q_gIeHRW4g4vwXRRJeZnPGl8xlsgrdZCD5dofNW9wmu_-Ylen98eFs9F-vXp5fV_bowTLKhsKZuNC-F5bSmjQHZlrIVDWOGSsllqQ3QmvNNW2elajjlhGgtQDPWNnwj-CUSU66JIaUIrdpHt9PxqChRpwLVVk0FqlOBaiowY3cTBvm3g4OoknHgDVgXwQzKBvd_wA_wMYB7 |
CitedBy_id | crossref_primary_10_1080_10916466_2023_2224825 crossref_primary_10_1021_acs_energyfuels_3c00643 crossref_primary_10_3390_molecules29051135 crossref_primary_10_1021_acs_iecr_4c00214 crossref_primary_10_5564_bicct_v11i11_3284 crossref_primary_10_3103_S0361521924020083 crossref_primary_10_31857_S0028242123030097 crossref_primary_10_1016_j_fuel_2023_129891 crossref_primary_10_1016_j_jaap_2024_106490 crossref_primary_10_1021_acs_energyfuels_4c01414 crossref_primary_10_18412_1816_0387_2024_2_59_65 crossref_primary_10_1016_j_geoen_2024_212907 crossref_primary_10_1007_s42250_024_01002_4 crossref_primary_10_1134_S0965544123050018 |
Cites_doi | 10.1016/j.supflu.2012.04.017 10.1016/j.carbon.2017.12.106 10.1021/acs.iecr.6b02323 10.1016/j.apcatb.2018.02.030 10.1021/acs.energyfuels.7b01630 10.1016/j.cherd.2014.06.007 10.1016/j.supflu.2015.12.014 10.1016/j.supflu.2016.03.023 10.1016/j.supflu.2014.01.016 10.1021/ef301444j 10.1016/S0926-860X(00)00693-1 10.1021/acs.energyfuels.5b01664 10.1021/acs.iecr.8b05696 10.1016/j.biortech.2014.10.125 10.1016/j.fuel.2020.118331 10.1016/j.supflu.2019.104569 10.1016/j.fuel.2020.117618 10.1016/j.fuel.2021.122702 10.1627/jpi.51.309 10.3390/en8088962 10.1016/j.supflu.2010.08.009 10.1016/j.jaap.2018.11.002 10.1016/j.molstruc.2020.128605 10.1021/acs.energyfuels.9b00285 10.1016/j.fuproc.2016.06.007 10.1134/S0965544120020103 10.1016/j.ces.2015.05.017 10.1016/j.supflu.2015.07.034 10.1016/j.fuel.2020.118957 10.1016/j.fuel.2021.122914 10.3390/ma3073794 10.1021/acs.energyfuels.8b04318 10.1016/0016-2361(83)90170-9 10.3390/pr9010127 10.1021/ef0497560 10.1021/ef400855k 10.1016/j.fuel.2011.06.067 10.1016/j.cattod.2018.10.019 10.1016/j.fuproc.2019.106239 10.1016/j.fuel.2018.03.098 10.1016/j.carbon.2016.08.031 10.1016/j.supflu.2016.01.020 10.1016/j.supflu.2014.11.014 10.1021/acs.energyfuels.5b01558 10.3390/catal11020189 10.3390/catal12101154 10.1016/j.fuproc.2013.08.007 10.1016/j.fuel.2020.118753 10.1021/acs.energyfuels.1c01495 10.1016/j.jtice.2020.06.018 10.1016/j.fuel.2015.06.027 10.3103/S0361521922020070 10.1021/acs.energyfuels.6b03135 10.1021/ef300499j 10.1134/S0965544121090061 10.1016/j.colsurfa.2019.03.059 10.1016/j.ces.2016.02.032 10.1016/j.petrol.2018.04.061 10.1002/anie.200462468 10.1021/ef1005385 10.1021/acs.energyfuels.7b02873 10.1016/j.fuel.2018.08.035 10.1021/ef900132z 10.1016/j.fuel.2014.11.002 10.1016/j.fuel.2017.04.139 10.1016/j.fuproc.2012.07.032 10.1016/j.cej.2019.123004 10.1016/j.supflu.2010.07.010 10.1016/j.supflu.2015.02.013 10.1016/j.supflu.2015.08.004 10.1016/j.fuproc.2015.10.032 10.1016/j.cattod.2018.10.066 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.supflu.2022.105784 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1872-8162 |
ExternalDocumentID | 10_1016_j_supflu_2022_105784 S0896844622002674 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ H~9 IHE J1W KOM M35 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSM SSZ T5K VH1 WUQ XPP ZY4 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c282t-dc79a354d31719ce8f58f4922c188385ace1733bf72c16931300aa4ea22f93b43 |
ISSN | 0896-8446 |
IngestDate | Thu Sep 26 16:44:44 EDT 2024 Fri Feb 23 02:38:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Asphaltenes XRD Structural transformations Supercritical water Disperse catalysts |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c282t-dc79a354d31719ce8f58f4922c188385ace1733bf72c16931300aa4ea22f93b43 |
OpenAccessLink | https://doi.org/10.1016/j.supflu.2022.105784 |
ParticipantIDs | crossref_primary_10_1016_j_supflu_2022_105784 elsevier_sciencedirect_doi_10_1016_j_supflu_2022_105784 |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | The Journal of supercritical fluids |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Zhang, Zhang, Chen, Ma, Xiao (bib11) 2020; 278 Hosseinpour, Ahmadi, Fatemi (bib35) 2015; 100 Ayala, Hernandez-Lopez, Perezgasga, Vazquez-Duhalt (bib5) 2012; 92 Vakhin, Aliev, Mukhamatdinov, Sitnov, Kudryashov, Afanasiev, Petrashov, Nurgaliev (bib64) 2021; 11 Foss, Petrukhina, Kayukova, Amerkhanov, Romanov, Ganeeva (bib44) 2018; 169 Cheng, Ding, Zhao, Yuan, Yuan (bib24) 2009; 23 Suwaid, Varfolomeev, Al-muntaser, Yuan, Starshinova, Zinnatullin, Vagizov, Rakhmatullin, Emelianov, Chemodanov (bib72) 2020; 281 Mironov, Milordov, Tazeeva, Tazeev, Abilova, Yakubova, Yakubov (bib2) 2021; 35 Qian, Wang, Xu, Guo, Tang, Wang (bib46) 2015; 176 Al-muntaser, Varfolomeev, Suwaid, Feoktistov, Yuan, Klimovitskii, Gareev, Djimasbe, Nurgaliev, Kudryashov, Egorova, Fomkin, Petrashov, Afanasiev, Fedorchenko (bib18) 2021; 283 Liu, Bai, Zhu, Yuan, Cheng, Yuan (bib23) 2013; 106 Suwaid, Varfolomeev, Al-Muntaser, Abdaljalil, Djimasbe, Rodionov, Zinnatullin, Vagizov (bib43) 2022; 312 Antipenko, Grinko (bib3) 2021; 332 Hosseinpour, Fatemi, Ahmadi, Oshima, Morimoto, Akizuki (bib31) 2018; 225 Tan, Zhu, Liu, Ma, Yuan, Cheng, Yuan (bib26) 2014; 118 Du, Deng, Li, Li, Du, Zhang, Yang, Sun, Cao (bib66) 2017; 203 Li, Yan, Xiao (bib27) 2015; 8 Urazov, Sviridenko, Iovik, Kolobova, Grabchenko, Kurzina, Mukhamatdinov (bib65) 2022; 12 Fedyaeva, Vostrikov (bib14) 2016; 111 Sun, Yang, Zhao, Shan, Shen (bib55) 2010; 24 Li, Yan, Xiao (bib29) 2015; 134 Bava, Geronés, Buceta, Rodríguez, López-Quintela, Erben (bib58) 2019; 33 Voronetskaya, Pevneva, Korneev, Golovko (bib6) 2020; 60 Canıaz, Arca, Yasar, Erkey (bib1) 2019; 152 And, Argillier, Langevin, Perez (bib47) 2005; 19 Goncharov, Krivtsov (bib45) 2021; 61 Maity, Kumar, Srivastava, Kharola, Maurya, Konathala, Chatterjee, Garg (bib59) 2015; 149 Zhong, Mao, Zhang, Xiang, Xiao, Mathews (bib69) 2018; 129 Yeletsky, Reina, Bulavchenko, Saraev, Gerasimov, Zaikina, Bermúdez, Arcelus-Arrillaga, Yakovlev, Millan (bib16) 2019; 329 Hemmati-Sarapardeh, Ameli, Ahmadi, Dabir, Mohammadi, Esfahanizadeh (bib62) 2020; 1220 Yeletsky, Zaikina, Sosnin, Kukushkin, Yakovlev (bib48) 2020; 199 Cheshkova, Sergun, Kovalenko, Gerasimova, Sagachenko, Min (bib4) 2019; 33 Aliev, Mukhamatdinov, Sitnov, Ziganshina, Onishchenko, Sharifullin, Vakhin (bib42) 2021; 9 Nguyen, Kang, Lee, Kim, Park, Park (bib57) 2019; 235 Corma, Martı́nez, Ketley, Blair (bib51) 2001; 208 Hosseinpour, Soltani, Noofeli, Nathwani (bib9) 2020; 271 Kozhevnikov, Nuzhdin, Martyanov (bib10) 2010; 55 Liu, Xu, Tan, Yuan, Cheng, Yuan (bib33) 2017; 31 Gai, Arano, Lu, Mao, Yoneyama, Lu, Yang, Tsubaki (bib36) 2016; 142 Fedyaeva, Antipenko, Vostrikov (bib13) 2014; 88 Chibiryaev, Kozhevnikov, Martyanov (bib54) 2019; 329 Zhu, Liu, Tan, Yang, Yuan, Cheng, Yuan (bib28) 2015; 29 Caputo, Loise, Crispini, Sangiorgi, Scarpelli, Rossi (bib60) 2019; 571 Shao, Shen, Li, Sun, Pei, Liu, Li, Dan (bib61) 2018; 136 Djimasbe, Varfolomeev, Al-Muntaser, Yuan, Feoktistov, Suwaid, Kirgizov, Davletshin, Zinnatullin, Fatou, Galeev, Rakhmatullin, Kwofie, Klochkov, Prochukhan (bib63) 2022; 313 Wen, Wang, Xu, Gao (bib52) 2012; 26 Chacón-Patiño, Rowland, Rodgers (bib56) 2017; 31 Dejhosseini, Aida, Watanabe, Takami, Hojo, Aoki, Arita, Kishita, Adschiri (bib37) 2013; 27 Caniaz, Erkey (bib38) 2014; 92 Jin, Liu, Wei, Zhang, Cheng, Guo (bib20) 2015; 29 Kokubo, Nishida, Hayashi, Takahashi, Yokota, Inage (bib25) 2008; 51 Golmohammadi, Towfighi, Hosseinpour, Ahmadi (bib50) 2016; 107 Li, Yan, Zhang, Quan, Hu, Xiao (bib34) 2015; 97 Okolo, Neomagus, Everson, Roberts, Bunt, Sakurovs, Mathews (bib68) 2015; 158 Golmohammadi, Ahmadi, Towfighi (bib15) 2016; 113 Morimoto, Sato, Takanohashi (bib41) 2012; 68 Hayashi, Hakuta (bib49) 2010; 3 Li, Chen, An, Chen (bib71) 2016; 153 Sviridenko, Golovko, Kirik, Anshitz (bib8) 2020; 112 Chen, Wang, Yang, Yuan, Cheng, Yuan (bib53) 2016; 55 Hosseinpour, Fatemi, Ahmadi, Morimoto, Akizuki, Oshima, Fumoto (bib12) 2018; 230 Xin, Liu, Wang, Chen, Yuan, Cheng, Yuan (bib19) 2016; 146 Loeh, Badaczewski, Faber, Hintner, Bertino, Mueller, Metz, Smarsly (bib67) 2016; 109 Zhang, Wang, Ren, Lu, Chen, Zhang (bib17) 2019; 58 Weingärtner, Franck (bib21) 2005; 44 Chibiryaev, Kozhevnikov, Shalygin, Martyanov (bib30) 2018; 32 Sato, Mori, Watanabe, Sasaki, Itoh (bib39) 2010; 55 Tan, Yang, Gao, Cheng, Liu, Liu, Shen (bib73) 2020; 382 Clark, Hyne, Tyrer (bib70) 1983; 62 Hosseinpour, Fatemi, Ahmadi (bib40) 2016; 110 Nal’gieva, Kopytov (bib7) 2022; 56 Sato, Tomita, Trung, Itoh, Sato, Takanohashi (bib32) 2013; 27 Hosseinpour, Ahmadi, Fatemi (bib22) 2016; 107 Li (10.1016/j.supflu.2022.105784_bib11) 2020; 278 Ayala (10.1016/j.supflu.2022.105784_bib5) 2012; 92 Fedyaeva (10.1016/j.supflu.2022.105784_bib13) 2014; 88 Al-muntaser (10.1016/j.supflu.2022.105784_bib18) 2021; 283 Chen (10.1016/j.supflu.2022.105784_bib53) 2016; 55 Li (10.1016/j.supflu.2022.105784_bib71) 2016; 153 Caputo (10.1016/j.supflu.2022.105784_bib60) 2019; 571 Hosseinpour (10.1016/j.supflu.2022.105784_bib40) 2016; 110 Hemmati-Sarapardeh (10.1016/j.supflu.2022.105784_bib62) 2020; 1220 Clark (10.1016/j.supflu.2022.105784_bib70) 1983; 62 Cheshkova (10.1016/j.supflu.2022.105784_bib4) 2019; 33 Yeletsky (10.1016/j.supflu.2022.105784_bib16) 2019; 329 Suwaid (10.1016/j.supflu.2022.105784_bib43) 2022; 312 And (10.1016/j.supflu.2022.105784_bib47) 2005; 19 Djimasbe (10.1016/j.supflu.2022.105784_bib63) 2022; 313 Loeh (10.1016/j.supflu.2022.105784_bib67) 2016; 109 Vakhin (10.1016/j.supflu.2022.105784_bib64) 2021; 11 Golmohammadi (10.1016/j.supflu.2022.105784_bib15) 2016; 113 Maity (10.1016/j.supflu.2022.105784_bib59) 2015; 149 Li (10.1016/j.supflu.2022.105784_bib34) 2015; 97 Sun (10.1016/j.supflu.2022.105784_bib55) 2010; 24 Jin (10.1016/j.supflu.2022.105784_bib20) 2015; 29 Bava (10.1016/j.supflu.2022.105784_bib58) 2019; 33 Yeletsky (10.1016/j.supflu.2022.105784_bib48) 2020; 199 Tan (10.1016/j.supflu.2022.105784_bib73) 2020; 382 Golmohammadi (10.1016/j.supflu.2022.105784_bib50) 2016; 107 Fedyaeva (10.1016/j.supflu.2022.105784_bib14) 2016; 111 Morimoto (10.1016/j.supflu.2022.105784_bib41) 2012; 68 Liu (10.1016/j.supflu.2022.105784_bib23) 2013; 106 Canıaz (10.1016/j.supflu.2022.105784_bib1) 2019; 152 Zhang (10.1016/j.supflu.2022.105784_bib17) 2019; 58 Hosseinpour (10.1016/j.supflu.2022.105784_bib31) 2018; 225 Gai (10.1016/j.supflu.2022.105784_bib36) 2016; 142 Mironov (10.1016/j.supflu.2022.105784_bib2) 2021; 35 Sato (10.1016/j.supflu.2022.105784_bib39) 2010; 55 Kokubo (10.1016/j.supflu.2022.105784_bib25) 2008; 51 Tan (10.1016/j.supflu.2022.105784_bib26) 2014; 118 Hosseinpour (10.1016/j.supflu.2022.105784_bib12) 2018; 230 Du (10.1016/j.supflu.2022.105784_bib66) 2017; 203 Caniaz (10.1016/j.supflu.2022.105784_bib38) 2014; 92 Urazov (10.1016/j.supflu.2022.105784_bib65) 2022; 12 Voronetskaya (10.1016/j.supflu.2022.105784_bib6) 2020; 60 Liu (10.1016/j.supflu.2022.105784_bib33) 2017; 31 Chacón-Patiño (10.1016/j.supflu.2022.105784_bib56) 2017; 31 Foss (10.1016/j.supflu.2022.105784_bib44) 2018; 169 Hosseinpour (10.1016/j.supflu.2022.105784_bib22) 2016; 107 Xin (10.1016/j.supflu.2022.105784_bib19) 2016; 146 Chibiryaev (10.1016/j.supflu.2022.105784_bib54) 2019; 329 Sviridenko (10.1016/j.supflu.2022.105784_bib8) 2020; 112 Li (10.1016/j.supflu.2022.105784_bib27) 2015; 8 Nal’gieva (10.1016/j.supflu.2022.105784_bib7) 2022; 56 Weingärtner (10.1016/j.supflu.2022.105784_bib21) 2005; 44 Aliev (10.1016/j.supflu.2022.105784_bib42) 2021; 9 Qian (10.1016/j.supflu.2022.105784_bib46) 2015; 176 Hayashi (10.1016/j.supflu.2022.105784_bib49) 2010; 3 Hosseinpour (10.1016/j.supflu.2022.105784_bib9) 2020; 271 Chibiryaev (10.1016/j.supflu.2022.105784_bib30) 2018; 32 Hosseinpour (10.1016/j.supflu.2022.105784_bib35) 2015; 100 Antipenko (10.1016/j.supflu.2022.105784_bib3) 2021; 332 Zhu (10.1016/j.supflu.2022.105784_bib28) 2015; 29 Shao (10.1016/j.supflu.2022.105784_bib61) 2018; 136 Goncharov (10.1016/j.supflu.2022.105784_bib45) 2021; 61 Corma (10.1016/j.supflu.2022.105784_bib51) 2001; 208 Sato (10.1016/j.supflu.2022.105784_bib32) 2013; 27 Dejhosseini (10.1016/j.supflu.2022.105784_bib37) 2013; 27 Suwaid (10.1016/j.supflu.2022.105784_bib72) 2020; 281 Okolo (10.1016/j.supflu.2022.105784_bib68) 2015; 158 Zhong (10.1016/j.supflu.2022.105784_bib69) 2018; 129 Wen (10.1016/j.supflu.2022.105784_bib52) 2012; 26 Kozhevnikov (10.1016/j.supflu.2022.105784_bib10) 2010; 55 Li (10.1016/j.supflu.2022.105784_bib29) 2015; 134 Nguyen (10.1016/j.supflu.2022.105784_bib57) 2019; 235 Cheng (10.1016/j.supflu.2022.105784_bib24) 2009; 23 |
References_xml | – volume: 11 start-page: 189 year: 2021 ident: bib64 article-title: Extra-heavy oil aquathermolysis using nickel-based catalyst: some aspects of in-situ transformation of catalyst precursor publication-title: Catalysts contributor: fullname: Nurgaliev – volume: 271 year: 2020 ident: bib9 article-title: An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM) publication-title: Fuel contributor: fullname: Nathwani – volume: 107 start-page: 278 year: 2016 end-page: 285 ident: bib22 article-title: Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part I: non-catalytic cracking publication-title: J. Supercrit. Fluids contributor: fullname: Fatemi – volume: 8 start-page: 8962 year: 2015 end-page: 8989 ident: bib27 article-title: A review of laboratory-scale research on upgrading heavy oil in supercritical water publication-title: Energies contributor: fullname: Xiao – volume: 55 start-page: 232 year: 2010 end-page: 240 ident: bib39 article-title: Upgrading of bitumen with formic acid in supercritical water publication-title: J. Supercrit. Fluid contributor: fullname: Itoh – volume: 68 start-page: 113 year: 2012 end-page: 116 ident: bib41 article-title: Effect of water properties on the degradative extraction of asphaltene using supercritical water publication-title: J. Supercrit. Fluids contributor: fullname: Takanohashi – volume: 112 start-page: 97 year: 2020 end-page: 105 ident: bib8 article-title: Upgrading of heavy crude oil by thermal and catalytic cracking in the presence of NiCr/WC catalyst publication-title: J. Taiwan Inst. Chem. Eng. contributor: fullname: Anshitz – volume: 142 start-page: 315 year: 2016 end-page: 318 ident: bib36 article-title: Catalytic bitumen cracking in sub-and supercritical water publication-title: Fuel Process. Technol. contributor: fullname: Tsubaki – volume: 153 start-page: 94 year: 2016 end-page: 100 ident: bib71 article-title: Catalytic aquathermolysis of super-heavy oil: cleavage of C publication-title: Fuel Process Technol. contributor: fullname: Chen – volume: 55 start-page: 217 year: 2010 end-page: 222 ident: bib10 article-title: Transformation of petroleum asphaltenes in supercritical water publication-title: J. Supercrit. Fluids contributor: fullname: Martyanov – volume: 199 year: 2020 ident: bib48 article-title: Heavy oil cracking in the presence of steam and nanodispersed catalysts based on different metals publication-title: Fuel Process. Technol. contributor: fullname: Yakovlev – volume: 571 start-page: 50 year: 2019 end-page: 54 ident: bib60 article-title: The efficiency of bitumen rejuvenator investigated through Powder X-ray Diffraction (PXRD) analysis and T2-NMR spectroscopy publication-title: Colloids Surf. A contributor: fullname: Rossi – volume: 312 year: 2022 ident: bib43 article-title: Using the oil-soluble copper-based catalysts with different organic ligands for in-situ catalytic upgrading of heavy oil publication-title: Fuel contributor: fullname: Vagizov – volume: 158 start-page: 779 year: 2015 end-page: 792 ident: bib68 article-title: Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state publication-title: Fuel contributor: fullname: Mathews – volume: 129 start-page: 790 year: 2018 end-page: 802 ident: bib69 article-title: Structural features of Qingdao petroleum coke from HRTEM lattice fringes: distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation publication-title: Carbon contributor: fullname: Mathews – volume: 278 year: 2020 ident: bib11 article-title: Reactivity and structural changes of asphaltene during the supercritical water upgrading process publication-title: Fuel contributor: fullname: Xiao – volume: 329 start-page: 197 year: 2019 end-page: 205 ident: bib16 article-title: Phenanthrene catalytic cracking in supercritical water: effect of the reaction medium on NiMo/SiO publication-title: Catal. Today contributor: fullname: Millan – volume: 24 start-page: 5008 year: 2010 end-page: 5011 ident: bib55 article-title: Influence of asphaltene on the residue hydrotreating reaction publication-title: Energy Fuels contributor: fullname: Shen – volume: 29 start-page: 6342 year: 2015 end-page: 6346 ident: bib20 article-title: Experimental investigation on hydrogen production by anthracene gasification in supercritical water publication-title: Energy Fuels contributor: fullname: Guo – volume: 26 start-page: 3201 year: 2012 end-page: 3211 ident: bib52 article-title: Study on in situ sulfur removal from gasoline in fluid catalytic cracking process publication-title: Energy Fuels contributor: fullname: Gao – volume: 32 start-page: 2117 year: 2018 end-page: 2127 ident: bib30 article-title: Transformation of petroleum asphaltenes in supercritical alcohols studied via FTIR and NMR techniques publication-title: Energy Fuels contributor: fullname: Martyanov – volume: 100 start-page: 70 year: 2015 end-page: 78 ident: bib35 article-title: Successive co-operation of supercritical water and silica-supported iron oxide nanoparticles in upgrading of heavy petroleum residue: Suppression of coke deposition over catalyst publication-title: J. Supercrit. Fluids contributor: fullname: Fatemi – volume: 203 start-page: 352 year: 2017 end-page: 359 ident: bib66 article-title: Structural and compositional evolution of coal tar toluene insoluble during slurry-phase hydrocracking publication-title: Fuel contributor: fullname: Cao – volume: 9 start-page: 127 year: 2021 ident: bib42 article-title: In-situ heavy oil aquathermolysis in the presence of nanodispersed catalysts based on transition metals publication-title: Processes contributor: fullname: Vakhin – volume: 169 start-page: 269 year: 2018 end-page: 276 ident: bib44 article-title: Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates publication-title: J. Pet. Sci. Eng. contributor: fullname: Ganeeva – volume: 281 year: 2020 ident: bib72 article-title: In-situ catalytic upgrading of heavy oil using oil-soluble transition metal-based catalysts publication-title: Fuel contributor: fullname: Chemodanov – volume: 235 start-page: 677 year: 2019 end-page: 686 ident: bib57 article-title: Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene publication-title: Fuel contributor: fullname: Park – volume: 55 start-page: 9578 year: 2016 end-page: 9585 ident: bib53 article-title: Dealkylation of aromatics in subcritical and supercritical water: involvement of carbonium mechanism publication-title: Ind. Eng. Chem. Res. contributor: fullname: Yuan – volume: 283 year: 2021 ident: bib18 article-title: Hydrogen donating capacity of water in catalytic and non-catalytic aquathermolysis of extra-heavy oil: deuterium tracing study publication-title: Fuel contributor: fullname: Fedorchenko – volume: 33 start-page: 2950 year: 2019 end-page: 2960 ident: bib58 article-title: Elucidation of the average molecular structure of argentinian asphaltenes publication-title: Energy Fuels contributor: fullname: Erben – volume: 35 start-page: 14527 year: 2021 end-page: 14541 ident: bib2 article-title: Impact of asphaltenes on the adsorption behavior of petroleum vanadyl porphyrins: kinetic and thermodynamic aspects publication-title: Energy Fuels contributor: fullname: Yakubov – volume: 19 start-page: 1337 year: 2005 end-page: 1341 ident: bib47 article-title: Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil–water interface publication-title: Energy Fuels contributor: fullname: Perez – volume: 51 start-page: 309 year: 2008 end-page: 314 ident: bib25 article-title: Effective demetalization and suppression of coke formation using supercritical water technology for heavy oil upgrading publication-title: J. Jpn Pet. Inst. contributor: fullname: Inage – volume: 1220 year: 2020 ident: bib62 article-title: Effect of asphaltene structure on its aggregation behavior in toluene-normal alkane mixtures publication-title: J. Mol. Struct. contributor: fullname: Esfahanizadeh – volume: 27 start-page: 646 year: 2013 end-page: 653 ident: bib32 article-title: Upgrading of bitumen in the presence of hydrogen and carbon dioxide in supercritical water publication-title: Energy Fuels contributor: fullname: Takanohashi – volume: 136 start-page: 44 year: 2018 end-page: 52 ident: bib61 article-title: Investigation on composition and structure of asphaltenes during low-temperature coal tar hydrotreatment under various reaction pressures publication-title: J. Anal. Appl. Pyrolysis contributor: fullname: Dan – volume: 109 start-page: 823 year: 2016 end-page: 835 ident: bib67 article-title: Analysis of thermally induced changes in the structure of coal tar pitches by an advanced evaluation method of X-ray scattering data publication-title: Carbon contributor: fullname: Smarsly – volume: 111 start-page: 121 year: 2016 end-page: 128 ident: bib14 article-title: The products of heavy sulfur-rich oil conversion in a counter supercritical water flow and their desulfurization by ZnO nanoparticles publication-title: J. Supercrit. Fluids contributor: fullname: Vostrikov – volume: 329 start-page: 177 year: 2019 end-page: 186 ident: bib54 article-title: Transformation of petroleum asphaltenes in supercritical alcohols—a tool to change H/C ratio and remove S and N atoms from refined products publication-title: Catal. Today contributor: fullname: Martyanov – volume: 176 start-page: 218 year: 2015 end-page: 224 ident: bib46 article-title: Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation publication-title: Bioresour. Technol. contributor: fullname: Wang – volume: 149 start-page: 8 year: 2015 end-page: 14 ident: bib59 article-title: Characterization of asphaltenic material obtained by treating of vacuum residue with different reactive molecules publication-title: Fuel contributor: fullname: Garg – volume: 225 start-page: 161 year: 2018 end-page: 173 ident: bib31 article-title: Isotope tracing study on hydrogen donating capability of supercritical water assisted by formic acid to upgrade heavy oil: computer simulation vs. experiment publication-title: Fuel contributor: fullname: Akizuki – volume: 31 start-page: 3620 year: 2017 end-page: 3628 ident: bib33 article-title: Pyrolysis of asphaltenes in subcritical and supercritical water: influence of H-donation from hydrocarbon surroundings publication-title: Energy Fuels contributor: fullname: Yuan – volume: 61 start-page: 1071 year: 2021 end-page: 1078 ident: bib45 article-title: Changes in the structure of the high-molecular-weight components of a high-sulfur vacuum residue in the initiated cracking process publication-title: Pet. Chem. contributor: fullname: Krivtsov – volume: 230 start-page: 91 year: 2018 end-page: 101 ident: bib12 article-title: The synergistic effect between supercritical water and redox properties of iron oxide nanoparticles for in-situ catalytic upgrading heavy oil with formic acid. Isotopic study publication-title: Appl. Catal. B contributor: fullname: Fumoto – volume: 27 start-page: 4624 year: 2013 end-page: 4631 ident: bib37 article-title: Catalytic cracking reaction of heavy oil in the presence of cerium oxide nanoparticles in supercritical water publication-title: Energy Fuels contributor: fullname: Adschiri – volume: 208 start-page: 135 year: 2001 end-page: 152 ident: bib51 article-title: On the mechanism of sulfur removal during catalytic cracking publication-title: Appl. Catal. A Gen. contributor: fullname: Blair – volume: 97 start-page: 116 year: 2015 end-page: 124 ident: bib34 article-title: Effect of NaOH on asphaltene transformation in supercritical water publication-title: J. Supercrit. Fluids contributor: fullname: Xiao – volume: 60 start-page: 166 year: 2020 end-page: 173 ident: bib6 article-title: Influence of asphaltenes on the direction of thermal transformations of heavy oil hydrocarbons publication-title: Pet. Chem. contributor: fullname: Golovko – volume: 31 start-page: 13509 year: 2017 end-page: 13518 ident: bib56 article-title: Advances in asphaltene petroleomics. Part 1: asphaltenes are composed of abundant island and archipelago structural motifs publication-title: Energy Fuels contributor: fullname: Rodgers – volume: 382 year: 2020 ident: bib73 article-title: A novel synergistic denitrification mechanism during supercritical water oxidation publication-title: Chem. Eng. J. contributor: fullname: Shen – volume: 92 start-page: 1845 year: 2014 end-page: 1863 ident: bib38 article-title: Process intensification for heavy oil upgrading using supercritical water publication-title: Chem. Eng. Res. Des. contributor: fullname: Erkey – volume: 3 start-page: 3794 year: 2010 end-page: 3817 ident: bib49 article-title: Hydrothermal synthesis of metal oxide nanoparticles in supercritical water publication-title: Materials contributor: fullname: Hakuta – volume: 110 start-page: 75 year: 2016 end-page: 82 ident: bib40 article-title: Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part II: hydrogen donating capacity of water in the presence of iron (III) oxide nanocatalyst publication-title: J. Supercrit. Fluids contributor: fullname: Ahmadi – volume: 332 start-page: 123 year: 2021 end-page: 131 ident: bib3 article-title: Parameters of macrostructure of insoluble products obtained by thermolysis of resins and asphaltenes of the Usinskaya Oil publication-title: Bull. Tomsk Polytech. Univ. Geo Аssets Eng. contributor: fullname: Grinko – volume: 12 start-page: 1154 year: 2022 ident: bib65 article-title: Effect of hydrogen-donor of heavy crude oil catalytic aquathermolysis in the presence of a nickel-based catalyst publication-title: Catalysts contributor: fullname: Mukhamatdinov – volume: 88 start-page: 105 year: 2014 end-page: 116 ident: bib13 article-title: Conversion of sulfur-rich asphaltite in supercritical water and effect of metal additives publication-title: J. Supercrit. Fluids contributor: fullname: Vostrikov – volume: 146 start-page: 115 year: 2016 end-page: 125 ident: bib19 article-title: Solvation of asphaltenes in supercritical water: a molecular dynamics study publication-title: Chem. Eng. Sci. contributor: fullname: Yuan – volume: 113 start-page: 136 year: 2016 end-page: 143 ident: bib15 article-title: Catalytic cracking of heavy petroleum residue in supercritical water: study on the effect of different metal oxide nanoparticles publication-title: J. Supercrit. Fluids contributor: fullname: Towfighi – volume: 58 start-page: 1480 year: 2019 end-page: 1494 ident: bib17 article-title: Effect mechanism of auxiliary fuel in supercritical water: a review publication-title: Ind. Eng. Chem. Res. contributor: fullname: Zhang – volume: 23 start-page: 3178 year: 2009 end-page: 3183 ident: bib24 article-title: Effects of supercritical water in vacuum residue upgrading publication-title: Energy Fuels contributor: fullname: Yuan – volume: 152 year: 2019 ident: bib1 article-title: Refinery bitumen and domestic unconventional heavy oil upgrading in supercritical water publication-title: J. Supercrit. Fluids contributor: fullname: Erkey – volume: 313 year: 2022 ident: bib63 article-title: Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water publication-title: Fuel contributor: fullname: Prochukhan – volume: 92 start-page: 245 year: 2012 end-page: 249 ident: bib5 article-title: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil publication-title: Fuel contributor: fullname: Vazquez-Duhalt – volume: 33 start-page: 7971 year: 2019 end-page: 7982 ident: bib4 article-title: Resins and asphaltenes of light and heavy oils: their composition and structure publication-title: Energy Fuels contributor: fullname: Min – volume: 44 start-page: 2672 year: 2005 end-page: 2692 ident: bib21 article-title: Supercritical water as a solvent publication-title: Angew. Chem. Int. Ed. contributor: fullname: Franck – volume: 56 start-page: 116 year: 2022 end-page: 122 ident: bib7 article-title: Study of the thermolysis products of asphaltenes from the vacuum residue of usinskoe oil produced in supercritical water publication-title: Solid Fuel Chem. contributor: fullname: Kopytov – volume: 29 start-page: 7807 year: 2015 end-page: 7815 ident: bib28 article-title: Structural characteristics of asphaltenes derived from condensation of maltenes in supercritical water publication-title: Energy Fuels contributor: fullname: Yuan – volume: 134 start-page: 230 year: 2015 end-page: 237 ident: bib29 article-title: Kinetic and reaction pathway of upgrading asphaltene in supercritical water publication-title: Chem. Eng. Sci. contributor: fullname: Xiao – volume: 62 start-page: 959 year: 1983 end-page: 962 ident: bib70 article-title: Chemistry of organosulphur compound types occurring in heavy oil sands: 1. High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes publication-title: Fuel contributor: fullname: Tyrer – volume: 106 start-page: 281 year: 2013 end-page: 288 ident: bib23 article-title: Upgrading of residual oil in sub- and supercritical water: an experimental study publication-title: Fuel Process Technol. contributor: fullname: Yuan – volume: 118 start-page: 49 year: 2014 end-page: 54 ident: bib26 article-title: Co-pyrolysis of heavy oil and low density polyethylene in the presence of supercritical water: the suppression of coke formation publication-title: Fuel Process Technol. contributor: fullname: Yuan – volume: 107 start-page: 699 year: 2016 end-page: 706 ident: bib50 article-title: An investigation into the formation and conversion of metal complexes to metal oxide nanoparticles in supercritical water publication-title: J. Supercrit. Fluids contributor: fullname: Ahmadi – volume: 68 start-page: 113 year: 2012 ident: 10.1016/j.supflu.2022.105784_bib41 article-title: Effect of water properties on the degradative extraction of asphaltene using supercritical water publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2012.04.017 contributor: fullname: Morimoto – volume: 129 start-page: 790 year: 2018 ident: 10.1016/j.supflu.2022.105784_bib69 article-title: Structural features of Qingdao petroleum coke from HRTEM lattice fringes: distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation publication-title: Carbon doi: 10.1016/j.carbon.2017.12.106 contributor: fullname: Zhong – volume: 55 start-page: 9578 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib53 article-title: Dealkylation of aromatics in subcritical and supercritical water: involvement of carbonium mechanism publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b02323 contributor: fullname: Chen – volume: 230 start-page: 91 year: 2018 ident: 10.1016/j.supflu.2022.105784_bib12 article-title: The synergistic effect between supercritical water and redox properties of iron oxide nanoparticles for in-situ catalytic upgrading heavy oil with formic acid. Isotopic study publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.02.030 contributor: fullname: Hosseinpour – volume: 32 start-page: 2117 year: 2018 ident: 10.1016/j.supflu.2022.105784_bib30 article-title: Transformation of petroleum asphaltenes in supercritical alcohols studied via FTIR and NMR techniques publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01630 contributor: fullname: Chibiryaev – volume: 92 start-page: 1845 year: 2014 ident: 10.1016/j.supflu.2022.105784_bib38 article-title: Process intensification for heavy oil upgrading using supercritical water publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.06.007 contributor: fullname: Caniaz – volume: 110 start-page: 75 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib40 article-title: Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part II: hydrogen donating capacity of water in the presence of iron (III) oxide nanocatalyst publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.12.014 contributor: fullname: Hosseinpour – volume: 113 start-page: 136 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib15 article-title: Catalytic cracking of heavy petroleum residue in supercritical water: study on the effect of different metal oxide nanoparticles publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2016.03.023 contributor: fullname: Golmohammadi – volume: 88 start-page: 105 year: 2014 ident: 10.1016/j.supflu.2022.105784_bib13 article-title: Conversion of sulfur-rich asphaltite in supercritical water and effect of metal additives publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2014.01.016 contributor: fullname: Fedyaeva – volume: 27 start-page: 646 year: 2013 ident: 10.1016/j.supflu.2022.105784_bib32 article-title: Upgrading of bitumen in the presence of hydrogen and carbon dioxide in supercritical water publication-title: Energy Fuels doi: 10.1021/ef301444j contributor: fullname: Sato – volume: 208 start-page: 135 year: 2001 ident: 10.1016/j.supflu.2022.105784_bib51 article-title: On the mechanism of sulfur removal during catalytic cracking publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(00)00693-1 contributor: fullname: Corma – volume: 29 start-page: 7807 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib28 article-title: Structural characteristics of asphaltenes derived from condensation of maltenes in supercritical water publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01664 contributor: fullname: Zhu – volume: 58 start-page: 1480 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib17 article-title: Effect mechanism of auxiliary fuel in supercritical water: a review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05696 contributor: fullname: Zhang – volume: 176 start-page: 218 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib46 article-title: Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.125 contributor: fullname: Qian – volume: 278 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib11 article-title: Reactivity and structural changes of asphaltene during the supercritical water upgrading process publication-title: Fuel doi: 10.1016/j.fuel.2020.118331 contributor: fullname: Li – volume: 152 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib1 article-title: Refinery bitumen and domestic unconventional heavy oil upgrading in supercritical water publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2019.104569 contributor: fullname: Canıaz – volume: 271 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib9 article-title: An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM) publication-title: Fuel doi: 10.1016/j.fuel.2020.117618 contributor: fullname: Hosseinpour – volume: 313 year: 2022 ident: 10.1016/j.supflu.2022.105784_bib63 article-title: Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water publication-title: Fuel doi: 10.1016/j.fuel.2021.122702 contributor: fullname: Djimasbe – volume: 51 start-page: 309 year: 2008 ident: 10.1016/j.supflu.2022.105784_bib25 article-title: Effective demetalization and suppression of coke formation using supercritical water technology for heavy oil upgrading publication-title: J. Jpn Pet. Inst. doi: 10.1627/jpi.51.309 contributor: fullname: Kokubo – volume: 8 start-page: 8962 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib27 article-title: A review of laboratory-scale research on upgrading heavy oil in supercritical water publication-title: Energies doi: 10.3390/en8088962 contributor: fullname: Li – volume: 55 start-page: 217 year: 2010 ident: 10.1016/j.supflu.2022.105784_bib10 article-title: Transformation of petroleum asphaltenes in supercritical water publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2010.08.009 contributor: fullname: Kozhevnikov – volume: 136 start-page: 44 year: 2018 ident: 10.1016/j.supflu.2022.105784_bib61 article-title: Investigation on composition and structure of asphaltenes during low-temperature coal tar hydrotreatment under various reaction pressures publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.11.002 contributor: fullname: Shao – volume: 1220 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib62 article-title: Effect of asphaltene structure on its aggregation behavior in toluene-normal alkane mixtures publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2020.128605 contributor: fullname: Hemmati-Sarapardeh – volume: 33 start-page: 7971 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib4 article-title: Resins and asphaltenes of light and heavy oils: their composition and structure publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b00285 contributor: fullname: Cheshkova – volume: 153 start-page: 94 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib71 article-title: Catalytic aquathermolysis of super-heavy oil: cleavage of CS bonds and separation of light organosulfurs publication-title: Fuel Process Technol. doi: 10.1016/j.fuproc.2016.06.007 contributor: fullname: Li – volume: 60 start-page: 166 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib6 article-title: Influence of asphaltenes on the direction of thermal transformations of heavy oil hydrocarbons publication-title: Pet. Chem. doi: 10.1134/S0965544120020103 contributor: fullname: Voronetskaya – volume: 134 start-page: 230 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib29 article-title: Kinetic and reaction pathway of upgrading asphaltene in supercritical water publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.05.017 contributor: fullname: Li – volume: 107 start-page: 699 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib50 article-title: An investigation into the formation and conversion of metal complexes to metal oxide nanoparticles in supercritical water publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.07.034 contributor: fullname: Golmohammadi – volume: 283 year: 2021 ident: 10.1016/j.supflu.2022.105784_bib18 article-title: Hydrogen donating capacity of water in catalytic and non-catalytic aquathermolysis of extra-heavy oil: deuterium tracing study publication-title: Fuel doi: 10.1016/j.fuel.2020.118957 contributor: fullname: Al-muntaser – volume: 312 year: 2022 ident: 10.1016/j.supflu.2022.105784_bib43 article-title: Using the oil-soluble copper-based catalysts with different organic ligands for in-situ catalytic upgrading of heavy oil publication-title: Fuel doi: 10.1016/j.fuel.2021.122914 contributor: fullname: Suwaid – volume: 3 start-page: 3794 year: 2010 ident: 10.1016/j.supflu.2022.105784_bib49 article-title: Hydrothermal synthesis of metal oxide nanoparticles in supercritical water publication-title: Materials doi: 10.3390/ma3073794 contributor: fullname: Hayashi – volume: 33 start-page: 2950 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib58 article-title: Elucidation of the average molecular structure of argentinian asphaltenes publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b04318 contributor: fullname: Bava – volume: 62 start-page: 959 year: 1983 ident: 10.1016/j.supflu.2022.105784_bib70 article-title: Chemistry of organosulphur compound types occurring in heavy oil sands: 1. High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes publication-title: Fuel doi: 10.1016/0016-2361(83)90170-9 contributor: fullname: Clark – volume: 9 start-page: 127 issue: 1 year: 2021 ident: 10.1016/j.supflu.2022.105784_bib42 article-title: In-situ heavy oil aquathermolysis in the presence of nanodispersed catalysts based on transition metals publication-title: Processes doi: 10.3390/pr9010127 contributor: fullname: Aliev – volume: 19 start-page: 1337 year: 2005 ident: 10.1016/j.supflu.2022.105784_bib47 article-title: Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil–water interface publication-title: Energy Fuels doi: 10.1021/ef0497560 contributor: fullname: And – volume: 27 start-page: 4624 year: 2013 ident: 10.1016/j.supflu.2022.105784_bib37 article-title: Catalytic cracking reaction of heavy oil in the presence of cerium oxide nanoparticles in supercritical water publication-title: Energy Fuels doi: 10.1021/ef400855k contributor: fullname: Dejhosseini – volume: 92 start-page: 245 year: 2012 ident: 10.1016/j.supflu.2022.105784_bib5 article-title: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil publication-title: Fuel doi: 10.1016/j.fuel.2011.06.067 contributor: fullname: Ayala – volume: 329 start-page: 197 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib16 article-title: Phenanthrene catalytic cracking in supercritical water: effect of the reaction medium on NiMo/SiO2 catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2018.10.019 contributor: fullname: Yeletsky – volume: 199 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib48 article-title: Heavy oil cracking in the presence of steam and nanodispersed catalysts based on different metals publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106239 contributor: fullname: Yeletsky – volume: 225 start-page: 161 year: 2018 ident: 10.1016/j.supflu.2022.105784_bib31 article-title: Isotope tracing study on hydrogen donating capability of supercritical water assisted by formic acid to upgrade heavy oil: computer simulation vs. experiment publication-title: Fuel doi: 10.1016/j.fuel.2018.03.098 contributor: fullname: Hosseinpour – volume: 109 start-page: 823 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib67 article-title: Analysis of thermally induced changes in the structure of coal tar pitches by an advanced evaluation method of X-ray scattering data publication-title: Carbon doi: 10.1016/j.carbon.2016.08.031 contributor: fullname: Loeh – volume: 111 start-page: 121 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib14 article-title: The products of heavy sulfur-rich oil conversion in a counter supercritical water flow and their desulfurization by ZnO nanoparticles publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2016.01.020 contributor: fullname: Fedyaeva – volume: 97 start-page: 116 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib34 article-title: Effect of NaOH on asphaltene transformation in supercritical water publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2014.11.014 contributor: fullname: Li – volume: 29 start-page: 6342 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib20 article-title: Experimental investigation on hydrogen production by anthracene gasification in supercritical water publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01558 contributor: fullname: Jin – volume: 11 start-page: 189 year: 2021 ident: 10.1016/j.supflu.2022.105784_bib64 article-title: Extra-heavy oil aquathermolysis using nickel-based catalyst: some aspects of in-situ transformation of catalyst precursor publication-title: Catalysts doi: 10.3390/catal11020189 contributor: fullname: Vakhin – volume: 12 start-page: 1154 year: 2022 ident: 10.1016/j.supflu.2022.105784_bib65 article-title: Effect of hydrogen-donor of heavy crude oil catalytic aquathermolysis in the presence of a nickel-based catalyst publication-title: Catalysts doi: 10.3390/catal12101154 contributor: fullname: Urazov – volume: 332 start-page: 123 year: 2021 ident: 10.1016/j.supflu.2022.105784_bib3 article-title: Parameters of macrostructure of insoluble products obtained by thermolysis of resins and asphaltenes of the Usinskaya Oil publication-title: Bull. Tomsk Polytech. Univ. Geo Аssets Eng. contributor: fullname: Antipenko – volume: 118 start-page: 49 year: 2014 ident: 10.1016/j.supflu.2022.105784_bib26 article-title: Co-pyrolysis of heavy oil and low density polyethylene in the presence of supercritical water: the suppression of coke formation publication-title: Fuel Process Technol. doi: 10.1016/j.fuproc.2013.08.007 contributor: fullname: Tan – volume: 281 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib72 article-title: In-situ catalytic upgrading of heavy oil using oil-soluble transition metal-based catalysts publication-title: Fuel doi: 10.1016/j.fuel.2020.118753 contributor: fullname: Suwaid – volume: 35 start-page: 14527 year: 2021 ident: 10.1016/j.supflu.2022.105784_bib2 article-title: Impact of asphaltenes on the adsorption behavior of petroleum vanadyl porphyrins: kinetic and thermodynamic aspects publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01495 contributor: fullname: Mironov – volume: 112 start-page: 97 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib8 article-title: Upgrading of heavy crude oil by thermal and catalytic cracking in the presence of NiCr/WC catalyst publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2020.06.018 contributor: fullname: Sviridenko – volume: 158 start-page: 779 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib68 article-title: Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques publication-title: Fuel doi: 10.1016/j.fuel.2015.06.027 contributor: fullname: Okolo – volume: 56 start-page: 116 year: 2022 ident: 10.1016/j.supflu.2022.105784_bib7 article-title: Study of the thermolysis products of asphaltenes from the vacuum residue of usinskoe oil produced in supercritical water publication-title: Solid Fuel Chem. doi: 10.3103/S0361521922020070 contributor: fullname: Nal’gieva – volume: 31 start-page: 3620 year: 2017 ident: 10.1016/j.supflu.2022.105784_bib33 article-title: Pyrolysis of asphaltenes in subcritical and supercritical water: influence of H-donation from hydrocarbon surroundings publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b03135 contributor: fullname: Liu – volume: 26 start-page: 3201 year: 2012 ident: 10.1016/j.supflu.2022.105784_bib52 article-title: Study on in situ sulfur removal from gasoline in fluid catalytic cracking process publication-title: Energy Fuels doi: 10.1021/ef300499j contributor: fullname: Wen – volume: 61 start-page: 1071 year: 2021 ident: 10.1016/j.supflu.2022.105784_bib45 article-title: Changes in the structure of the high-molecular-weight components of a high-sulfur vacuum residue in the initiated cracking process publication-title: Pet. Chem. doi: 10.1134/S0965544121090061 contributor: fullname: Goncharov – volume: 571 start-page: 50 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib60 article-title: The efficiency of bitumen rejuvenator investigated through Powder X-ray Diffraction (PXRD) analysis and T2-NMR spectroscopy publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.03.059 contributor: fullname: Caputo – volume: 146 start-page: 115 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib19 article-title: Solvation of asphaltenes in supercritical water: a molecular dynamics study publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.02.032 contributor: fullname: Xin – volume: 169 start-page: 269 year: 2018 ident: 10.1016/j.supflu.2022.105784_bib44 article-title: Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.04.061 contributor: fullname: Foss – volume: 44 start-page: 2672 year: 2005 ident: 10.1016/j.supflu.2022.105784_bib21 article-title: Supercritical water as a solvent publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462468 contributor: fullname: Weingärtner – volume: 24 start-page: 5008 year: 2010 ident: 10.1016/j.supflu.2022.105784_bib55 article-title: Influence of asphaltene on the residue hydrotreating reaction publication-title: Energy Fuels doi: 10.1021/ef1005385 contributor: fullname: Sun – volume: 31 start-page: 13509 year: 2017 ident: 10.1016/j.supflu.2022.105784_bib56 article-title: Advances in asphaltene petroleomics. Part 1: asphaltenes are composed of abundant island and archipelago structural motifs publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b02873 contributor: fullname: Chacón-Patiño – volume: 235 start-page: 677 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib57 article-title: Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene publication-title: Fuel doi: 10.1016/j.fuel.2018.08.035 contributor: fullname: Nguyen – volume: 23 start-page: 3178 year: 2009 ident: 10.1016/j.supflu.2022.105784_bib24 article-title: Effects of supercritical water in vacuum residue upgrading publication-title: Energy Fuels doi: 10.1021/ef900132z contributor: fullname: Cheng – volume: 149 start-page: 8 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib59 article-title: Characterization of asphaltenic material obtained by treating of vacuum residue with different reactive molecules publication-title: Fuel doi: 10.1016/j.fuel.2014.11.002 contributor: fullname: Maity – volume: 203 start-page: 352 year: 2017 ident: 10.1016/j.supflu.2022.105784_bib66 article-title: Structural and compositional evolution of coal tar toluene insoluble during slurry-phase hydrocracking publication-title: Fuel doi: 10.1016/j.fuel.2017.04.139 contributor: fullname: Du – volume: 106 start-page: 281 year: 2013 ident: 10.1016/j.supflu.2022.105784_bib23 article-title: Upgrading of residual oil in sub- and supercritical water: an experimental study publication-title: Fuel Process Technol. doi: 10.1016/j.fuproc.2012.07.032 contributor: fullname: Liu – volume: 382 year: 2020 ident: 10.1016/j.supflu.2022.105784_bib73 article-title: A novel synergistic denitrification mechanism during supercritical water oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123004 contributor: fullname: Tan – volume: 55 start-page: 232 year: 2010 ident: 10.1016/j.supflu.2022.105784_bib39 article-title: Upgrading of bitumen with formic acid in supercritical water publication-title: J. Supercrit. Fluid doi: 10.1016/j.supflu.2010.07.010 contributor: fullname: Sato – volume: 100 start-page: 70 year: 2015 ident: 10.1016/j.supflu.2022.105784_bib35 article-title: Successive co-operation of supercritical water and silica-supported iron oxide nanoparticles in upgrading of heavy petroleum residue: Suppression of coke deposition over catalyst publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.02.013 contributor: fullname: Hosseinpour – volume: 107 start-page: 278 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib22 article-title: Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part I: non-catalytic cracking publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.08.004 contributor: fullname: Hosseinpour – volume: 142 start-page: 315 year: 2016 ident: 10.1016/j.supflu.2022.105784_bib36 article-title: Catalytic bitumen cracking in sub-and supercritical water publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.10.032 contributor: fullname: Gai – volume: 329 start-page: 177 year: 2019 ident: 10.1016/j.supflu.2022.105784_bib54 article-title: Transformation of petroleum asphaltenes in supercritical alcohols—a tool to change H/C ratio and remove S and N atoms from refined products publication-title: Catal. Today doi: 10.1016/j.cattod.2018.10.066 contributor: fullname: Chibiryaev |
SSID | ssj0005013 |
Score | 2.5028994 |
Snippet | This work deals with the reactivity and structural changes of asphaltenes during cracking in supercritical water using water-soluble salts Co and Ni. Cracking... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 105784 |
SubjectTerms | Asphaltenes Disperse catalysts Structural transformations Supercritical water XRD |
Title | Characteristics of products of thermal and catalytic cracking of heavy oil asphaltenes under supercritical water conditions |
URI | https://dx.doi.org/10.1016/j.supflu.2022.105784 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa67QAcEAwQ2wD5wK3K1NhO7BynUjQ47NIh7RY5ji2lRW3VX9PEP8-zHSdZihAgcYksK44tv09f3nt-fg-hj2VsE42Vo4iVRkesKEQkCBgrhRGJUaAf68Ke6F5P-c2d-DRhk8HgPlj9Td9_lTT0gaztzdm_kHbzUeiANsgcniB1eP6R3Me9DMw2otlndd3U8QBAxT4_gHPdPNiMrQqGzOv4Z2Dn_cNwWcE7m5U7TQc2dOVy18PNbqXXKlRHuJc2wyIY1GXVuv1mLfw6yu7jgeb7riobZX66r9a2tOl86aE5r7ZyeHPZQHEOcNo7DoPWcHrZdVQQ2nNUHN6g8SSXpZFgtRtSexIWHFg67rG0L5l3wPje-TCDX80KFg8GPyGudrEvPNfLpT2109nZiI1NSTk7QicEGAoI8uTqy-TuaxsdNPKVtcPywq1LFxp4ONevtZqOpnL7Aj2vdx1feWy8RAO9OEVPxqGy3yl61klC-Qr96CEGLw0OiLHtGjEYEIMbxOCAGPuGQwwGxOAOYrBDDH4keOwQg1vEvEbfPk9ux9dRXZIjUmCbb6NS8UzShJWgdsaZ0sIkwrCMEBULQUUilY45pYXh0JNm1B6WSsm0JMRktGD0DTpeLBf6LYIV09ioRPOsTFlCSSGlAXtgNNKcFzFJz1AUtjRf-cwreQhJnOVeBLkVQe5FcIZ42Pe81h69VpgDVH478vyfR16gpy3S36Hj7Xqn36OjTbn7UAPqJ-jdmdI |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+products+of+thermal+and+catalytic+cracking+of+heavy+oil+asphaltenes+under+supercritical+water+conditions&rft.jtitle=The+Journal+of+supercritical+fluids&rft.au=Sviridenko%2C+Nikita+N.&rft.au=Akimov%2C+Akim+S.&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0896-8446&rft.eissn=1872-8162&rft.volume=192&rft_id=info:doi/10.1016%2Fj.supflu.2022.105784&rft.externalDocID=S0896844622002674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-8446&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-8446&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-8446&client=summon |