Microtubule disruption modulates the Rho-kinase pathway in vascular smooth muscle

Microtubules constitute one of the main cytoskeletal components in eukaryotic cells. Recent studies have shown that microtubule disruption induced significant vasoconstriction or enhanced agonist-induced contraction in vascular smooth muscle. However, the underlying mechanisms are not clear. We hypo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of muscle research and cell motility Vol. 22; no. 2; p. 193
Main Authors: Zhang, D, Wang, Z, Jin, N, Li, L, Rhoades, R A, Yancey, K W, Swartz, D R
Format: Journal Article
Language:English
Published: Netherlands Springer Nature B.V 01-01-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microtubules constitute one of the main cytoskeletal components in eukaryotic cells. Recent studies have shown that microtubule disruption induced significant vasoconstriction or enhanced agonist-induced contraction in vascular smooth muscle. However, the underlying mechanisms are not clear. We hypothesize that microtubule disruption may affect contractile signaling in vascular smooth muscle and lead to the enhanced contraction. The present study demonstrates that both colchicine and nocodazole induced a small but sustained contraction (4-6% P0) in rat aortic rings. This microtubule disruption-induced contraction was abolished by co-treatment with either HA 1077 or Y-27632, both of which are relatively specific Rho-kinase inhibitors. However, co-treatment with ML-9, an inhibitor of myosin light chain kinase, (MLCK) did not have a significant effect on the colchicine-induced contraction. The enhanced KCl-induced contraction due to treatment with colchicine was also blocked by inhibition of Rho-kinase, but not by inhibition of MLCK. These results indicate that microtubule disruption modulates contractile signaling in vascular smooth muscle, mainly through the Rho-kinase pathway, but not MLCK. Interestingly, the colchicine-enhanced, phenylephrine-induced contraction was not completely blocked by inhibition of Rho-kinase suggesting that other signaling pathways might also be involved.
ISSN:0142-4319
1573-2657
DOI:10.1023/A:1010502201519