Cell type-specific expression of the genes for the protein kinase C family: down regulation of mRNAs for PKC alpha and nPKC epsilon upon in vitro differentiation of a mouse neuroblastoma cell line neuro 2a

By the use of cloned cDNAs for protein kinase C isozymes alpha, beta I, beta II, gamma, and those for novel protein kinase C, epsilon and zeta, the expression of the corresponding mRNA species was examined in various mouse tissues, human lymphoid cell lines, and mouse cell lines of neuronal origin....

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications Vol. 165; no. 1; p. 533
Main Authors: Wada, H, Ohno, S, Kubo, K, Taya, C, Tsuji, S, Yonehara, S, Suzuki, K
Format: Journal Article
Language:English
Published: United States 30-11-1989
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By the use of cloned cDNAs for protein kinase C isozymes alpha, beta I, beta II, gamma, and those for novel protein kinase C, epsilon and zeta, the expression of the corresponding mRNA species was examined in various mouse tissues, human lymphoid cell lines, and mouse cell lines of neuronal origin. In adult brain, mRNAs for all the isozymes of PKC family are expressed. However, the expression of these mRNA species in brain is low at birth. A similar pattern of expression was also observed for beta I/beta II mRNAs in spleen. These expression patterns are in clear contrast to that for beta I/beta II mRNAs in thymus where the mRNAs are expressed at birth and the levels of expression decrease with age. Human lymphoid cell lines express large amounts of PKC beta mRNAs in addition to PKC alpha. Further, nPKC epsilon mRNA is expressed in some of these cell lines. On the other hand, all the mouse cell lines of neuronal origin tested express nPKC epsilon and zeta in addition to PKC alpha. In a mouse neuroblast cell line, Neuro 2a, down modulation of mRNAs for both PKC alpha and nPKC epsilon was observed in association with in vitro differentiation.
ISSN:0006-291X
DOI:10.1016/0006-291X(89)91102-9