Dynamical Sweet Spot Engineering via Two-Tone Flux Modulation of Superconducting Qubits

Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance. To that end, in situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. How...

Full description

Saved in:
Bibliographic Details
Published in:PRX quantum Vol. 3; no. 2; p. 020337
Main Authors: Valery, Joseph A., Chowdhury, Shoumik, Jones, Glenn, Didier, Nicolas
Format: Journal Article
Language:English
Published: American Physical Society 01-05-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance. To that end, in situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. However, increased dephasing due to 1/f flux noise limits performance at all of these operating points except for noise-protected sweet spots, which are sparse under dc flux bias and monochromatic flux modulation. Here we experimentally demonstrate that two-tone flux modulation can be used to create a continuum of dynamical sweet spots, greatly expanding the range of qubit frequencies achievable while first-order insensitive to slow flux noise. To illustrate some advantages of this flexibility, we use bichromatic flux control to reduce the error rates and gate times of parametric entangling operations between transmons. Independent of the gate scheme, the ability to use flux control to freely select qubit frequencies while maintaining qubit coherence represents an important step forward in the robustness and scalability of near-term superconducting qubit devices.
AbstractList Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance. To that end, in situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. However, increased dephasing due to 1/f flux noise limits performance at all of these operating points except for noise-protected sweet spots, which are sparse under dc flux bias and monochromatic flux modulation. Here we experimentally demonstrate that two-tone flux modulation can be used to create a continuum of dynamical sweet spots, greatly expanding the range of qubit frequencies achievable while first-order insensitive to slow flux noise. To illustrate some advantages of this flexibility, we use bichromatic flux control to reduce the error rates and gate times of parametric entangling operations between transmons. Independent of the gate scheme, the ability to use flux control to freely select qubit frequencies while maintaining qubit coherence represents an important step forward in the robustness and scalability of near-term superconducting qubit devices.
ArticleNumber 020337
Author Didier, Nicolas
Valery, Joseph A.
Jones, Glenn
Chowdhury, Shoumik
Author_xml – sequence: 1
  givenname: Joseph A.
  orcidid: 0000-0001-7424-1139
  surname: Valery
  fullname: Valery, Joseph A.
– sequence: 2
  givenname: Shoumik
  orcidid: 0000-0002-7703-5856
  surname: Chowdhury
  fullname: Chowdhury, Shoumik
– sequence: 3
  givenname: Glenn
  surname: Jones
  fullname: Jones, Glenn
– sequence: 4
  givenname: Nicolas
  surname: Didier
  fullname: Didier, Nicolas
BookMark eNpNkNtKAzEURYNUsF6-wJf8wNScZC7No1SrhYqXVvQtnGSSEpkmJTPj5e-1VtSnszls1oZ1SAYhBkvIKbARABNndw_P9z2Grl-PxIhxJkS1R4a8lJAJIeXgXz4gJ237whjjBQjI5ZA8XXwEXHuDDV28WdvRxSZ29DKsfLA2-bCirx7p8i1my69VOm36d3oT677BzsdAo6OLfmOTiaHuTbft3_fad-0x2XfYtPbk5x6Rx-nlcnKdzW-vZpPzeWZ4VVQZ4Ni6XOsKS1cici1YYUwBjhthJZeuhHJcA0putBijNnXhasyhLiuJXAhxRGY7bh3xRW2SX2P6UBG9-n7EtFKYOm8aq8BKVtsxmByK3DiLBas0gC2Y1gy4-2KJHcuk2LbJul8eMLVVrf5UK6F2qsUnn4Z3Ng
CitedBy_id crossref_primary_10_1103_PhysRevApplied_20_044012
crossref_primary_10_1103_PhysRevLett_132_067001
crossref_primary_10_1038_s41467_024_46623_y
crossref_primary_10_1088_1361_6668_acaa64
crossref_primary_10_1103_PhysRevApplied_17_064006
crossref_primary_10_1103_PhysRevApplied_21_024035
crossref_primary_10_1088_1367_2630_acacbd
crossref_primary_10_22331_q_2023_11_03_1158
crossref_primary_10_1103_PhysRevApplied_18_L061001
crossref_primary_10_1103_PhysRevA_108_012407
crossref_primary_10_1103_PhysRevResearch_6_023029
crossref_primary_10_1103_PRXQuantum_5_020339
Cites_doi 10.1103/PhysRevA.91.022118
10.1109/77.273061
10.1103/PhysRevB.67.094510
10.1103/PhysRevB.97.064508
10.1103/PhysRevApplied.14.054033
10.1063/1.4993937
10.1103/PhysRevLett.118.057702
10.1103/PhysRevLett.95.210503
10.1103/PhysRevB.87.220505
10.1038/s41586-018-0470-y
10.1103/PhysRevX.7.031037
10.1038/s41598-020-77047-5
10.1103/PhysRevLett.99.187006
10.1080/09500349708231894
10.1063/1.351479
10.1103/PhysRevLett.109.080505
10.1038/s41586-021-03288-7
10.1038/s41467-017-02046-6
10.1103/PhysRevApplied.12.054023
10.1103/PhysRevApplied.10.034050
10.1103/PhysRevLett.121.090502
10.1063/1.2437662
10.1088/1742-6596/97/1/012110
10.1007/BF00683423
10.1038/s41534-019-0168-5
10.1103/PhysRevB.99.174512
10.1126/science.1141324
10.1103/PhysRevB.73.064512
10.1126/science.1175552
10.1103/PhysRevApplied.6.064007
10.1103/PhysRevA.101.012302
10.1063/1.5089550
10.1103/PhysRevApplied.12.054015
10.1116/1.4722982
10.1063/1.98041
10.1103/PhysRevLett.123.190502
10.1103/PhysRevLett.111.080502
10.1103/PhysRevA.97.022330
10.1103/PhysRevApplied.3.044009
10.1109/TASC.2009.2018249
10.1103/PhysRevLett.98.267003
10.1103/PhysRevApplied.6.041001
10.1116/1.3673790
10.1103/PhysRevApplied.8.044003
10.1103/PhysRevApplied.15.034065
10.1038/ncomms12964
10.1103/PhysRevA.76.042319
10.1126/sciadv.aao3603
10.1088/1361-6668/ab8617
10.1103/PhysRevB.92.035442
10.1088/2058-9565/ab7559
10.1103/PhysRevLett.97.167001
10.1038/s41534-019-0224-1
10.1049/ip-smt:20010395
10.1103/PhysRevA.86.022305
10.1103/PhysRevA.77.012307
10.1038/s41928-020-00498-1
10.1103/PhysRevA.96.062323
10.1103/PhysRevB.72.134519
10.1103/PhysRevLett.100.227005
10.1103/PhysRevLett.123.120502
10.1126/science.abc5186
10.1016/S0375-9601(02)01272-0
10.1126/science.1069372
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PRXQuantum.3.020337
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_1e90de81c4154cfea507b11e50bb012f
10_1103_PRXQuantum_3_020337
GroupedDBID 3MX
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c2757-1a8ef4bb7a6f6aa2b305cc51f2c3e929f6168d1a92cb38abcd5fda41d679a2333
IEDL.DBID DOA
ISSN 2691-3399
IngestDate Tue Oct 22 15:11:59 EDT 2024
Fri Aug 23 03:11:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2757-1a8ef4bb7a6f6aa2b305cc51f2c3e929f6168d1a92cb38abcd5fda41d679a2333
ORCID 0000-0001-7424-1139
0000-0002-7703-5856
OpenAccessLink https://doaj.org/article/1e90de81c4154cfea507b11e50bb012f
ParticipantIDs doaj_primary_oai_doaj_org_article_1e90de81c4154cfea507b11e50bb012f
crossref_primary_10_1103_PRXQuantum_3_020337
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2022
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PRXQuantum.3.020337Cc19R1
PRXQuantum.3.020337Cc15R1
PRXQuantum.3.020337Cc38R1
PRXQuantum.3.020337Cc59R1
PRXQuantum.3.020337Cc30R1
PRXQuantum.3.020337Cc51R1
PRXQuantum.3.020337Cc32R1
PRXQuantum.3.020337Cc53R1
PRXQuantum.3.020337Cc34R1
PRXQuantum.3.020337Cc55R1
PRXQuantum.3.020337Cc36R1
PRXQuantum.3.020337Cc57R1
PRXQuantum.3.020337Cc13R1
PRXQuantum.3.020337Cc11R1
PRXQuantum.3.020337Cc1R1
PRXQuantum.3.020337Cc5R1
PRXQuantum.3.020337Cc3R1
PRXQuantum.3.020337Cc9R1
PRXQuantum.3.020337Cc27R1
PRXQuantum.3.020337Cc48R1
PRXQuantum.3.020337Cc29R1
PRXQuantum.3.020337Cc40R1
PRXQuantum.3.020337Cc63R1
PRXQuantum.3.020337Cc42R1
PRXQuantum.3.020337Cc65R1
PRXQuantum.3.020337Cc44R1
PRXQuantum.3.020337Cc67R1
PRXQuantum.3.020337Cc23R1
PRXQuantum.3.020337Cc46R1
PRXQuantum.3.020337Cc69R1
PRXQuantum.3.020337Cc25R1
PRXQuantum.3.020337Cc21R1
PRXQuantum.3.020337Cc18R1
PRXQuantum.3.020337Cc16R1
PRXQuantum.3.020337Cc37R1
PRXQuantum.3.020337Cc39R1
PRXQuantum.3.020337Cc52R1
PRXQuantum.3.020337Cc31R1
PRXQuantum.3.020337Cc54R1
PRXQuantum.3.020337Cc33R1
PRXQuantum.3.020337Cc56R1
PRXQuantum.3.020337Cc35R1
PRXQuantum.3.020337Cc58R1
PRXQuantum.3.020337Cc14R1
PRXQuantum.3.020337Cc12R1
PRXQuantum.3.020337Cc10R1
PRXQuantum.3.020337Cc71R1
PRXQuantum.3.020337Cc4R1
PRXQuantum.3.020337Cc2R1
PRXQuantum.3.020337Cc8R1
PRXQuantum.3.020337Cc26R1
PRXQuantum.3.020337Cc49R1
PRXQuantum.3.020337Cc6R1
PRXQuantum.3.020337Cc28R1
PRXQuantum.3.020337Cc41R1
PRXQuantum.3.020337Cc62R1
PRXQuantum.3.020337Cc43R1
PRXQuantum.3.020337Cc64R1
PRXQuantum.3.020337Cc45R1
PRXQuantum.3.020337Cc66R1
PRXQuantum.3.020337Cc24R1
PRXQuantum.3.020337Cc68R1
PRXQuantum.3.020337Cc20R1
PRXQuantum.3.020337Cc60R1
References_xml – ident: PRXQuantum.3.020337Cc67R1
  doi: 10.1103/PhysRevA.91.022118
– ident: PRXQuantum.3.020337Cc9R1
  doi: 10.1109/77.273061
– ident: PRXQuantum.3.020337Cc26R1
  doi: 10.1103/PhysRevB.67.094510
– ident: PRXQuantum.3.020337Cc19R1
  doi: 10.1103/PhysRevB.97.064508
– ident: PRXQuantum.3.020337Cc43R1
  doi: 10.1103/PhysRevApplied.14.054033
– ident: PRXQuantum.3.020337Cc16R1
  doi: 10.1063/1.4993937
– ident: PRXQuantum.3.020337Cc39R1
  doi: 10.1103/PhysRevLett.118.057702
– ident: PRXQuantum.3.020337Cc1R1
  doi: 10.1103/PhysRevLett.95.210503
– ident: PRXQuantum.3.020337Cc52R1
  doi: 10.1103/PhysRevB.87.220505
– ident: PRXQuantum.3.020337Cc20R1
  doi: 10.1038/s41586-018-0470-y
– ident: PRXQuantum.3.020337Cc38R1
  doi: 10.1103/PhysRevX.7.031037
– ident: PRXQuantum.3.020337Cc44R1
  doi: 10.1038/s41598-020-77047-5
– ident: PRXQuantum.3.020337Cc29R1
  doi: 10.1103/PhysRevLett.99.187006
– ident: PRXQuantum.3.020337Cc65R1
  doi: 10.1080/09500349708231894
– ident: PRXQuantum.3.020337Cc8R1
  doi: 10.1063/1.351479
– ident: PRXQuantum.3.020337Cc69R1
  doi: 10.1103/PhysRevLett.109.080505
– ident: PRXQuantum.3.020337Cc21R1
  doi: 10.1038/s41586-021-03288-7
– ident: PRXQuantum.3.020337Cc54R1
  doi: 10.1038/s41467-017-02046-6
– ident: PRXQuantum.3.020337Cc56R1
  doi: 10.1103/PhysRevApplied.12.054023
– ident: PRXQuantum.3.020337Cc58R1
  doi: 10.1103/PhysRevApplied.10.034050
– ident: PRXQuantum.3.020337Cc3R1
  doi: 10.1103/PhysRevLett.121.090502
– ident: PRXQuantum.3.020337Cc11R1
  doi: 10.1063/1.2437662
– ident: PRXQuantum.3.020337Cc12R1
  doi: 10.1088/1742-6596/97/1/012110
– ident: PRXQuantum.3.020337Cc23R1
  doi: 10.1007/BF00683423
– ident: PRXQuantum.3.020337Cc4R1
  doi: 10.1038/s41534-019-0168-5
– ident: PRXQuantum.3.020337Cc40R1
  doi: 10.1103/PhysRevB.99.174512
– ident: PRXQuantum.3.020337Cc49R1
  doi: 10.1126/science.1141324
– ident: PRXQuantum.3.020337Cc48R1
  doi: 10.1103/PhysRevB.73.064512
– ident: PRXQuantum.3.020337Cc32R1
  doi: 10.1126/science.1175552
– ident: PRXQuantum.3.020337Cc53R1
  doi: 10.1103/PhysRevApplied.6.064007
– ident: PRXQuantum.3.020337Cc59R1
  doi: 10.1103/PhysRevA.101.012302
– ident: PRXQuantum.3.020337Cc64R1
  doi: 10.1063/1.5089550
– ident: PRXQuantum.3.020337Cc46R1
  doi: 10.1103/PhysRevApplied.12.054015
– ident: PRXQuantum.3.020337Cc15R1
  doi: 10.1116/1.4722982
– ident: PRXQuantum.3.020337Cc24R1
  doi: 10.1063/1.98041
– ident: PRXQuantum.3.020337Cc5R1
  doi: 10.1103/PhysRevLett.123.190502
– ident: PRXQuantum.3.020337Cc33R1
  doi: 10.1103/PhysRevLett.111.080502
– ident: PRXQuantum.3.020337Cc62R1
  doi: 10.1103/PhysRevA.97.022330
– ident: PRXQuantum.3.020337Cc34R1
  doi: 10.1103/PhysRevApplied.3.044009
– ident: PRXQuantum.3.020337Cc13R1
  doi: 10.1109/TASC.2009.2018249
– ident: PRXQuantum.3.020337Cc30R1
  doi: 10.1103/PhysRevLett.98.267003
– ident: PRXQuantum.3.020337Cc35R1
  doi: 10.1103/PhysRevApplied.6.041001
– ident: PRXQuantum.3.020337Cc14R1
  doi: 10.1116/1.3673790
– ident: PRXQuantum.3.020337Cc37R1
  doi: 10.1103/PhysRevApplied.8.044003
– ident: PRXQuantum.3.020337Cc42R1
  doi: 10.1103/PhysRevApplied.15.034065
– ident: PRXQuantum.3.020337Cc36R1
  doi: 10.1038/ncomms12964
– ident: PRXQuantum.3.020337Cc63R1
  doi: 10.1103/PhysRevA.76.042319
– ident: PRXQuantum.3.020337Cc57R1
  doi: 10.1126/sciadv.aao3603
– ident: PRXQuantum.3.020337Cc18R1
  doi: 10.1088/1361-6668/ab8617
– ident: PRXQuantum.3.020337Cc2R1
  doi: 10.1103/PhysRevB.92.035442
– ident: PRXQuantum.3.020337Cc71R1
  doi: 10.1088/2058-9565/ab7559
– ident: PRXQuantum.3.020337Cc28R1
  doi: 10.1103/PhysRevLett.97.167001
– ident: PRXQuantum.3.020337Cc6R1
  doi: 10.1038/s41534-019-0224-1
– ident: PRXQuantum.3.020337Cc10R1
  doi: 10.1049/ip-smt:20010395
– ident: PRXQuantum.3.020337Cc51R1
  doi: 10.1103/PhysRevA.86.022305
– ident: PRXQuantum.3.020337Cc68R1
  doi: 10.1103/PhysRevA.77.012307
– ident: PRXQuantum.3.020337Cc60R1
  doi: 10.1038/s41928-020-00498-1
– ident: PRXQuantum.3.020337Cc55R1
  doi: 10.1103/PhysRevA.96.062323
– ident: PRXQuantum.3.020337Cc27R1
  doi: 10.1103/PhysRevB.72.134519
– ident: PRXQuantum.3.020337Cc31R1
  doi: 10.1103/PhysRevLett.100.227005
– ident: PRXQuantum.3.020337Cc41R1
  doi: 10.1103/PhysRevLett.123.120502
– ident: PRXQuantum.3.020337Cc45R1
  doi: 10.1126/science.abc5186
– ident: PRXQuantum.3.020337Cc66R1
  doi: 10.1016/S0375-9601(02)01272-0
– ident: PRXQuantum.3.020337Cc25R1
  doi: 10.1126/science.1069372
SSID ssj0002513149
Score 2.3472264
Snippet Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 020337
Title Dynamical Sweet Spot Engineering via Two-Tone Flux Modulation of Superconducting Qubits
URI https://doaj.org/article/1e90de81c4154cfea507b11e50bb012f
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60IHgRn_hmDx5Nm80m2c1RbUsvijUVewv7hII2pU2sP9_ZJNbcvHhdhmWYSWbmI5PvQ-iGcGsTGPs9qYnyQmqNJ1nCPYAiviJSmbhSbxil7GnK-wNHk7OR-nI7YTU9cB24HjGJrw0nCjpNqKwRMMBIQkzkSwnF1VbV149bYMrVYOjaFGb_hmaI-LT3_DIdl-Bs-dGlXff5zSmft1pRi7G_ai3DfbTXzIT4rvblAG2Z-SHaqXYz1eoIvfVr1XgwSdfGFDhd5AVuEQniz5nAk3XuTfK5wcP38gs_5rrR5cK5xWm5MEsAvo7b1dmPSzkrVsfodTiYPIy8Rg_BUwGLmEcENzaUkonYxkIEEt5VpSJiA0UNjDk2JjHXRCSBkpQLqXRktQiJjlkiAkrpCerMwZFThBUTgHuEJBzwBNjx2DDfF4kkkRJWR2fo9ic02aKmvcgquODT7DeSGc3qSJ6hexe-janjrK4OIJNZk8nsr0ye_8clF2g3cD8oVCuJl6hTLEtzhbZXuryunpBv1STCZA
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+Sweet+Spot+Engineering+via+Two-Tone+Flux+Modulation+of+Superconducting+Qubits&rft.jtitle=PRX+quantum&rft.au=Valery%2C+Joseph+A.&rft.au=Chowdhury%2C+Shoumik&rft.au=Jones%2C+Glenn&rft.au=Didier%2C+Nicolas&rft.date=2022-05-01&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1103%2FPRXQuantum.3.020337&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PRXQuantum_3_020337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon