Dynamical Sweet Spot Engineering via Two-Tone Flux Modulation of Superconducting Qubits
Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance. To that end, in situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. How...
Saved in:
Published in: | PRX quantum Vol. 3; no. 2; p. 020337 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Physical Society
01-05-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance. To that end, in situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. However, increased dephasing due to 1/f flux noise limits performance at all of these operating points except for noise-protected sweet spots, which are sparse under dc flux bias and monochromatic flux modulation. Here we experimentally demonstrate that two-tone flux modulation can be used to create a continuum of dynamical sweet spots, greatly expanding the range of qubit frequencies achievable while first-order insensitive to slow flux noise. To illustrate some advantages of this flexibility, we use bichromatic flux control to reduce the error rates and gate times of parametric entangling operations between transmons. Independent of the gate scheme, the ability to use flux control to freely select qubit frequencies while maintaining qubit coherence represents an important step forward in the robustness and scalability of near-term superconducting qubit devices. |
---|---|
AbstractList | Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance. To that end, in situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. However, increased dephasing due to 1/f flux noise limits performance at all of these operating points except for noise-protected sweet spots, which are sparse under dc flux bias and monochromatic flux modulation. Here we experimentally demonstrate that two-tone flux modulation can be used to create a continuum of dynamical sweet spots, greatly expanding the range of qubit frequencies achievable while first-order insensitive to slow flux noise. To illustrate some advantages of this flexibility, we use bichromatic flux control to reduce the error rates and gate times of parametric entangling operations between transmons. Independent of the gate scheme, the ability to use flux control to freely select qubit frequencies while maintaining qubit coherence represents an important step forward in the robustness and scalability of near-term superconducting qubit devices. |
ArticleNumber | 020337 |
Author | Didier, Nicolas Valery, Joseph A. Jones, Glenn Chowdhury, Shoumik |
Author_xml | – sequence: 1 givenname: Joseph A. orcidid: 0000-0001-7424-1139 surname: Valery fullname: Valery, Joseph A. – sequence: 2 givenname: Shoumik orcidid: 0000-0002-7703-5856 surname: Chowdhury fullname: Chowdhury, Shoumik – sequence: 3 givenname: Glenn surname: Jones fullname: Jones, Glenn – sequence: 4 givenname: Nicolas surname: Didier fullname: Didier, Nicolas |
BookMark | eNpNkNtKAzEURYNUsF6-wJf8wNScZC7No1SrhYqXVvQtnGSSEpkmJTPj5e-1VtSnszls1oZ1SAYhBkvIKbARABNndw_P9z2Grl-PxIhxJkS1R4a8lJAJIeXgXz4gJ237whjjBQjI5ZA8XXwEXHuDDV28WdvRxSZ29DKsfLA2-bCirx7p8i1my69VOm36d3oT677BzsdAo6OLfmOTiaHuTbft3_fad-0x2XfYtPbk5x6Rx-nlcnKdzW-vZpPzeWZ4VVQZ4Ni6XOsKS1cici1YYUwBjhthJZeuhHJcA0putBijNnXhasyhLiuJXAhxRGY7bh3xRW2SX2P6UBG9-n7EtFKYOm8aq8BKVtsxmByK3DiLBas0gC2Y1gy4-2KJHcuk2LbJul8eMLVVrf5UK6F2qsUnn4Z3Ng |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_20_044012 crossref_primary_10_1103_PhysRevLett_132_067001 crossref_primary_10_1038_s41467_024_46623_y crossref_primary_10_1088_1361_6668_acaa64 crossref_primary_10_1103_PhysRevApplied_17_064006 crossref_primary_10_1103_PhysRevApplied_21_024035 crossref_primary_10_1088_1367_2630_acacbd crossref_primary_10_22331_q_2023_11_03_1158 crossref_primary_10_1103_PhysRevApplied_18_L061001 crossref_primary_10_1103_PhysRevA_108_012407 crossref_primary_10_1103_PhysRevResearch_6_023029 crossref_primary_10_1103_PRXQuantum_5_020339 |
Cites_doi | 10.1103/PhysRevA.91.022118 10.1109/77.273061 10.1103/PhysRevB.67.094510 10.1103/PhysRevB.97.064508 10.1103/PhysRevApplied.14.054033 10.1063/1.4993937 10.1103/PhysRevLett.118.057702 10.1103/PhysRevLett.95.210503 10.1103/PhysRevB.87.220505 10.1038/s41586-018-0470-y 10.1103/PhysRevX.7.031037 10.1038/s41598-020-77047-5 10.1103/PhysRevLett.99.187006 10.1080/09500349708231894 10.1063/1.351479 10.1103/PhysRevLett.109.080505 10.1038/s41586-021-03288-7 10.1038/s41467-017-02046-6 10.1103/PhysRevApplied.12.054023 10.1103/PhysRevApplied.10.034050 10.1103/PhysRevLett.121.090502 10.1063/1.2437662 10.1088/1742-6596/97/1/012110 10.1007/BF00683423 10.1038/s41534-019-0168-5 10.1103/PhysRevB.99.174512 10.1126/science.1141324 10.1103/PhysRevB.73.064512 10.1126/science.1175552 10.1103/PhysRevApplied.6.064007 10.1103/PhysRevA.101.012302 10.1063/1.5089550 10.1103/PhysRevApplied.12.054015 10.1116/1.4722982 10.1063/1.98041 10.1103/PhysRevLett.123.190502 10.1103/PhysRevLett.111.080502 10.1103/PhysRevA.97.022330 10.1103/PhysRevApplied.3.044009 10.1109/TASC.2009.2018249 10.1103/PhysRevLett.98.267003 10.1103/PhysRevApplied.6.041001 10.1116/1.3673790 10.1103/PhysRevApplied.8.044003 10.1103/PhysRevApplied.15.034065 10.1038/ncomms12964 10.1103/PhysRevA.76.042319 10.1126/sciadv.aao3603 10.1088/1361-6668/ab8617 10.1103/PhysRevB.92.035442 10.1088/2058-9565/ab7559 10.1103/PhysRevLett.97.167001 10.1038/s41534-019-0224-1 10.1049/ip-smt:20010395 10.1103/PhysRevA.86.022305 10.1103/PhysRevA.77.012307 10.1038/s41928-020-00498-1 10.1103/PhysRevA.96.062323 10.1103/PhysRevB.72.134519 10.1103/PhysRevLett.100.227005 10.1103/PhysRevLett.123.120502 10.1126/science.abc5186 10.1016/S0375-9601(02)01272-0 10.1126/science.1069372 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PRXQuantum.3.020337 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2691-3399 |
ExternalDocumentID | oai_doaj_org_article_1e90de81c4154cfea507b11e50bb012f 10_1103_PRXQuantum_3_020337 |
GroupedDBID | 3MX AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
ID | FETCH-LOGICAL-c2757-1a8ef4bb7a6f6aa2b305cc51f2c3e929f6168d1a92cb38abcd5fda41d679a2333 |
IEDL.DBID | DOA |
ISSN | 2691-3399 |
IngestDate | Tue Oct 22 15:11:59 EDT 2024 Fri Aug 23 03:11:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2757-1a8ef4bb7a6f6aa2b305cc51f2c3e929f6168d1a92cb38abcd5fda41d679a2333 |
ORCID | 0000-0001-7424-1139 0000-0002-7703-5856 |
OpenAccessLink | https://doaj.org/article/1e90de81c4154cfea507b11e50bb012f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e90de81c4154cfea507b11e50bb012f crossref_primary_10_1103_PRXQuantum_3_020337 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | PRX quantum |
PublicationYear | 2022 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PRXQuantum.3.020337Cc19R1 PRXQuantum.3.020337Cc15R1 PRXQuantum.3.020337Cc38R1 PRXQuantum.3.020337Cc59R1 PRXQuantum.3.020337Cc30R1 PRXQuantum.3.020337Cc51R1 PRXQuantum.3.020337Cc32R1 PRXQuantum.3.020337Cc53R1 PRXQuantum.3.020337Cc34R1 PRXQuantum.3.020337Cc55R1 PRXQuantum.3.020337Cc36R1 PRXQuantum.3.020337Cc57R1 PRXQuantum.3.020337Cc13R1 PRXQuantum.3.020337Cc11R1 PRXQuantum.3.020337Cc1R1 PRXQuantum.3.020337Cc5R1 PRXQuantum.3.020337Cc3R1 PRXQuantum.3.020337Cc9R1 PRXQuantum.3.020337Cc27R1 PRXQuantum.3.020337Cc48R1 PRXQuantum.3.020337Cc29R1 PRXQuantum.3.020337Cc40R1 PRXQuantum.3.020337Cc63R1 PRXQuantum.3.020337Cc42R1 PRXQuantum.3.020337Cc65R1 PRXQuantum.3.020337Cc44R1 PRXQuantum.3.020337Cc67R1 PRXQuantum.3.020337Cc23R1 PRXQuantum.3.020337Cc46R1 PRXQuantum.3.020337Cc69R1 PRXQuantum.3.020337Cc25R1 PRXQuantum.3.020337Cc21R1 PRXQuantum.3.020337Cc18R1 PRXQuantum.3.020337Cc16R1 PRXQuantum.3.020337Cc37R1 PRXQuantum.3.020337Cc39R1 PRXQuantum.3.020337Cc52R1 PRXQuantum.3.020337Cc31R1 PRXQuantum.3.020337Cc54R1 PRXQuantum.3.020337Cc33R1 PRXQuantum.3.020337Cc56R1 PRXQuantum.3.020337Cc35R1 PRXQuantum.3.020337Cc58R1 PRXQuantum.3.020337Cc14R1 PRXQuantum.3.020337Cc12R1 PRXQuantum.3.020337Cc10R1 PRXQuantum.3.020337Cc71R1 PRXQuantum.3.020337Cc4R1 PRXQuantum.3.020337Cc2R1 PRXQuantum.3.020337Cc8R1 PRXQuantum.3.020337Cc26R1 PRXQuantum.3.020337Cc49R1 PRXQuantum.3.020337Cc6R1 PRXQuantum.3.020337Cc28R1 PRXQuantum.3.020337Cc41R1 PRXQuantum.3.020337Cc62R1 PRXQuantum.3.020337Cc43R1 PRXQuantum.3.020337Cc64R1 PRXQuantum.3.020337Cc45R1 PRXQuantum.3.020337Cc66R1 PRXQuantum.3.020337Cc24R1 PRXQuantum.3.020337Cc68R1 PRXQuantum.3.020337Cc20R1 PRXQuantum.3.020337Cc60R1 |
References_xml | – ident: PRXQuantum.3.020337Cc67R1 doi: 10.1103/PhysRevA.91.022118 – ident: PRXQuantum.3.020337Cc9R1 doi: 10.1109/77.273061 – ident: PRXQuantum.3.020337Cc26R1 doi: 10.1103/PhysRevB.67.094510 – ident: PRXQuantum.3.020337Cc19R1 doi: 10.1103/PhysRevB.97.064508 – ident: PRXQuantum.3.020337Cc43R1 doi: 10.1103/PhysRevApplied.14.054033 – ident: PRXQuantum.3.020337Cc16R1 doi: 10.1063/1.4993937 – ident: PRXQuantum.3.020337Cc39R1 doi: 10.1103/PhysRevLett.118.057702 – ident: PRXQuantum.3.020337Cc1R1 doi: 10.1103/PhysRevLett.95.210503 – ident: PRXQuantum.3.020337Cc52R1 doi: 10.1103/PhysRevB.87.220505 – ident: PRXQuantum.3.020337Cc20R1 doi: 10.1038/s41586-018-0470-y – ident: PRXQuantum.3.020337Cc38R1 doi: 10.1103/PhysRevX.7.031037 – ident: PRXQuantum.3.020337Cc44R1 doi: 10.1038/s41598-020-77047-5 – ident: PRXQuantum.3.020337Cc29R1 doi: 10.1103/PhysRevLett.99.187006 – ident: PRXQuantum.3.020337Cc65R1 doi: 10.1080/09500349708231894 – ident: PRXQuantum.3.020337Cc8R1 doi: 10.1063/1.351479 – ident: PRXQuantum.3.020337Cc69R1 doi: 10.1103/PhysRevLett.109.080505 – ident: PRXQuantum.3.020337Cc21R1 doi: 10.1038/s41586-021-03288-7 – ident: PRXQuantum.3.020337Cc54R1 doi: 10.1038/s41467-017-02046-6 – ident: PRXQuantum.3.020337Cc56R1 doi: 10.1103/PhysRevApplied.12.054023 – ident: PRXQuantum.3.020337Cc58R1 doi: 10.1103/PhysRevApplied.10.034050 – ident: PRXQuantum.3.020337Cc3R1 doi: 10.1103/PhysRevLett.121.090502 – ident: PRXQuantum.3.020337Cc11R1 doi: 10.1063/1.2437662 – ident: PRXQuantum.3.020337Cc12R1 doi: 10.1088/1742-6596/97/1/012110 – ident: PRXQuantum.3.020337Cc23R1 doi: 10.1007/BF00683423 – ident: PRXQuantum.3.020337Cc4R1 doi: 10.1038/s41534-019-0168-5 – ident: PRXQuantum.3.020337Cc40R1 doi: 10.1103/PhysRevB.99.174512 – ident: PRXQuantum.3.020337Cc49R1 doi: 10.1126/science.1141324 – ident: PRXQuantum.3.020337Cc48R1 doi: 10.1103/PhysRevB.73.064512 – ident: PRXQuantum.3.020337Cc32R1 doi: 10.1126/science.1175552 – ident: PRXQuantum.3.020337Cc53R1 doi: 10.1103/PhysRevApplied.6.064007 – ident: PRXQuantum.3.020337Cc59R1 doi: 10.1103/PhysRevA.101.012302 – ident: PRXQuantum.3.020337Cc64R1 doi: 10.1063/1.5089550 – ident: PRXQuantum.3.020337Cc46R1 doi: 10.1103/PhysRevApplied.12.054015 – ident: PRXQuantum.3.020337Cc15R1 doi: 10.1116/1.4722982 – ident: PRXQuantum.3.020337Cc24R1 doi: 10.1063/1.98041 – ident: PRXQuantum.3.020337Cc5R1 doi: 10.1103/PhysRevLett.123.190502 – ident: PRXQuantum.3.020337Cc33R1 doi: 10.1103/PhysRevLett.111.080502 – ident: PRXQuantum.3.020337Cc62R1 doi: 10.1103/PhysRevA.97.022330 – ident: PRXQuantum.3.020337Cc34R1 doi: 10.1103/PhysRevApplied.3.044009 – ident: PRXQuantum.3.020337Cc13R1 doi: 10.1109/TASC.2009.2018249 – ident: PRXQuantum.3.020337Cc30R1 doi: 10.1103/PhysRevLett.98.267003 – ident: PRXQuantum.3.020337Cc35R1 doi: 10.1103/PhysRevApplied.6.041001 – ident: PRXQuantum.3.020337Cc14R1 doi: 10.1116/1.3673790 – ident: PRXQuantum.3.020337Cc37R1 doi: 10.1103/PhysRevApplied.8.044003 – ident: PRXQuantum.3.020337Cc42R1 doi: 10.1103/PhysRevApplied.15.034065 – ident: PRXQuantum.3.020337Cc36R1 doi: 10.1038/ncomms12964 – ident: PRXQuantum.3.020337Cc63R1 doi: 10.1103/PhysRevA.76.042319 – ident: PRXQuantum.3.020337Cc57R1 doi: 10.1126/sciadv.aao3603 – ident: PRXQuantum.3.020337Cc18R1 doi: 10.1088/1361-6668/ab8617 – ident: PRXQuantum.3.020337Cc2R1 doi: 10.1103/PhysRevB.92.035442 – ident: PRXQuantum.3.020337Cc71R1 doi: 10.1088/2058-9565/ab7559 – ident: PRXQuantum.3.020337Cc28R1 doi: 10.1103/PhysRevLett.97.167001 – ident: PRXQuantum.3.020337Cc6R1 doi: 10.1038/s41534-019-0224-1 – ident: PRXQuantum.3.020337Cc10R1 doi: 10.1049/ip-smt:20010395 – ident: PRXQuantum.3.020337Cc51R1 doi: 10.1103/PhysRevA.86.022305 – ident: PRXQuantum.3.020337Cc68R1 doi: 10.1103/PhysRevA.77.012307 – ident: PRXQuantum.3.020337Cc60R1 doi: 10.1038/s41928-020-00498-1 – ident: PRXQuantum.3.020337Cc55R1 doi: 10.1103/PhysRevA.96.062323 – ident: PRXQuantum.3.020337Cc27R1 doi: 10.1103/PhysRevB.72.134519 – ident: PRXQuantum.3.020337Cc31R1 doi: 10.1103/PhysRevLett.100.227005 – ident: PRXQuantum.3.020337Cc41R1 doi: 10.1103/PhysRevLett.123.120502 – ident: PRXQuantum.3.020337Cc45R1 doi: 10.1126/science.abc5186 – ident: PRXQuantum.3.020337Cc66R1 doi: 10.1016/S0375-9601(02)01272-0 – ident: PRXQuantum.3.020337Cc25R1 doi: 10.1126/science.1069372 |
SSID | ssj0002513149 |
Score | 2.3472264 |
Snippet | Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 020337 |
Title | Dynamical Sweet Spot Engineering via Two-Tone Flux Modulation of Superconducting Qubits |
URI | https://doaj.org/article/1e90de81c4154cfea507b11e50bb012f |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60IHgRn_hmDx5Nm80m2c1RbUsvijUVewv7hII2pU2sP9_ZJNbcvHhdhmWYSWbmI5PvQ-iGcGsTGPs9qYnyQmqNJ1nCPYAiviJSmbhSbxil7GnK-wNHk7OR-nI7YTU9cB24HjGJrw0nCjpNqKwRMMBIQkzkSwnF1VbV149bYMrVYOjaFGb_hmaI-LT3_DIdl-Bs-dGlXff5zSmft1pRi7G_ai3DfbTXzIT4rvblAG2Z-SHaqXYz1eoIvfVr1XgwSdfGFDhd5AVuEQniz5nAk3XuTfK5wcP38gs_5rrR5cK5xWm5MEsAvo7b1dmPSzkrVsfodTiYPIy8Rg_BUwGLmEcENzaUkonYxkIEEt5VpSJiA0UNjDk2JjHXRCSBkpQLqXRktQiJjlkiAkrpCerMwZFThBUTgHuEJBzwBNjx2DDfF4kkkRJWR2fo9ic02aKmvcgquODT7DeSGc3qSJ6hexe-janjrK4OIJNZk8nsr0ye_8clF2g3cD8oVCuJl6hTLEtzhbZXuryunpBv1STCZA |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+Sweet+Spot+Engineering+via+Two-Tone+Flux+Modulation+of+Superconducting+Qubits&rft.jtitle=PRX+quantum&rft.au=Valery%2C+Joseph+A.&rft.au=Chowdhury%2C+Shoumik&rft.au=Jones%2C+Glenn&rft.au=Didier%2C+Nicolas&rft.date=2022-05-01&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1103%2FPRXQuantum.3.020337&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PRXQuantum_3_020337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |