Features of Phase Transformations in Martensitic Class Steel for Oil Grade High-Strength Corrosion-Resistant Pipes

The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and e...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgist (New York) Vol. 65; no. 11-12; pp. 1245 - 1254
Main Authors: Pumpyansky, D. A., Pyshmintsev, I. Yu, Bityukov, S. M., Alieva, E. S., Gusev, A. A., Mikhailov, S. B., Lobanov, M. L.
Format: Journal Article
Language:English
Published: New York Springer US 01-03-2022
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Ni equ and chromium Cr equ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with δ-ferrite formation), phase transformation temperatures, and regions of different phases (δ-ferrite, γ -austenite, α -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to ≥ 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse α → γ transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase (δ + γ )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase (α + γ )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions.
AbstractList The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Niequ and chromium Crequ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with δ-ferrite formation), phase transformation temperatures, and regions of different phases (δ-ferrite, γ -austenite, α -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to ≥ 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse α → γ transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase (δ + γ )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase (α + γ )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions.
The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Ni equ and chromium Cr equ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with δ-ferrite formation), phase transformation temperatures, and regions of different phases (δ-ferrite, γ -austenite, α -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to ≥ 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse α → γ transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase (δ + γ )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase (α + γ )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions.
The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04-0.1 wt.% carbon additionally alloyed with nickel (2.0- 5.2 wt.%) and molybdenum (0-1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Ni.sub.equ and chromium Cr.sub.equ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with [delta]-ferrite formation), phase transformation temperatures, and regions of different phases ([delta]-ferrite, [gamma] -austenite, [alpha] -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to [greater than or equal to] 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse [alpha] [right arrow] [gamma] transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase ([delta] + [gamma] )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase ([alpha] + [gamma] )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions.
Audience Academic
Author Pumpyansky, D. A.
Pyshmintsev, I. Yu
Alieva, E. S.
Bityukov, S. M.
Mikhailov, S. B.
Gusev, A. A.
Lobanov, M. L.
Author_xml – sequence: 1
  givenname: D. A.
  surname: Pumpyansky
  fullname: Pumpyansky, D. A.
  email: Pumpyansky@tmk-group.com
  organization: PAO Pipe Metallurgical Combine
– sequence: 2
  givenname: I. Yu
  surname: Pyshmintsev
  fullname: Pyshmintsev, I. Yu
  organization: AO Russian Scientific Research Institute of the Pipe Industry
– sequence: 3
  givenname: S. M.
  surname: Bityukov
  fullname: Bityukov, S. M.
  organization: AO Russian Scientific Research Institute of the Pipe Industry
– sequence: 4
  givenname: E. S.
  surname: Alieva
  fullname: Alieva, E. S.
  organization: AO Russian Scientific Research Institute of the Pipe Industry
– sequence: 5
  givenname: A. A.
  surname: Gusev
  fullname: Gusev, A. A.
  organization: AO Russian Scientific Research Institute of the Pipe Industry
– sequence: 6
  givenname: S. B.
  surname: Mikhailov
  fullname: Mikhailov, S. B.
  organization: FGAOU VO Ural Federal University named after the First President of Russia B. N. Yeltsin
– sequence: 7
  givenname: M. L.
  surname: Lobanov
  fullname: Lobanov, M. L.
  organization: FGAOU VO Ural Federal University named after the First President of Russia B. N. Yeltsin
BookMark eNp9kV1LXDEQhoNY6Gr9A70KeB07yflIzqUsVQsWpep1yMmZ7EbOJtsky-K_b9ojeFfmYmB4n_l6z8hpiAEJ-crhigPIb5lz4B0DIRhwIYEdT8iKd7JhSg3ilKwARM9ADe1ncpbzK0DFYFiRdIOmHBJmGh193JqM9DmZkF1MO1N8DJn6QH-aVDBkX7yl69nkTJ8K4kyrij74md4mMyG985steyoJw6Zs6TqmFHPtwH5h9rmYUOij32P-Qj45M2e8eM_n5OXm-_P6jt0_3P5YX98zK2RzZKNtsBsna2XL0SoE7BV0UAujmVrZulE0Ewc5dqqT0PR9L1E5w00_dK6xfXNOLpe--xR_HzAX_RoPKdSRWvSyzpCiVVV1tag2Zkbtg4slGVtjwp239cvO1_q1hE4NHJSogFgAW8_LCZ3eJ78z6U1z0H_N0IsZupqh_5mhjxVqFihXcdhg-tjlP9Qf3vWP9g
CitedBy_id crossref_primary_10_1002_srin_202300798
crossref_primary_10_3103_S0967091222090091
Cites_doi 10.1016/j.jallcom.2017.05.286
10.21817/ijet/2016/v8i6/160806224
10.4028/www.scientific.net/AMR.628.440
10.1016/S1006-706X(13)60099-0
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s11015-022-01270-w
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-8892
EndPage 1254
ExternalDocumentID A705891082
10_1007_s11015_022_01270_w
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PDBOC
PF0
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z7R
Z7S
Z7V
Z7Y
Z7Z
Z85
Z86
Z8M
Z8N
Z8P
Z8S
Z8T
Z8Z
ZMTXR
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
8BQ
8FD
JG9
ID FETCH-LOGICAL-c273w-bc3e5bdcc741ec8e0e68050dccbad474fb23d107b5857036667e8fa1a695f3c63
IEDL.DBID AEJHL
ISSN 0026-0894
IngestDate Tue Nov 05 16:28:28 EST 2024
Tue Nov 12 22:28:51 EST 2024
Sat Nov 23 05:25:04 EST 2024
Sat Dec 16 12:08:20 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords phase transformation temperatures
chromium equivalent
nickel equivalent
austenite
martensitic class
ferrite-forming elements
phase transformation diagram
δ-ferrite
austenite-forming elements
dilatometric curve
crystallization
phase composition
chemical composition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273w-bc3e5bdcc741ec8e0e68050dccbad474fb23d107b5857036667e8fa1a695f3c63
PQID 2672737248
PQPubID 326277
PageCount 10
ParticipantIDs proquest_journals_2672737248
gale_infotracacademiconefile_A705891082
crossref_primary_10_1007_s11015_022_01270_w
springer_journals_10_1007_s11015_022_01270_w
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Metallurgist (New York)
PublicationTitleAbbrev Metallurgist
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References J. Bellarby, Well Completion Design. Developments in Petroleum Science, Elsevier, Amsterdam (2009).
PrifiharniSPerdanaHRomijarsoTBThe hardness and microstructure of the modified 13Cr steam turbine blade steel in tempered conditionsIntern. J. of Engineering and Technology (IJET)2017862672267510.21817/ijet/2016/v8i6/160806224
Ya. M. Potak, High-Strength Steels [in Russian], Metallurgiya, Moscow (1072).
BojackAZhaoLMorriscPFSietsmaJIn situ thermo-magnetic investigation of the austenitic phase during tempering of a 13Cr6Ni2Mo supermartensitic stainless steelJ. of Alloys and Compounds201772045145910.1016/j.jallcom.2017.05.286
DezhiZChunshengWTaiheSImpact of microstructure on the performance of a high-strength super 13Cr materialNatural Gas Industry20153527075
P. N. Dent, Evaluation of the Seabed Temperature Corrosion and Sulphide Stress Cracking (SSC) Resistance of Weldable Martensitic 13% Chromium Stainless Steel (WMSS), University of Birmingham. February (2014).
LiuXZhaoKZhouYThe influence of heat treatment on microstructure and mechanical properties of Cr15 super martensitic stainless steelAdvanced Materials Research2012393–39544044310.4028/www.scientific.net/AMR.628.440
Thermo-Calc Software Company Site: https://www. thermocalc.com/. Access date: 20.06.2021.
L. V. Mironov, N. F. Dubrov, M. I. Gol’dshtein, et al., Electrical Engineering Steel Phase Transformations and Properties [in Russian], Metallurgizdat, Sverdlovsk (1962).
GOST ISO 13680–2016, Seamless Casing Pipes, Pump-Compressor Couplings of Corrosion-Resistant Highly Alloyed Steels and Alloys for the Oil and Gas Industry, Technical Specifications.
WenJIANGEffect of heat treatment on reversed austenite in Cr15 super martensitic stainless steelJ. of Iron and Steel Research, Int.2013205616510.1016/S1006-706X(13)60099-0
GOSТ 31446–2017 (ISO 11960:2014), Steel Casing and Pump-Compressor Pipes for The Oil and Gas Industry, General Technical Specifications.
PAO TMK Company Site:https://www.tmk-group. Access date: 10.08.2021.
JIANG Wen (1270_CR12) 2013; 20
1270_CR1
1270_CR2
1270_CR3
A Bojack (1270_CR11) 2017; 720
Z Dezhi (1270_CR4) 2015; 35
X Liu (1270_CR10) 2012; 393–395
1270_CR8
1270_CR13
1270_CR5
S Prifiharni (1270_CR9) 2017; 8
1270_CR6
1270_CR7
References_xml – volume: 35
  start-page: 70
  issue: 2
  year: 2015
  ident: 1270_CR4
  publication-title: Natural Gas Industry
  contributor:
    fullname: Z Dezhi
– volume: 720
  start-page: 451
  year: 2017
  ident: 1270_CR11
  publication-title: J. of Alloys and Compounds
  doi: 10.1016/j.jallcom.2017.05.286
  contributor:
    fullname: A Bojack
– ident: 1270_CR1
– volume: 8
  start-page: 2672
  issue: 6
  year: 2017
  ident: 1270_CR9
  publication-title: Intern. J. of Engineering and Technology (IJET)
  doi: 10.21817/ijet/2016/v8i6/160806224
  contributor:
    fullname: S Prifiharni
– ident: 1270_CR13
– volume: 393–395
  start-page: 440
  year: 2012
  ident: 1270_CR10
  publication-title: Advanced Materials Research
  doi: 10.4028/www.scientific.net/AMR.628.440
  contributor:
    fullname: X Liu
– volume: 20
  start-page: 61
  issue: 5
  year: 2013
  ident: 1270_CR12
  publication-title: J. of Iron and Steel Research, Int.
  doi: 10.1016/S1006-706X(13)60099-0
  contributor:
    fullname: JIANG Wen
– ident: 1270_CR5
– ident: 1270_CR3
– ident: 1270_CR2
– ident: 1270_CR7
– ident: 1270_CR6
– ident: 1270_CR8
SSID ssj0010009
Score 2.259106
Snippet The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.%...
The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04-0.1 wt.%...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1245
SubjectTerms Austenite
Carbon dioxide
Casing
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Chromium
Corrosion
Corrosion effects
Corrosion resistance
Corrosion resistant steels
Crystallization
Delta ferrite
Equivalence
Heat treatment
Inhomogeneity
Iron compounds
Martensitic stainless steels
Materials Science
Mechanical properties
Metallic Materials
Microstructure
Nickel
Phase composition
Phase transitions
Pipes
Room temperature
Steel
Steel structures
Steel, High strength
Temperature
Transformation temperature
Title Features of Phase Transformations in Martensitic Class Steel for Oil Grade High-Strength Corrosion-Resistant Pipes
URI https://link.springer.com/article/10.1007/s11015-022-01270-w
https://www.proquest.com/docview/2672737248
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXODAGzFeygGJAwR1faTtcYLBhBBMPCRuUZsHTKBu6jrt72N3HRuvA1zbKGljJ_4S258BDh1PkVMw5cLGLvdtHPI0diwXysY2sFYITfeQ7fvw5ik6bxFNjvdxdZG9nk48kuVGPc11Q-WhZGKKJHBDh4_mYQFtT4DKvdBsXbWvP5wHhBvGkR14WI5iv8qV-bmXT_bo6678zT1aWp2LlX997yosVyCTNcdasQZzJluHpRnqwQ3ICfsN8azNepZ1XtCWsYcZDIu6yLoZI5IBinDHflhZPpPdF8a8MWzFbrtv7DJPtGEUK8LJvZ09Fy_srJfjn2IP_M4MCJ1mBet0-2awCY8XrYezNq_qL3CFoGbEU-WZINVKIeowKjKOEZETOPggTbQf-jZ1PY3HxzSISh4vIUIT2aSRiDiwnhLeFtSyXma2gVEZmbDh64bWsa-9JI0bqCMKt5dAWy2COhxPpCD7Y5oNOSVUppmUOJOynEk5qsMRCUrSGizyRCVVKgGORWxWshmWxRIR3dRhbyJLWS3OgXTJ--yFrh_V4WQivOnr38fd-VvzXVh0S_lTxNoe1Ip8aPZhfqCHB5XKvgOofeYZ
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOQCH5bGLKAusDytxAEtpHk5yrChQtMBW2yKVk5X4AZVQitJU_fs7kyZblscBrollJzNj-7Nn5huAn46nyCmYcmFjl_s2DnkaO5YLZWMbWCuEpnvIbj-8GUadM6LJ8etcmDLavXZJliv1ItkNrYeyiSmUwA0dPluGFWI7dxuw0h7e3XX-eQ8IOMxDO_C0HMV-lSzzdi__bUgvl-VX_tFy2znf-NwHb8KXCmay9twutmDJZNuw_ox88CvkhP6meNpmY8t6D7ibscEzFIvWyEYZI5oBinHHflhZQJP1C2MeGbZiv0eP7CJPtGEULcLJwZ3dFw_sdJzjr2IP_I-ZED7NCtYbPZnJN7g9PxucdnlVgYErhDUznirPBKlWCnGHUZFxjIicwMEHaaL90Lep62k8QKZBVDJ5CRGayCatRMSB9ZTwdqCRjTOzC4wKyYQtX7e0jn3tJWncQitRuMAE2moRNOG4VoN8mhNtyAWlMklSoiRlKUk5a8IRaUrSLCzyRCVVMgGORXxWsh2W5RIR3zRhv1amrKbnRLrkf_ZC14-acFIrb_H6_XH3Ptb8B6x2B9dX8ury5td3WHNLW6D4tX1oFPnUHMDyRE8PK_v9C9Oc6ks
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BIiF6oC0PERrKHipxKCscP9b2MYIEECiNmlTqbWXvg0RCTuQ4yt_vjOMkPMqh6tVe7dozs7vf7sx8A_DN8RQ5BVMubOxy38YhT2PHcqFsbANrhdB0D3k7CHu_o-sO0eSss_jLaPeVS3KZ00AsTVlxOdX2cpP4hpZEmcUUVuCGDl9sQ52uxfwa1Nt3w5vu2pNAIGIZ5oEn5yj2q8SZv_fyYnN6vUS_8ZWWW1D34_9__CfYq-Anay_t5TNsmWwfPjwjJTyAnFDhHE_hbGJZf4S7HBs-Q7dopWycMaIfoNh37IeVhTXZoDDmiWEr9mP8xG7yRBtGUSScHN_ZYzFiV5Mcfxt74D_NjHBrVrD-eGpmh_Cr2xle3fKqMgNXCHcWPFWeCVKtFOIRoyLjGBE5gYMP0kT7oW9T19N4sEyDqGT4EiI0kU1aiYgD6ynhHUEtm2TmGBgVmAlbvm5pHfvaS9K4hdajcOEJtNUiaMD3lUrkdEnAITdUyyRJiZKUpSTlogHnpDVJs7PIE5VUSQY4FvFcyXZYllFE3NOA5kqxspq2M-mSX9oLXT9qwMVKkZvX74978m_Nz2Cnf92VD3e9-y-w65amQGFtTagV-dycwvZMz79WpvwHrZDy4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Features+of+Phase+Transformations+in+Martensitic+Class+Steel+for+Oil+Grade+High-Strength+Corrosion-Resistant+Pipes&rft.jtitle=Metallurgist+%28New+York%29&rft.au=Pumpyansky%2C+D.+A.&rft.au=Pyshmintsev%2C+I.+Yu&rft.au=Bityukov%2C+S.+M.&rft.au=Alieva%2C+E.+S.&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0026-0894&rft.eissn=1573-8892&rft.volume=65&rft.issue=11-12&rft.spage=1245&rft.epage=1254&rft_id=info:doi/10.1007%2Fs11015-022-01270-w&rft.externalDocID=10_1007_s11015_022_01270_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-0894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-0894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-0894&client=summon