Features of Phase Transformations in Martensitic Class Steel for Oil Grade High-Strength Corrosion-Resistant Pipes
The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and e...
Saved in:
Published in: | Metallurgist (New York) Vol. 65; no. 11-12; pp. 1245 - 1254 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-03-2022
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Ni
equ
and chromium Cr
equ
equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with δ-ferrite formation), phase transformation temperatures, and regions of different phases (δ-ferrite, γ -austenite, α -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to ≥ 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse α → γ transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase (δ + γ )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase (α + γ )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions. |
---|---|
AbstractList | The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Niequ and chromium Crequ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with δ-ferrite formation), phase transformation temperatures, and regions of different phases (δ-ferrite, γ -austenite, α -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to ≥ 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse α → γ transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase (δ + γ )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase (α + γ )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions. The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.% carbon additionally alloyed with nickel (2.0– 5.2 wt.%) and molybdenum (0–1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Ni equ and chromium Cr equ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with δ-ferrite formation), phase transformation temperatures, and regions of different phases (δ-ferrite, γ -austenite, α -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to ≥ 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse α → γ transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase (δ + γ )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase (α + γ )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions. The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04-0.1 wt.% carbon additionally alloyed with nickel (2.0- 5.2 wt.%) and molybdenum (0-1.20 wt.%) is studied by calculation (using a Thermo-Calc program) and experimental approaches. The effect of nickel Ni.sub.equ and chromium Cr.sub.equ equivalents for test steel chemical compositions on types of crystallization (peritectic or single-phase mechanism with [delta]-ferrite formation), phase transformation temperatures, and regions of different phases ([delta]-ferrite, [gamma] -austenite, [alpha] -ferrite) is identified. An increase in ferrite-forming element concentration over values of the chromium equivalent up to [greater than or equal to] 16 wt.% or more leads to steel transition into the martensitic-ferritic class. An increase in the content of austenite-forming elements, primarily nickel, reduces the lower boundary of the temperature range for inverse [alpha] [right arrow] [gamma] transformation and leads to formation of stabilized austenite within the microstructure. Results of modeling phase transformation are compared with the microstructure and phase composition of two grades of industrial steel. It is established that chemical inhomogeneity of the two-phase ([delta] + [gamma] )-structure formed during crystallization is retained at room temperature. Heat treatment regimes connected with heating in the lower half of the two-phase ([alpha] + [gamma] )-region are determined when stabilized austenite is fixed in the steel structure at room temperature affecting mechanical properties. Research facilitates development of new steel compositions at TMK Group plants for the producing seamless casing and pump-compressor pipes of P110 type 13Cr strength group, resistant to carbon dioxide corrosion, including operation in cold macroclimatic conditions. |
Audience | Academic |
Author | Pumpyansky, D. A. Pyshmintsev, I. Yu Alieva, E. S. Bityukov, S. M. Mikhailov, S. B. Gusev, A. A. Lobanov, M. L. |
Author_xml | – sequence: 1 givenname: D. A. surname: Pumpyansky fullname: Pumpyansky, D. A. email: Pumpyansky@tmk-group.com organization: PAO Pipe Metallurgical Combine – sequence: 2 givenname: I. Yu surname: Pyshmintsev fullname: Pyshmintsev, I. Yu organization: AO Russian Scientific Research Institute of the Pipe Industry – sequence: 3 givenname: S. M. surname: Bityukov fullname: Bityukov, S. M. organization: AO Russian Scientific Research Institute of the Pipe Industry – sequence: 4 givenname: E. S. surname: Alieva fullname: Alieva, E. S. organization: AO Russian Scientific Research Institute of the Pipe Industry – sequence: 5 givenname: A. A. surname: Gusev fullname: Gusev, A. A. organization: AO Russian Scientific Research Institute of the Pipe Industry – sequence: 6 givenname: S. B. surname: Mikhailov fullname: Mikhailov, S. B. organization: FGAOU VO Ural Federal University named after the First President of Russia B. N. Yeltsin – sequence: 7 givenname: M. L. surname: Lobanov fullname: Lobanov, M. L. organization: FGAOU VO Ural Federal University named after the First President of Russia B. N. Yeltsin |
BookMark | eNp9kV1LXDEQhoNY6Gr9A70KeB07yflIzqUsVQsWpep1yMmZ7EbOJtsky-K_b9ojeFfmYmB4n_l6z8hpiAEJ-crhigPIb5lz4B0DIRhwIYEdT8iKd7JhSg3ilKwARM9ADe1ncpbzK0DFYFiRdIOmHBJmGh193JqM9DmZkF1MO1N8DJn6QH-aVDBkX7yl69nkTJ8K4kyrij74md4mMyG985steyoJw6Zs6TqmFHPtwH5h9rmYUOij32P-Qj45M2e8eM_n5OXm-_P6jt0_3P5YX98zK2RzZKNtsBsna2XL0SoE7BV0UAujmVrZulE0Ewc5dqqT0PR9L1E5w00_dK6xfXNOLpe--xR_HzAX_RoPKdSRWvSyzpCiVVV1tag2Zkbtg4slGVtjwp239cvO1_q1hE4NHJSogFgAW8_LCZ3eJ78z6U1z0H_N0IsZupqh_5mhjxVqFihXcdhg-tjlP9Qf3vWP9g |
CitedBy_id | crossref_primary_10_1002_srin_202300798 crossref_primary_10_3103_S0967091222090091 |
Cites_doi | 10.1016/j.jallcom.2017.05.286 10.21817/ijet/2016/v8i6/160806224 10.4028/www.scientific.net/AMR.628.440 10.1016/S1006-706X(13)60099-0 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1007/s11015-022-01270-w |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-8892 |
EndPage | 1254 |
ExternalDocumentID | A705891082 10_1007_s11015_022_01270_w |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PDBOC PF0 PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XU3 YLTOR Z7R Z7S Z7V Z7Y Z7Z Z85 Z86 Z8M Z8N Z8P Z8S Z8T Z8Z ZMTXR ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c273w-bc3e5bdcc741ec8e0e68050dccbad474fb23d107b5857036667e8fa1a695f3c63 |
IEDL.DBID | AEJHL |
ISSN | 0026-0894 |
IngestDate | Tue Nov 05 16:28:28 EST 2024 Tue Nov 12 22:28:51 EST 2024 Sat Nov 23 05:25:04 EST 2024 Sat Dec 16 12:08:20 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11-12 |
Keywords | phase transformation temperatures chromium equivalent nickel equivalent austenite martensitic class ferrite-forming elements phase transformation diagram δ-ferrite austenite-forming elements dilatometric curve crystallization phase composition chemical composition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273w-bc3e5bdcc741ec8e0e68050dccbad474fb23d107b5857036667e8fa1a695f3c63 |
PQID | 2672737248 |
PQPubID | 326277 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2672737248 gale_infotracacademiconefile_A705891082 crossref_primary_10_1007_s11015_022_01270_w springer_journals_10_1007_s11015_022_01270_w |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Metallurgist (New York) |
PublicationTitleAbbrev | Metallurgist |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | J. Bellarby, Well Completion Design. Developments in Petroleum Science, Elsevier, Amsterdam (2009). PrifiharniSPerdanaHRomijarsoTBThe hardness and microstructure of the modified 13Cr steam turbine blade steel in tempered conditionsIntern. J. of Engineering and Technology (IJET)2017862672267510.21817/ijet/2016/v8i6/160806224 Ya. M. Potak, High-Strength Steels [in Russian], Metallurgiya, Moscow (1072). BojackAZhaoLMorriscPFSietsmaJIn situ thermo-magnetic investigation of the austenitic phase during tempering of a 13Cr6Ni2Mo supermartensitic stainless steelJ. of Alloys and Compounds201772045145910.1016/j.jallcom.2017.05.286 DezhiZChunshengWTaiheSImpact of microstructure on the performance of a high-strength super 13Cr materialNatural Gas Industry20153527075 P. N. Dent, Evaluation of the Seabed Temperature Corrosion and Sulphide Stress Cracking (SSC) Resistance of Weldable Martensitic 13% Chromium Stainless Steel (WMSS), University of Birmingham. February (2014). LiuXZhaoKZhouYThe influence of heat treatment on microstructure and mechanical properties of Cr15 super martensitic stainless steelAdvanced Materials Research2012393–39544044310.4028/www.scientific.net/AMR.628.440 Thermo-Calc Software Company Site: https://www. thermocalc.com/. Access date: 20.06.2021. L. V. Mironov, N. F. Dubrov, M. I. Gol’dshtein, et al., Electrical Engineering Steel Phase Transformations and Properties [in Russian], Metallurgizdat, Sverdlovsk (1962). GOST ISO 13680–2016, Seamless Casing Pipes, Pump-Compressor Couplings of Corrosion-Resistant Highly Alloyed Steels and Alloys for the Oil and Gas Industry, Technical Specifications. WenJIANGEffect of heat treatment on reversed austenite in Cr15 super martensitic stainless steelJ. of Iron and Steel Research, Int.2013205616510.1016/S1006-706X(13)60099-0 GOSТ 31446–2017 (ISO 11960:2014), Steel Casing and Pump-Compressor Pipes for The Oil and Gas Industry, General Technical Specifications. PAO TMK Company Site:https://www.tmk-group. Access date: 10.08.2021. JIANG Wen (1270_CR12) 2013; 20 1270_CR1 1270_CR2 1270_CR3 A Bojack (1270_CR11) 2017; 720 Z Dezhi (1270_CR4) 2015; 35 X Liu (1270_CR10) 2012; 393–395 1270_CR8 1270_CR13 1270_CR5 S Prifiharni (1270_CR9) 2017; 8 1270_CR6 1270_CR7 |
References_xml | – volume: 35 start-page: 70 issue: 2 year: 2015 ident: 1270_CR4 publication-title: Natural Gas Industry contributor: fullname: Z Dezhi – volume: 720 start-page: 451 year: 2017 ident: 1270_CR11 publication-title: J. of Alloys and Compounds doi: 10.1016/j.jallcom.2017.05.286 contributor: fullname: A Bojack – ident: 1270_CR1 – volume: 8 start-page: 2672 issue: 6 year: 2017 ident: 1270_CR9 publication-title: Intern. J. of Engineering and Technology (IJET) doi: 10.21817/ijet/2016/v8i6/160806224 contributor: fullname: S Prifiharni – ident: 1270_CR13 – volume: 393–395 start-page: 440 year: 2012 ident: 1270_CR10 publication-title: Advanced Materials Research doi: 10.4028/www.scientific.net/AMR.628.440 contributor: fullname: X Liu – volume: 20 start-page: 61 issue: 5 year: 2013 ident: 1270_CR12 publication-title: J. of Iron and Steel Research, Int. doi: 10.1016/S1006-706X(13)60099-0 contributor: fullname: JIANG Wen – ident: 1270_CR5 – ident: 1270_CR3 – ident: 1270_CR2 – ident: 1270_CR7 – ident: 1270_CR6 – ident: 1270_CR8 |
SSID | ssj0010009 |
Score | 2.259106 |
Snippet | The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04–0.1 wt.%... The effect of chemical composition on features of phase transformation in martensitic stainless steels based on 13 wt.% chromium containing 0.04-0.1 wt.%... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1245 |
SubjectTerms | Austenite Carbon dioxide Casing Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Chromium Corrosion Corrosion effects Corrosion resistance Corrosion resistant steels Crystallization Delta ferrite Equivalence Heat treatment Inhomogeneity Iron compounds Martensitic stainless steels Materials Science Mechanical properties Metallic Materials Microstructure Nickel Phase composition Phase transitions Pipes Room temperature Steel Steel structures Steel, High strength Temperature Transformation temperature |
Title | Features of Phase Transformations in Martensitic Class Steel for Oil Grade High-Strength Corrosion-Resistant Pipes |
URI | https://link.springer.com/article/10.1007/s11015-022-01270-w https://www.proquest.com/docview/2672737248 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXODAGzFeygGJAwR1faTtcYLBhBBMPCRuUZsHTKBu6jrt72N3HRuvA1zbKGljJ_4S258BDh1PkVMw5cLGLvdtHPI0diwXysY2sFYITfeQ7fvw5ik6bxFNjvdxdZG9nk48kuVGPc11Q-WhZGKKJHBDh4_mYQFtT4DKvdBsXbWvP5wHhBvGkR14WI5iv8qV-bmXT_bo6678zT1aWp2LlX997yosVyCTNcdasQZzJluHpRnqwQ3ICfsN8azNepZ1XtCWsYcZDIu6yLoZI5IBinDHflhZPpPdF8a8MWzFbrtv7DJPtGEUK8LJvZ09Fy_srJfjn2IP_M4MCJ1mBet0-2awCY8XrYezNq_qL3CFoGbEU-WZINVKIeowKjKOEZETOPggTbQf-jZ1PY3HxzSISh4vIUIT2aSRiDiwnhLeFtSyXma2gVEZmbDh64bWsa-9JI0bqCMKt5dAWy2COhxPpCD7Y5oNOSVUppmUOJOynEk5qsMRCUrSGizyRCVVKgGORWxWshmWxRIR3dRhbyJLWS3OgXTJ--yFrh_V4WQivOnr38fd-VvzXVh0S_lTxNoe1Ip8aPZhfqCHB5XKvgOofeYZ |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOQCH5bGLKAusDytxAEtpHk5yrChQtMBW2yKVk5X4AZVQitJU_fs7kyZblscBrollJzNj-7Nn5huAn46nyCmYcmFjl_s2DnkaO5YLZWMbWCuEpnvIbj-8GUadM6LJ8etcmDLavXZJliv1ItkNrYeyiSmUwA0dPluGFWI7dxuw0h7e3XX-eQ8IOMxDO_C0HMV-lSzzdi__bUgvl-VX_tFy2znf-NwHb8KXCmay9twutmDJZNuw_ox88CvkhP6meNpmY8t6D7ibscEzFIvWyEYZI5oBinHHflhZQJP1C2MeGbZiv0eP7CJPtGEULcLJwZ3dFw_sdJzjr2IP_I-ZED7NCtYbPZnJN7g9PxucdnlVgYErhDUznirPBKlWCnGHUZFxjIicwMEHaaL90Lep62k8QKZBVDJ5CRGayCatRMSB9ZTwdqCRjTOzC4wKyYQtX7e0jn3tJWncQitRuMAE2moRNOG4VoN8mhNtyAWlMklSoiRlKUk5a8IRaUrSLCzyRCVVMgGORXxWsh2W5RIR3zRhv1amrKbnRLrkf_ZC14-acFIrb_H6_XH3Ptb8B6x2B9dX8ury5td3WHNLW6D4tX1oFPnUHMDyRE8PK_v9C9Oc6ks |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BIiF6oC0PERrKHipxKCscP9b2MYIEECiNmlTqbWXvg0RCTuQ4yt_vjOMkPMqh6tVe7dozs7vf7sx8A_DN8RQ5BVMubOxy38YhT2PHcqFsbANrhdB0D3k7CHu_o-sO0eSss_jLaPeVS3KZ00AsTVlxOdX2cpP4hpZEmcUUVuCGDl9sQ52uxfwa1Nt3w5vu2pNAIGIZ5oEn5yj2q8SZv_fyYnN6vUS_8ZWWW1D34_9__CfYq-Anay_t5TNsmWwfPjwjJTyAnFDhHE_hbGJZf4S7HBs-Q7dopWycMaIfoNh37IeVhTXZoDDmiWEr9mP8xG7yRBtGUSScHN_ZYzFiV5Mcfxt74D_NjHBrVrD-eGpmh_Cr2xle3fKqMgNXCHcWPFWeCVKtFOIRoyLjGBE5gYMP0kT7oW9T19N4sEyDqGT4EiI0kU1aiYgD6ynhHUEtm2TmGBgVmAlbvm5pHfvaS9K4hdajcOEJtNUiaMD3lUrkdEnAITdUyyRJiZKUpSTlogHnpDVJs7PIE5VUSQY4FvFcyXZYllFE3NOA5kqxspq2M-mSX9oLXT9qwMVKkZvX74978m_Nz2Cnf92VD3e9-y-w65amQGFtTagV-dycwvZMz79WpvwHrZDy4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Features+of+Phase+Transformations+in+Martensitic+Class+Steel+for+Oil+Grade+High-Strength+Corrosion-Resistant+Pipes&rft.jtitle=Metallurgist+%28New+York%29&rft.au=Pumpyansky%2C+D.+A.&rft.au=Pyshmintsev%2C+I.+Yu&rft.au=Bityukov%2C+S.+M.&rft.au=Alieva%2C+E.+S.&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0026-0894&rft.eissn=1573-8892&rft.volume=65&rft.issue=11-12&rft.spage=1245&rft.epage=1254&rft_id=info:doi/10.1007%2Fs11015-022-01270-w&rft.externalDocID=10_1007_s11015_022_01270_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-0894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-0894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-0894&client=summon |