Heat transfer investigation of a 90° zigzag channel diffusion-bonded heat exchanger

•Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat exchanger.•A new Nusselt number correlation for the tested prototype is developed.•Thermal performance comparison of different zigzag channel geo...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 190; p. 116823
Main Authors: Cavalcanti Alvarez, Rodrigo, Sarmiento, Andrés P.C., Cisterna, Luis H.R., Milanese, Fernando H., Mantelli, Marcia B.H.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 25-05-2021
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat exchanger.•A new Nusselt number correlation for the tested prototype is developed.•Thermal performance comparison of different zigzag channel geometries. Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among the equipment used for these applications, diffusion-bonded heat exchangers are receiving more attention to be used as pre-coolers on the cycle, due to their robustness and capability of operating at the demanded conditions. Currently, limited research focused on the influence of the pre-cooler’s cold-side fluid, water, on the thermal performance of the diffusion-bonded heat exchangers. In the present study, a novel zigzag channel for the diffusion-bonded heat exchangers with square cross-section was manufactured and experimentally investigated in a water-water configuration. During the experiments, the Reynolds number of the hot and the cold sides varied from 1529 to 8313 and from 1299 to 6618, respectively, covering laminar to turbulent flow regimes. A new heat transfer correlation is proposed based on dimensionless Reynolds and Prandtl numbers, covering a large Reynolds number range not yet experimentally investigated for the water. In the laminar regime, the current geometry increases the Nusselt number up to 4.1 times when compared to a straight channel. For the complete Reynolds number range evaluated, from 1299 to 8313, the average enhancement of a diffusion bonded heat exchanger with the proposed geometry compared to a straight channel one is of 2.2 times. Therefore, the current zigzag design proposed in this study provided a significant advantage in terms of heat transfer performance.
AbstractList Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among the equipment used for these applications, diffusion-bonded heat exchangers are receiving more attention to be used as pre-coolers on the cycle, due to their robustness and capability of operating at the demanded conditions. Currently, limited research focused on the influence of the pre-cooler's cold-side fluid, water, on the thermal performance of the diffusion-bonded heat exchangers. In the present study, a novel zigzag channel for the diffusion-bonded heat exchangers with square cross-section was manufactured and experimentally investigated in a water-water configuration. During the experiments, the Reynolds number of the hot and the cold sides varied from 1529 to 8313 and from 1299 to 6618, respectively, covering laminar to turbulent flow regimes. A new heat transfer correlation is proposed based on dimensionless Reynolds and Prandtl numbers, covering a large Reynolds number range not yet experimentally investigated for the water. In the laminar regime, the current geometry increases the Nusselt number up to 4.1 times when compared to a straight channel. For the complete Reynolds number range evaluated, from 1299 to 8313, the average enhancement of a diffusion bonded heat exchanger with the proposed geometry compared to a straight channel one is of 2.2 times. Therefore, the current zigzag design proposed in this study provided a significant advantage in terms of heat transfer performance.
•Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat exchanger.•A new Nusselt number correlation for the tested prototype is developed.•Thermal performance comparison of different zigzag channel geometries. Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among the equipment used for these applications, diffusion-bonded heat exchangers are receiving more attention to be used as pre-coolers on the cycle, due to their robustness and capability of operating at the demanded conditions. Currently, limited research focused on the influence of the pre-cooler’s cold-side fluid, water, on the thermal performance of the diffusion-bonded heat exchangers. In the present study, a novel zigzag channel for the diffusion-bonded heat exchangers with square cross-section was manufactured and experimentally investigated in a water-water configuration. During the experiments, the Reynolds number of the hot and the cold sides varied from 1529 to 8313 and from 1299 to 6618, respectively, covering laminar to turbulent flow regimes. A new heat transfer correlation is proposed based on dimensionless Reynolds and Prandtl numbers, covering a large Reynolds number range not yet experimentally investigated for the water. In the laminar regime, the current geometry increases the Nusselt number up to 4.1 times when compared to a straight channel. For the complete Reynolds number range evaluated, from 1299 to 8313, the average enhancement of a diffusion bonded heat exchanger with the proposed geometry compared to a straight channel one is of 2.2 times. Therefore, the current zigzag design proposed in this study provided a significant advantage in terms of heat transfer performance.
ArticleNumber 116823
Author Cisterna, Luis H.R.
Cavalcanti Alvarez, Rodrigo
Sarmiento, Andrés P.C.
Mantelli, Marcia B.H.
Milanese, Fernando H.
Author_xml – sequence: 1
  givenname: Rodrigo
  surname: Cavalcanti Alvarez
  fullname: Cavalcanti Alvarez, Rodrigo
  email: rodrigo.alvarez@labtucal.ufsc.br
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
– sequence: 2
  givenname: Andrés P.C.
  surname: Sarmiento
  fullname: Sarmiento, Andrés P.C.
  email: andres@labtucal.ufsc.br
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
– sequence: 3
  givenname: Luis H.R.
  surname: Cisterna
  fullname: Cisterna, Luis H.R.
  email: lrodriguez@academicos.uta.cl
  organization: Department of Mechanical Engineering, University of Tarapaca, Arica, Chile
– sequence: 4
  givenname: Fernando H.
  surname: Milanese
  fullname: Milanese, Fernando H.
  email: milanez@labtucal.ufsc.br
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
– sequence: 5
  givenname: Marcia B.H.
  surname: Mantelli
  fullname: Mantelli, Marcia B.H.
  email: marcia.mantelli@ufsc.br
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
BookMark eNqNkM9OAjEQxhuDiYC-QxO9LvbPdrubeDFExITEC56btjtdSqCL7UKUp_IZfDKX4MWbp5lkvu-bmd8IDUIbAKE7SiaU0OJ-PdG73aZbQdzqDYRmwgijE0qLkvELNKSl5JkoSDHoey6qLOeUXqFRSmtCKCtlPkTLOegOd1GH5CBiHw6QOt_ozrcBtw5rXJHvL3z0zVE32K50CLDBtXdun3pJZtpQQ41XpxT4OM0biNfo0ulNgpvfOkZvs6fldJ4tXp9fpo-LzDLJu6ysikpYKY00XGjOhNZCV5Qxw0tirMmNdbmonLY2d9LUgri8lq6gVAI12vIxuj3n7mL7vu8PV-t2H0O_UjHBhKQ5q2SvejirbGxTiuDULvqtjp-KEnXiqNbqL0d14qjOHHv77GyH_pODh6iS9RAs1D6C7VTd-v8F_QBDSIfP
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_118989
crossref_primary_10_1016_j_anucene_2022_109653
crossref_primary_10_1016_j_anucene_2023_109720
crossref_primary_10_1016_j_applthermaleng_2022_118760
crossref_primary_10_1016_j_applthermaleng_2022_118341
crossref_primary_10_3389_fenrg_2022_885607
crossref_primary_10_1016_j_enconman_2022_115993
crossref_primary_10_2139_ssrn_4163427
crossref_primary_10_1007_s00231_023_03437_w
crossref_primary_10_1016_j_applthermaleng_2024_122466
crossref_primary_10_1016_j_applthermaleng_2023_120321
crossref_primary_10_2139_ssrn_4067270
crossref_primary_10_2139_ssrn_4202267
crossref_primary_10_1080_01457632_2022_2164679
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122996
Cites_doi 10.1016/j.ijheatmasstransfer.2019.119165
10.1016/j.ijrefrig.2005.11.005
10.1016/j.expthermflusci.2007.06.006
10.1016/j.applthermaleng.2017.08.113
10.1016/j.ijheatmasstransfer.2010.02.022
10.1016/j.nucengdes.2014.05.032
10.1016/j.applthermaleng.2016.07.149
10.1016/j.applthermaleng.2011.08.012
10.1016/j.ijthermalsci.2020.106384
10.1016/j.applthermaleng.2020.115116
10.1016/j.anucene.2016.07.010
10.1016/j.applthermaleng.2020.115686
10.1016/j.applthermaleng.2019.02.131
10.1002/9780470172605
10.1016/j.anucene.2016.01.019
10.1016/j.applthermaleng.2016.11.132
10.1016/j.applthermaleng.2015.09.021
10.1115/1.4035603
10.1016/B978-0-08-100305-3.00002-1
10.1016/j.nucengdes.2008.08.002
10.1016/j.enconman.2020.113375
10.1007/BFb0067700
10.1016/j.ijthermalsci.2016.07.010
10.1016/j.ijthermalsci.2017.05.013
10.1016/j.ijheatmasstransfer.2017.05.059
10.1021/ie4033999
10.2514/6.2019-3467
10.1016/j.icheatmasstransfer.2010.09.012
10.1016/j.ijheatmasstransfer.2013.04.015
10.1016/j.energy.2009.04.030
10.3390/e17053438
10.1038/s41592-020-0772-5
10.1016/j.ijheatmasstransfer.2019.118540
10.1016/j.ijthermalsci.2011.06.017
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 25, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 25, 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2021.116823
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2021_116823
S1359431121002726
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c273t-89695c77b7b35a325aa5a9122b380bcb4bcf459facc4f7bd50f4d7f6117e1bac3
ISSN 1359-4311
IngestDate Thu Oct 10 16:54:24 EDT 2024
Thu Sep 26 19:02:30 EDT 2024
Fri Feb 23 02:43:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Diffusion bonded heat exchangers
Nusselt number
Pre-cooler
Water and CO2
Thermal performance
Experimental investigation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-89695c77b7b35a325aa5a9122b380bcb4bcf459facc4f7bd50f4d7f6117e1bac3
PQID 2525714297
PQPubID 2045278
ParticipantIDs proquest_journals_2525714297
crossref_primary_10_1016_j_applthermaleng_2021_116823
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_116823
PublicationCentury 2000
PublicationDate 2021-05-25
PublicationDateYYYYMMDD 2021-05-25
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-25
  day: 25
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley, 2011.
Sarkar (b0085) 2009; 34
J.P. Holman, Experimental methods for engineers, McGraw-Hill Education, Boston, MA, United States, 2011.
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, C. SciPy, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods, 17 (2020) 261-272.
Cheng, Zhou, Zhang, Huai, Guo (b0075) 2020; 171
Chu, Li, Ma, Chen, Wang (b0105) 2017; 113
Nikitin, Kato, Ngo (b0045) 2006; 29
Sui, Teo, Lee, Chew, Shu (b0115) 2010; 53
Baik, Kim, Lee, Lee (b0010) 2017; 113
Sarmiento, Soares, Milanez, Mantelli (b0175) 2020; 149
R. Cavalcanti Alvarez, A. Sarmiento, J. Victor Colin Batista, M.H. Mantelli, Entropy Generation Analysis Applied to Diffusion-Bonded Compact Heat Exchangers, in: AIAA Aviation 2019 Forum, Dallas, Texas, 2019
Lin, Zhao, Lu, Wang, Yan (b0125) 2017; 118
Seo, Kim, Kim, Choi, Lee (b0095) 2015; 17
Kim, Lee, Ahn, Lee (b0100) 2016; 92
J. Van Meter, Experimental investigation of a printed circuit heat exchanger using supercritical carbon dioxide and water as heat transfer media, in: Department of Mechanical and Nuclear Engineering, Vol. Master of Science, Kansas State University, Kansas State University, 2008.
Mortean, Paiva, Mantelli (b0035) 2016; 110
Mortean, Cisterna, Paiva, Mantelli (b0030) 2016; 93
Chen, Sun, Christensen, Skavdahl, Utgikar, Sabharwall (b0145) 2016; 108
Gnielinski (b0200) 2013; 63
Sarmiento, Milanez, Mantelli (b0180) 2020; 115435
Mohammed, Gunnasegaran, Shuaib (b0110) 2011; 38
Saeed, Berrouk, Salman Siddiqui, Ali Awais (b0080) 2020; 224
Ngo, Kato, Nikitin, Ishizuka (b0050) 2007; 32
Huang, Cai, Wang, Liu, Li, Li (b0130) 2019; 153
Ahn, Lee (b0015) 2014; 276
Saeed, Kim (b0065) 2017; 127
H. Song, Investigations of a printed circuit heat exchanger for supercritical CO2 and water, in: Department of Mechanical and Nuclear Engineering, Vol. Master of Science, Kansas State University, Kansas State University, 2007.
J.J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in: G.A. Watson (ed.) Proceedings of the Dundee Conference on Numerical Analysis, 1975, Vol. 630, Springer, Berlin, Heidelberg, 1978, pp. 105-116.
Bell, Wronski, Quoilin, Lemort (b0135) 2014; 53
Chen, Sun, Christensen, Shi, Skavdahl, Utgikar, Sabharwall (b0140) 2016; 97
Zhou, Cheng, Zhang, Liu, Huai, Guo, Zhang, Cui (b0195) 2020; 148
.
Kim, No (b0090) 2011; 31
V. Dostal, A supercritical carbon dioxide cycle for next generation nuclear reactors, in: Dept. of Nuclear Engineering., Vol. Sc.D., Massachusetts Institute of Technology., 2004.
Guo, Huai (b0060) 2017; 139
Sui, Lee, Teo (b0120) 2011; 50
J.E. Hesselgreaves, R. Law, D. Reay, Compact heat exchangers: selection, design and operation, Butterworth-Heinemann, 2016.
Kim, Kim, Cha, Kim (b0055) 2008; 238
R.K. Shah, D.P. Sekulic, Fundamentals of heat exchanger design, John Wiley & Sons, 2003.
Li, Yu, Yu (b0185) 2020; 179
Sarmiento, Soares, Carqueja, Batista, Milanese, Mantelli (b0040) 2020; 153
Guo (10.1016/j.applthermaleng.2021.116823_b0060) 2017; 139
Sarkar (10.1016/j.applthermaleng.2021.116823_b0085) 2009; 34
Baik (10.1016/j.applthermaleng.2021.116823_b0010) 2017; 113
Sui (10.1016/j.applthermaleng.2021.116823_b0120) 2011; 50
Chen (10.1016/j.applthermaleng.2021.116823_b0145) 2016; 108
10.1016/j.applthermaleng.2021.116823_b0155
10.1016/j.applthermaleng.2021.116823_b0190
Kim (10.1016/j.applthermaleng.2021.116823_b0100) 2016; 92
Bell (10.1016/j.applthermaleng.2021.116823_b0135) 2014; 53
10.1016/j.applthermaleng.2021.116823_b0150
10.1016/j.applthermaleng.2021.116823_b0070
10.1016/j.applthermaleng.2021.116823_b0170
Mortean (10.1016/j.applthermaleng.2021.116823_b0035) 2016; 110
Mohammed (10.1016/j.applthermaleng.2021.116823_b0110) 2011; 38
Li (10.1016/j.applthermaleng.2021.116823_b0185) 2020; 179
Cheng (10.1016/j.applthermaleng.2021.116823_b0075) 2020; 171
Ngo (10.1016/j.applthermaleng.2021.116823_b0050) 2007; 32
Chu (10.1016/j.applthermaleng.2021.116823_b0105) 2017; 113
Seo (10.1016/j.applthermaleng.2021.116823_b0095) 2015; 17
Sui (10.1016/j.applthermaleng.2021.116823_b0115) 2010; 53
Kim (10.1016/j.applthermaleng.2021.116823_b0090) 2011; 31
10.1016/j.applthermaleng.2021.116823_b0005
Nikitin (10.1016/j.applthermaleng.2021.116823_b0045) 2006; 29
Zhou (10.1016/j.applthermaleng.2021.116823_b0195) 2020; 148
Lin (10.1016/j.applthermaleng.2021.116823_b0125) 2017; 118
Saeed (10.1016/j.applthermaleng.2021.116823_b0065) 2017; 127
Chen (10.1016/j.applthermaleng.2021.116823_b0140) 2016; 97
Mortean (10.1016/j.applthermaleng.2021.116823_b0030) 2016; 93
10.1016/j.applthermaleng.2021.116823_b0165
10.1016/j.applthermaleng.2021.116823_b0020
10.1016/j.applthermaleng.2021.116823_b0025
Sarmiento (10.1016/j.applthermaleng.2021.116823_b0040) 2020; 153
Saeed (10.1016/j.applthermaleng.2021.116823_b0080) 2020; 224
Sarmiento (10.1016/j.applthermaleng.2021.116823_b0175) 2020; 149
Huang (10.1016/j.applthermaleng.2021.116823_b0130) 2019; 153
10.1016/j.applthermaleng.2021.116823_b0160
Kim (10.1016/j.applthermaleng.2021.116823_b0055) 2008; 238
Sarmiento (10.1016/j.applthermaleng.2021.116823_b0180) 2020; 115435
Gnielinski (10.1016/j.applthermaleng.2021.116823_b0200) 2013; 63
Ahn (10.1016/j.applthermaleng.2021.116823_b0015) 2014; 276
References_xml – volume: 113
  start-page: 1536
  year: 2017
  end-page: 1546
  ident: b0010
  article-title: Study on CO 2 - water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Lee
– volume: 92
  start-page: 175
  year: 2016
  end-page: 185
  ident: b0100
  article-title: CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application
  publication-title: Ann. Nucl. Energy
  contributor:
    fullname: Lee
– volume: 115435
  year: 2020
  ident: b0180
  article-title: Theoretical models for compact printed circuit heat exchangers with straight semicircular channels
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Mantelli
– volume: 17
  start-page: 3438
  year: 2015
  end-page: 3457
  ident: b0095
  article-title: Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers
  publication-title: Entropy
  contributor:
    fullname: Lee
– volume: 179
  year: 2020
  ident: b0185
  article-title: Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Yu
– volume: 29
  start-page: 807
  year: 2006
  end-page: 814
  ident: b0045
  article-title: Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop
  publication-title: Int. J. Refrig
  contributor:
    fullname: Ngo
– volume: 224
  year: 2020
  ident: b0080
  article-title: Numerical investigation of thermal and hydraulic characteristics of sCO2-water printed circuit heat exchangers with zigzag channels
  publication-title: Energy Convers. Manage.
  contributor:
    fullname: Ali Awais
– volume: 53
  start-page: 2760
  year: 2010
  end-page: 2772
  ident: b0115
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Shu
– volume: 34
  start-page: 1172
  year: 2009
  end-page: 1178
  ident: b0085
  article-title: Second law analysis of supercritical CO2 recompression Brayton cycle
  publication-title: Energy
  contributor:
    fullname: Sarkar
– volume: 127
  start-page: 975
  year: 2017
  end-page: 985
  ident: b0065
  article-title: Thermal and hydraulic performance of SCO2 PCHE with different fin configurations
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Kim
– volume: 53
  start-page: 2498
  year: 2014
  end-page: 2508
  ident: b0135
  article-title: Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Lemort
– volume: 97
  start-page: 221
  year: 2016
  end-page: 231
  ident: b0140
  article-title: Experimental and numerical study of a printed circuit heat exchanger
  publication-title: Ann. Nucl. Energy
  contributor:
    fullname: Sabharwall
– volume: 276
  start-page: 128
  year: 2014
  end-page: 141
  ident: b0015
  article-title: Study of various Brayton cycle designs for small modular sodium-cooled fast reactor
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Lee
– volume: 110
  start-page: 285
  year: 2016
  end-page: 298
  ident: b0035
  article-title: Diffusion bonded cross-flow compact heat exchangers: Theoretical predictions and experiments
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Mantelli
– volume: 153
  year: 2020
  ident: b0040
  article-title: Thermal performance of diffusion-bonded compact heat exchangers
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Mantelli
– volume: 32
  start-page: 560
  year: 2007
  end-page: 570
  ident: b0050
  article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles
  publication-title: Exp. Therm Fluid Sci.
  contributor:
    fullname: Ishizuka
– volume: 139
  year: 2017
  ident: b0060
  article-title: Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
  publication-title: J. Heat Transfer
  contributor:
    fullname: Huai
– volume: 118
  start-page: 423
  year: 2017
  end-page: 434
  ident: b0125
  article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Yan
– volume: 113
  start-page: 184
  year: 2017
  end-page: 194
  ident: b0105
  article-title: Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Wang
– volume: 149
  year: 2020
  ident: b0175
  article-title: Heat transfer correlation for circular and non-circular ducts in the transition regime
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Mantelli
– volume: 31
  start-page: 4064
  year: 2011
  end-page: 4073
  ident: b0090
  article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: No
– volume: 238
  start-page: 3269
  year: 2008
  end-page: 3276
  ident: b0055
  article-title: Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Kim
– volume: 50
  start-page: 2473
  year: 2011
  end-page: 2482
  ident: b0120
  article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Teo
– volume: 63
  start-page: 134
  year: 2013
  end-page: 140
  ident: b0200
  article-title: On heat transfer in tubes
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Gnielinski
– volume: 148
  year: 2020
  ident: b0195
  article-title: Test platform and experimental test on 100 kW class Printed Circuit Heat Exchanger for Supercritical CO2 Brayton Cycle
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Cui
– volume: 108
  start-page: 1409
  year: 2016
  end-page: 1417
  ident: b0145
  article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Sabharwall
– volume: 153
  start-page: 190
  year: 2019
  end-page: 205
  ident: b0130
  article-title: Review on the characteristics of flow and heat transfer in printed circuit heat exchangers
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Li
– volume: 93
  start-page: 995
  year: 2016
  end-page: 1005
  ident: b0030
  article-title: Development of diffusion welded compact heat exchanger technology
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Mantelli
– volume: 38
  start-page: 63
  year: 2011
  end-page: 68
  ident: b0110
  article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  contributor:
    fullname: Shuaib
– volume: 171
  year: 2020
  ident: b0075
  article-title: Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Guo
– volume: 149
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0175
  article-title: Heat transfer correlation for circular and non-circular ducts in the transition regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119165
  contributor:
    fullname: Sarmiento
– ident: 10.1016/j.applthermaleng.2021.116823_b0150
– ident: 10.1016/j.applthermaleng.2021.116823_b0160
– volume: 29
  start-page: 807
  year: 2006
  ident: 10.1016/j.applthermaleng.2021.116823_b0045
  article-title: Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop
  publication-title: Int. J. Refrig
  doi: 10.1016/j.ijrefrig.2005.11.005
  contributor:
    fullname: Nikitin
– volume: 32
  start-page: 560
  year: 2007
  ident: 10.1016/j.applthermaleng.2021.116823_b0050
  article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2007.06.006
  contributor:
    fullname: Ngo
– volume: 127
  start-page: 975
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.116823_b0065
  article-title: Thermal and hydraulic performance of SCO2 PCHE with different fin configurations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.113
  contributor:
    fullname: Saeed
– volume: 53
  start-page: 2760
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.116823_b0115
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.02.022
  contributor:
    fullname: Sui
– volume: 276
  start-page: 128
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.116823_b0015
  article-title: Study of various Brayton cycle designs for small modular sodium-cooled fast reactor
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.05.032
  contributor:
    fullname: Ahn
– volume: 108
  start-page: 1409
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.116823_b0145
  article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.149
  contributor:
    fullname: Chen
– volume: 31
  start-page: 4064
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.116823_b0090
  article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.08.012
  contributor:
    fullname: Kim
– volume: 153
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0040
  article-title: Thermal performance of diffusion-bonded compact heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106384
  contributor:
    fullname: Sarmiento
– ident: 10.1016/j.applthermaleng.2021.116823_b0190
– volume: 171
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0075
  article-title: Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115116
  contributor:
    fullname: Cheng
– volume: 97
  start-page: 221
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.116823_b0140
  article-title: Experimental and numerical study of a printed circuit heat exchanger
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2016.07.010
  contributor:
    fullname: Chen
– ident: 10.1016/j.applthermaleng.2021.116823_b0005
– volume: 179
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0185
  article-title: Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115686
  contributor:
    fullname: Li
– volume: 153
  start-page: 190
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.116823_b0130
  article-title: Review on the characteristics of flow and heat transfer in printed circuit heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.131
  contributor:
    fullname: Huang
– ident: 10.1016/j.applthermaleng.2021.116823_b0025
  doi: 10.1002/9780470172605
– ident: 10.1016/j.applthermaleng.2021.116823_b0155
– volume: 92
  start-page: 175
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.116823_b0100
  article-title: CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2016.01.019
  contributor:
    fullname: Kim
– volume: 113
  start-page: 1536
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.116823_b0010
  article-title: Study on CO 2 - water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.132
  contributor:
    fullname: Baik
– volume: 115435
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0180
  article-title: Theoretical models for compact printed circuit heat exchangers with straight semicircular channels
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Sarmiento
– volume: 93
  start-page: 995
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.116823_b0030
  article-title: Development of diffusion welded compact heat exchanger technology
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.021
  contributor:
    fullname: Mortean
– volume: 139
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.116823_b0060
  article-title: Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4035603
  contributor:
    fullname: Guo
– ident: 10.1016/j.applthermaleng.2021.116823_b0020
  doi: 10.1016/B978-0-08-100305-3.00002-1
– volume: 238
  start-page: 3269
  year: 2008
  ident: 10.1016/j.applthermaleng.2021.116823_b0055
  article-title: Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2008.08.002
  contributor:
    fullname: Kim
– volume: 224
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0080
  article-title: Numerical investigation of thermal and hydraulic characteristics of sCO2-water printed circuit heat exchangers with zigzag channels
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113375
  contributor:
    fullname: Saeed
– ident: 10.1016/j.applthermaleng.2021.116823_b0165
  doi: 10.1007/BFb0067700
– volume: 110
  start-page: 285
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.116823_b0035
  article-title: Diffusion bonded cross-flow compact heat exchangers: Theoretical predictions and experiments
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.07.010
  contributor:
    fullname: Mortean
– volume: 118
  start-page: 423
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.116823_b0125
  article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.05.013
  contributor:
    fullname: Lin
– volume: 113
  start-page: 184
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.116823_b0105
  article-title: Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.059
  contributor:
    fullname: Chu
– volume: 53
  start-page: 2498
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.116823_b0135
  article-title: Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4033999
  contributor:
    fullname: Bell
– ident: 10.1016/j.applthermaleng.2021.116823_b0070
  doi: 10.2514/6.2019-3467
– volume: 38
  start-page: 63
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.116823_b0110
  article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.09.012
  contributor:
    fullname: Mohammed
– volume: 63
  start-page: 134
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.116823_b0200
  article-title: On heat transfer in tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.04.015
  contributor:
    fullname: Gnielinski
– volume: 34
  start-page: 1172
  year: 2009
  ident: 10.1016/j.applthermaleng.2021.116823_b0085
  article-title: Second law analysis of supercritical CO2 recompression Brayton cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2009.04.030
  contributor:
    fullname: Sarkar
– volume: 17
  start-page: 3438
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.116823_b0095
  article-title: Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers
  publication-title: Entropy
  doi: 10.3390/e17053438
  contributor:
    fullname: Seo
– ident: 10.1016/j.applthermaleng.2021.116823_b0170
  doi: 10.1038/s41592-020-0772-5
– volume: 148
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.116823_b0195
  article-title: Test platform and experimental test on 100 kW class Printed Circuit Heat Exchanger for Supercritical CO2 Brayton Cycle
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118540
  contributor:
    fullname: Zhou
– volume: 50
  start-page: 2473
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.116823_b0120
  article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.06.017
  contributor:
    fullname: Sui
SSID ssj0012874
Score 2.3852882
Snippet •Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat...
Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 116823
SubjectTerms Brayton cycle
Carbon dioxide
Coolers
Diffusion bonded heat exchangers
Diffusion welding
Dimensionless numbers
Experimental investigation
Fluid dynamics
Fluid flow
Heat exchangers
Heat transfer
Laminar flow
Nusselt number
Pre-cooler
Pressure
Reynolds number
Straight channels
Supercritical processes
Thermal performance
Turbulent flow
Water and CO2
Title Heat transfer investigation of a 90° zigzag channel diffusion-bonded heat exchanger
URI https://dx.doi.org/10.1016/j.applthermaleng.2021.116823
https://www.proquest.com/docview/2525714297
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6TULwgLhqg4H8sD1FiRwnzuUJlVJUECC0FWlvkZ3YVabRoF4Q2q_iN_DLOCfOpS2aNIR4iSq3sttzvtrfOT4XQk6kEjzXTLvMJKEb8ti4iknpGgYbMvZ5yGtDcXIef7pI3ozD8WDQds3ox_6rpmEMdI2Zs3-h7W5SGIDXoHN4gtbheSu9T9DkX9V0VGOoeVdGwxJD6aTsdMRPXzPnupxdy1md-jvXV3WrlDX6zlxVoVscOeTK0T-a1OBNFttSVySPX0HHui9q2N9pwI9CtZXO8Oq7XFhH9VlVLMpZ1bl1JMAMTr2qDa201_ZL57M38rqZyrqWQ01yP6zLpTPxzro3P5YYrGubQzYu8Qo-sOnL4D5ew9u8Z-tga5Ns-ogm3JMDkbrAc_ytTds2Gf3jALC-iEsPr_8bIYAMPFwMTocoscnNOyW2z3EJXIFjQdqYR3vkgMPGBfvmwfDd-OJ9dy-F3QFqE775SnfISR8xePOaN5GeneO_5jTTB-R-Y4zQoUXRQzLQ80fk3kaJysdkiniiLZ7oFp5oZaikKfv1k1os0QZLdBdLFLFEOyw9IV_ejqejidt04nBzoLcrN0mjVORxrGIVCBlwIaWQqc-5ChKmchWq3IQiNTLPQxOrQjATFrGJfD_WvpJ58JTsz6u5PiS04IFhAZgJgU6AvEdJUCSxYSKRRomcR0dEtKLKvtmCK1kbiXiZbYs4QxFnVsRH5FUr16whj5YUZgCNW85w3Koja_7Qy4xjtWAfSFv87J8XeE7u9qA_JvurxVq_IHvLYv2ywdlvo9ynSg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+investigation+of+a+90%C2%B0+zigzag+channel+diffusion-bonded+heat+exchanger&rft.jtitle=Applied+thermal+engineering&rft.au=Cavalcanti+Alvarez%2C+Rodrigo&rft.au=Sarmiento%2C+Andr%C3%A9s+P.C.&rft.au=Cisterna%2C+Luis+H.R.&rft.au=Milanese%2C+Fernando+H.&rft.date=2021-05-25&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=190&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.116823&rft.externalDocID=S1359431121002726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon