Heat transfer investigation of a 90° zigzag channel diffusion-bonded heat exchanger
•Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat exchanger.•A new Nusselt number correlation for the tested prototype is developed.•Thermal performance comparison of different zigzag channel geo...
Saved in:
Published in: | Applied thermal engineering Vol. 190; p. 116823 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
25-05-2021
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat exchanger.•A new Nusselt number correlation for the tested prototype is developed.•Thermal performance comparison of different zigzag channel geometries.
Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among the equipment used for these applications, diffusion-bonded heat exchangers are receiving more attention to be used as pre-coolers on the cycle, due to their robustness and capability of operating at the demanded conditions. Currently, limited research focused on the influence of the pre-cooler’s cold-side fluid, water, on the thermal performance of the diffusion-bonded heat exchangers. In the present study, a novel zigzag channel for the diffusion-bonded heat exchangers with square cross-section was manufactured and experimentally investigated in a water-water configuration. During the experiments, the Reynolds number of the hot and the cold sides varied from 1529 to 8313 and from 1299 to 6618, respectively, covering laminar to turbulent flow regimes. A new heat transfer correlation is proposed based on dimensionless Reynolds and Prandtl numbers, covering a large Reynolds number range not yet experimentally investigated for the water. In the laminar regime, the current geometry increases the Nusselt number up to 4.1 times when compared to a straight channel. For the complete Reynolds number range evaluated, from 1299 to 8313, the average enhancement of a diffusion bonded heat exchanger with the proposed geometry compared to a straight channel one is of 2.2 times. Therefore, the current zigzag design proposed in this study provided a significant advantage in terms of heat transfer performance. |
---|---|
AbstractList | Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among the equipment used for these applications, diffusion-bonded heat exchangers are receiving more attention to be used as pre-coolers on the cycle, due to their robustness and capability of operating at the demanded conditions. Currently, limited research focused on the influence of the pre-cooler's cold-side fluid, water, on the thermal performance of the diffusion-bonded heat exchangers. In the present study, a novel zigzag channel for the diffusion-bonded heat exchangers with square cross-section was manufactured and experimentally investigated in a water-water configuration. During the experiments, the Reynolds number of the hot and the cold sides varied from 1529 to 8313 and from 1299 to 6618, respectively, covering laminar to turbulent flow regimes. A new heat transfer correlation is proposed based on dimensionless Reynolds and Prandtl numbers, covering a large Reynolds number range not yet experimentally investigated for the water. In the laminar regime, the current geometry increases the Nusselt number up to 4.1 times when compared to a straight channel. For the complete Reynolds number range evaluated, from 1299 to 8313, the average enhancement of a diffusion bonded heat exchanger with the proposed geometry compared to a straight channel one is of 2.2 times. Therefore, the current zigzag design proposed in this study provided a significant advantage in terms of heat transfer performance. •Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat exchanger.•A new Nusselt number correlation for the tested prototype is developed.•Thermal performance comparison of different zigzag channel geometries. Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among the equipment used for these applications, diffusion-bonded heat exchangers are receiving more attention to be used as pre-coolers on the cycle, due to their robustness and capability of operating at the demanded conditions. Currently, limited research focused on the influence of the pre-cooler’s cold-side fluid, water, on the thermal performance of the diffusion-bonded heat exchangers. In the present study, a novel zigzag channel for the diffusion-bonded heat exchangers with square cross-section was manufactured and experimentally investigated in a water-water configuration. During the experiments, the Reynolds number of the hot and the cold sides varied from 1529 to 8313 and from 1299 to 6618, respectively, covering laminar to turbulent flow regimes. A new heat transfer correlation is proposed based on dimensionless Reynolds and Prandtl numbers, covering a large Reynolds number range not yet experimentally investigated for the water. In the laminar regime, the current geometry increases the Nusselt number up to 4.1 times when compared to a straight channel. For the complete Reynolds number range evaluated, from 1299 to 8313, the average enhancement of a diffusion bonded heat exchanger with the proposed geometry compared to a straight channel one is of 2.2 times. Therefore, the current zigzag design proposed in this study provided a significant advantage in terms of heat transfer performance. |
ArticleNumber | 116823 |
Author | Cisterna, Luis H.R. Cavalcanti Alvarez, Rodrigo Sarmiento, Andrés P.C. Mantelli, Marcia B.H. Milanese, Fernando H. |
Author_xml | – sequence: 1 givenname: Rodrigo surname: Cavalcanti Alvarez fullname: Cavalcanti Alvarez, Rodrigo email: rodrigo.alvarez@labtucal.ufsc.br organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil – sequence: 2 givenname: Andrés P.C. surname: Sarmiento fullname: Sarmiento, Andrés P.C. email: andres@labtucal.ufsc.br organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil – sequence: 3 givenname: Luis H.R. surname: Cisterna fullname: Cisterna, Luis H.R. email: lrodriguez@academicos.uta.cl organization: Department of Mechanical Engineering, University of Tarapaca, Arica, Chile – sequence: 4 givenname: Fernando H. surname: Milanese fullname: Milanese, Fernando H. email: milanez@labtucal.ufsc.br organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil – sequence: 5 givenname: Marcia B.H. surname: Mantelli fullname: Mantelli, Marcia B.H. email: marcia.mantelli@ufsc.br organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil |
BookMark | eNqNkM9OAjEQxhuDiYC-QxO9LvbPdrubeDFExITEC56btjtdSqCL7UKUp_IZfDKX4MWbp5lkvu-bmd8IDUIbAKE7SiaU0OJ-PdG73aZbQdzqDYRmwgijE0qLkvELNKSl5JkoSDHoey6qLOeUXqFRSmtCKCtlPkTLOegOd1GH5CBiHw6QOt_ozrcBtw5rXJHvL3z0zVE32K50CLDBtXdun3pJZtpQQ41XpxT4OM0biNfo0ulNgpvfOkZvs6fldJ4tXp9fpo-LzDLJu6ysikpYKY00XGjOhNZCV5Qxw0tirMmNdbmonLY2d9LUgri8lq6gVAI12vIxuj3n7mL7vu8PV-t2H0O_UjHBhKQ5q2SvejirbGxTiuDULvqtjp-KEnXiqNbqL0d14qjOHHv77GyH_pODh6iS9RAs1D6C7VTd-v8F_QBDSIfP |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_118989 crossref_primary_10_1016_j_anucene_2022_109653 crossref_primary_10_1016_j_anucene_2023_109720 crossref_primary_10_1016_j_applthermaleng_2022_118760 crossref_primary_10_1016_j_applthermaleng_2022_118341 crossref_primary_10_3389_fenrg_2022_885607 crossref_primary_10_1016_j_enconman_2022_115993 crossref_primary_10_2139_ssrn_4163427 crossref_primary_10_1007_s00231_023_03437_w crossref_primary_10_1016_j_applthermaleng_2024_122466 crossref_primary_10_1016_j_applthermaleng_2023_120321 crossref_primary_10_2139_ssrn_4067270 crossref_primary_10_2139_ssrn_4202267 crossref_primary_10_1080_01457632_2022_2164679 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122996 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2019.119165 10.1016/j.ijrefrig.2005.11.005 10.1016/j.expthermflusci.2007.06.006 10.1016/j.applthermaleng.2017.08.113 10.1016/j.ijheatmasstransfer.2010.02.022 10.1016/j.nucengdes.2014.05.032 10.1016/j.applthermaleng.2016.07.149 10.1016/j.applthermaleng.2011.08.012 10.1016/j.ijthermalsci.2020.106384 10.1016/j.applthermaleng.2020.115116 10.1016/j.anucene.2016.07.010 10.1016/j.applthermaleng.2020.115686 10.1016/j.applthermaleng.2019.02.131 10.1002/9780470172605 10.1016/j.anucene.2016.01.019 10.1016/j.applthermaleng.2016.11.132 10.1016/j.applthermaleng.2015.09.021 10.1115/1.4035603 10.1016/B978-0-08-100305-3.00002-1 10.1016/j.nucengdes.2008.08.002 10.1016/j.enconman.2020.113375 10.1007/BFb0067700 10.1016/j.ijthermalsci.2016.07.010 10.1016/j.ijthermalsci.2017.05.013 10.1016/j.ijheatmasstransfer.2017.05.059 10.1021/ie4033999 10.2514/6.2019-3467 10.1016/j.icheatmasstransfer.2010.09.012 10.1016/j.ijheatmasstransfer.2013.04.015 10.1016/j.energy.2009.04.030 10.3390/e17053438 10.1038/s41592-020-0772-5 10.1016/j.ijheatmasstransfer.2019.118540 10.1016/j.ijthermalsci.2011.06.017 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV May 25, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV May 25, 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2021.116823 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2021_116823 S1359431121002726 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- RIG SEW 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c273t-89695c77b7b35a325aa5a9122b380bcb4bcf459facc4f7bd50f4d7f6117e1bac3 |
ISSN | 1359-4311 |
IngestDate | Thu Oct 10 16:54:24 EDT 2024 Thu Sep 26 19:02:30 EDT 2024 Fri Feb 23 02:43:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffusion bonded heat exchangers Nusselt number Pre-cooler Water and CO2 Thermal performance Experimental investigation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-89695c77b7b35a325aa5a9122b380bcb4bcf459facc4f7bd50f4d7f6117e1bac3 |
PQID | 2525714297 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2525714297 crossref_primary_10_1016_j_applthermaleng_2021_116823 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_116823 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-25 |
PublicationDateYYYYMMDD | 2021-05-25 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley, 2011. Sarkar (b0085) 2009; 34 J.P. Holman, Experimental methods for engineers, McGraw-Hill Education, Boston, MA, United States, 2011. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, C. SciPy, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods, 17 (2020) 261-272. Cheng, Zhou, Zhang, Huai, Guo (b0075) 2020; 171 Chu, Li, Ma, Chen, Wang (b0105) 2017; 113 Nikitin, Kato, Ngo (b0045) 2006; 29 Sui, Teo, Lee, Chew, Shu (b0115) 2010; 53 Baik, Kim, Lee, Lee (b0010) 2017; 113 Sarmiento, Soares, Milanez, Mantelli (b0175) 2020; 149 R. Cavalcanti Alvarez, A. Sarmiento, J. Victor Colin Batista, M.H. Mantelli, Entropy Generation Analysis Applied to Diffusion-Bonded Compact Heat Exchangers, in: AIAA Aviation 2019 Forum, Dallas, Texas, 2019 Lin, Zhao, Lu, Wang, Yan (b0125) 2017; 118 Seo, Kim, Kim, Choi, Lee (b0095) 2015; 17 Kim, Lee, Ahn, Lee (b0100) 2016; 92 J. Van Meter, Experimental investigation of a printed circuit heat exchanger using supercritical carbon dioxide and water as heat transfer media, in: Department of Mechanical and Nuclear Engineering, Vol. Master of Science, Kansas State University, Kansas State University, 2008. Mortean, Paiva, Mantelli (b0035) 2016; 110 Mortean, Cisterna, Paiva, Mantelli (b0030) 2016; 93 Chen, Sun, Christensen, Skavdahl, Utgikar, Sabharwall (b0145) 2016; 108 Gnielinski (b0200) 2013; 63 Sarmiento, Milanez, Mantelli (b0180) 2020; 115435 Mohammed, Gunnasegaran, Shuaib (b0110) 2011; 38 Saeed, Berrouk, Salman Siddiqui, Ali Awais (b0080) 2020; 224 Ngo, Kato, Nikitin, Ishizuka (b0050) 2007; 32 Huang, Cai, Wang, Liu, Li, Li (b0130) 2019; 153 Ahn, Lee (b0015) 2014; 276 Saeed, Kim (b0065) 2017; 127 H. Song, Investigations of a printed circuit heat exchanger for supercritical CO2 and water, in: Department of Mechanical and Nuclear Engineering, Vol. Master of Science, Kansas State University, Kansas State University, 2007. J.J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in: G.A. Watson (ed.) Proceedings of the Dundee Conference on Numerical Analysis, 1975, Vol. 630, Springer, Berlin, Heidelberg, 1978, pp. 105-116. Bell, Wronski, Quoilin, Lemort (b0135) 2014; 53 Chen, Sun, Christensen, Shi, Skavdahl, Utgikar, Sabharwall (b0140) 2016; 97 Zhou, Cheng, Zhang, Liu, Huai, Guo, Zhang, Cui (b0195) 2020; 148 . Kim, No (b0090) 2011; 31 V. Dostal, A supercritical carbon dioxide cycle for next generation nuclear reactors, in: Dept. of Nuclear Engineering., Vol. Sc.D., Massachusetts Institute of Technology., 2004. Guo, Huai (b0060) 2017; 139 Sui, Lee, Teo (b0120) 2011; 50 J.E. Hesselgreaves, R. Law, D. Reay, Compact heat exchangers: selection, design and operation, Butterworth-Heinemann, 2016. Kim, Kim, Cha, Kim (b0055) 2008; 238 R.K. Shah, D.P. Sekulic, Fundamentals of heat exchanger design, John Wiley & Sons, 2003. Li, Yu, Yu (b0185) 2020; 179 Sarmiento, Soares, Carqueja, Batista, Milanese, Mantelli (b0040) 2020; 153 Guo (10.1016/j.applthermaleng.2021.116823_b0060) 2017; 139 Sarkar (10.1016/j.applthermaleng.2021.116823_b0085) 2009; 34 Baik (10.1016/j.applthermaleng.2021.116823_b0010) 2017; 113 Sui (10.1016/j.applthermaleng.2021.116823_b0120) 2011; 50 Chen (10.1016/j.applthermaleng.2021.116823_b0145) 2016; 108 10.1016/j.applthermaleng.2021.116823_b0155 10.1016/j.applthermaleng.2021.116823_b0190 Kim (10.1016/j.applthermaleng.2021.116823_b0100) 2016; 92 Bell (10.1016/j.applthermaleng.2021.116823_b0135) 2014; 53 10.1016/j.applthermaleng.2021.116823_b0150 10.1016/j.applthermaleng.2021.116823_b0070 10.1016/j.applthermaleng.2021.116823_b0170 Mortean (10.1016/j.applthermaleng.2021.116823_b0035) 2016; 110 Mohammed (10.1016/j.applthermaleng.2021.116823_b0110) 2011; 38 Li (10.1016/j.applthermaleng.2021.116823_b0185) 2020; 179 Cheng (10.1016/j.applthermaleng.2021.116823_b0075) 2020; 171 Ngo (10.1016/j.applthermaleng.2021.116823_b0050) 2007; 32 Chu (10.1016/j.applthermaleng.2021.116823_b0105) 2017; 113 Seo (10.1016/j.applthermaleng.2021.116823_b0095) 2015; 17 Sui (10.1016/j.applthermaleng.2021.116823_b0115) 2010; 53 Kim (10.1016/j.applthermaleng.2021.116823_b0090) 2011; 31 10.1016/j.applthermaleng.2021.116823_b0005 Nikitin (10.1016/j.applthermaleng.2021.116823_b0045) 2006; 29 Zhou (10.1016/j.applthermaleng.2021.116823_b0195) 2020; 148 Lin (10.1016/j.applthermaleng.2021.116823_b0125) 2017; 118 Saeed (10.1016/j.applthermaleng.2021.116823_b0065) 2017; 127 Chen (10.1016/j.applthermaleng.2021.116823_b0140) 2016; 97 Mortean (10.1016/j.applthermaleng.2021.116823_b0030) 2016; 93 10.1016/j.applthermaleng.2021.116823_b0165 10.1016/j.applthermaleng.2021.116823_b0020 10.1016/j.applthermaleng.2021.116823_b0025 Sarmiento (10.1016/j.applthermaleng.2021.116823_b0040) 2020; 153 Saeed (10.1016/j.applthermaleng.2021.116823_b0080) 2020; 224 Sarmiento (10.1016/j.applthermaleng.2021.116823_b0175) 2020; 149 Huang (10.1016/j.applthermaleng.2021.116823_b0130) 2019; 153 10.1016/j.applthermaleng.2021.116823_b0160 Kim (10.1016/j.applthermaleng.2021.116823_b0055) 2008; 238 Sarmiento (10.1016/j.applthermaleng.2021.116823_b0180) 2020; 115435 Gnielinski (10.1016/j.applthermaleng.2021.116823_b0200) 2013; 63 Ahn (10.1016/j.applthermaleng.2021.116823_b0015) 2014; 276 |
References_xml | – volume: 113 start-page: 1536 year: 2017 end-page: 1546 ident: b0010 article-title: Study on CO 2 - water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application publication-title: Appl. Therm. Eng. contributor: fullname: Lee – volume: 92 start-page: 175 year: 2016 end-page: 185 ident: b0100 article-title: CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application publication-title: Ann. Nucl. Energy contributor: fullname: Lee – volume: 115435 year: 2020 ident: b0180 article-title: Theoretical models for compact printed circuit heat exchangers with straight semicircular channels publication-title: Appl. Therm. Eng. contributor: fullname: Mantelli – volume: 17 start-page: 3438 year: 2015 end-page: 3457 ident: b0095 article-title: Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers publication-title: Entropy contributor: fullname: Lee – volume: 179 year: 2020 ident: b0185 article-title: Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles publication-title: Appl. Therm. Eng. contributor: fullname: Yu – volume: 29 start-page: 807 year: 2006 end-page: 814 ident: b0045 article-title: Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop publication-title: Int. J. Refrig contributor: fullname: Ngo – volume: 224 year: 2020 ident: b0080 article-title: Numerical investigation of thermal and hydraulic characteristics of sCO2-water printed circuit heat exchangers with zigzag channels publication-title: Energy Convers. Manage. contributor: fullname: Ali Awais – volume: 53 start-page: 2760 year: 2010 end-page: 2772 ident: b0115 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. contributor: fullname: Shu – volume: 34 start-page: 1172 year: 2009 end-page: 1178 ident: b0085 article-title: Second law analysis of supercritical CO2 recompression Brayton cycle publication-title: Energy contributor: fullname: Sarkar – volume: 127 start-page: 975 year: 2017 end-page: 985 ident: b0065 article-title: Thermal and hydraulic performance of SCO2 PCHE with different fin configurations publication-title: Appl. Therm. Eng. contributor: fullname: Kim – volume: 53 start-page: 2498 year: 2014 end-page: 2508 ident: b0135 article-title: Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp publication-title: Ind. Eng. Chem. Res. contributor: fullname: Lemort – volume: 97 start-page: 221 year: 2016 end-page: 231 ident: b0140 article-title: Experimental and numerical study of a printed circuit heat exchanger publication-title: Ann. Nucl. Energy contributor: fullname: Sabharwall – volume: 276 start-page: 128 year: 2014 end-page: 141 ident: b0015 article-title: Study of various Brayton cycle designs for small modular sodium-cooled fast reactor publication-title: Nucl. Eng. Des. contributor: fullname: Lee – volume: 110 start-page: 285 year: 2016 end-page: 298 ident: b0035 article-title: Diffusion bonded cross-flow compact heat exchangers: Theoretical predictions and experiments publication-title: Int. J. Therm. Sci. contributor: fullname: Mantelli – volume: 153 year: 2020 ident: b0040 article-title: Thermal performance of diffusion-bonded compact heat exchangers publication-title: Int. J. Therm. Sci. contributor: fullname: Mantelli – volume: 32 start-page: 560 year: 2007 end-page: 570 ident: b0050 article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles publication-title: Exp. Therm Fluid Sci. contributor: fullname: Ishizuka – volume: 139 year: 2017 ident: b0060 article-title: Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide publication-title: J. Heat Transfer contributor: fullname: Huai – volume: 118 start-page: 423 year: 2017 end-page: 434 ident: b0125 article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude publication-title: Int. J. Therm. Sci. contributor: fullname: Yan – volume: 113 start-page: 184 year: 2017 end-page: 194 ident: b0105 article-title: Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels publication-title: Int. J. Heat Mass Transf. contributor: fullname: Wang – volume: 149 year: 2020 ident: b0175 article-title: Heat transfer correlation for circular and non-circular ducts in the transition regime publication-title: Int. J. Heat Mass Transf. contributor: fullname: Mantelli – volume: 31 start-page: 4064 year: 2011 end-page: 4073 ident: b0090 article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations publication-title: Appl. Therm. Eng. contributor: fullname: No – volume: 238 start-page: 3269 year: 2008 end-page: 3276 ident: b0055 article-title: Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model publication-title: Nucl. Eng. Des. contributor: fullname: Kim – volume: 50 start-page: 2473 year: 2011 end-page: 2482 ident: b0120 article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section publication-title: Int. J. Therm. Sci. contributor: fullname: Teo – volume: 63 start-page: 134 year: 2013 end-page: 140 ident: b0200 article-title: On heat transfer in tubes publication-title: Int. J. Heat Mass Transf. contributor: fullname: Gnielinski – volume: 148 year: 2020 ident: b0195 article-title: Test platform and experimental test on 100 kW class Printed Circuit Heat Exchanger for Supercritical CO2 Brayton Cycle publication-title: Int. J. Heat Mass Transf. contributor: fullname: Cui – volume: 108 start-page: 1409 year: 2016 end-page: 1417 ident: b0145 article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger publication-title: Appl. Therm. Eng. contributor: fullname: Sabharwall – volume: 153 start-page: 190 year: 2019 end-page: 205 ident: b0130 article-title: Review on the characteristics of flow and heat transfer in printed circuit heat exchangers publication-title: Appl. Therm. Eng. contributor: fullname: Li – volume: 93 start-page: 995 year: 2016 end-page: 1005 ident: b0030 article-title: Development of diffusion welded compact heat exchanger technology publication-title: Appl. Therm. Eng. contributor: fullname: Mantelli – volume: 38 start-page: 63 year: 2011 end-page: 68 ident: b0110 article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Shuaib – volume: 171 year: 2020 ident: b0075 article-title: Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle publication-title: Appl. Therm. Eng. contributor: fullname: Guo – volume: 149 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0175 article-title: Heat transfer correlation for circular and non-circular ducts in the transition regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119165 contributor: fullname: Sarmiento – ident: 10.1016/j.applthermaleng.2021.116823_b0150 – ident: 10.1016/j.applthermaleng.2021.116823_b0160 – volume: 29 start-page: 807 year: 2006 ident: 10.1016/j.applthermaleng.2021.116823_b0045 article-title: Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2005.11.005 contributor: fullname: Nikitin – volume: 32 start-page: 560 year: 2007 ident: 10.1016/j.applthermaleng.2021.116823_b0050 article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2007.06.006 contributor: fullname: Ngo – volume: 127 start-page: 975 year: 2017 ident: 10.1016/j.applthermaleng.2021.116823_b0065 article-title: Thermal and hydraulic performance of SCO2 PCHE with different fin configurations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.08.113 contributor: fullname: Saeed – volume: 53 start-page: 2760 year: 2010 ident: 10.1016/j.applthermaleng.2021.116823_b0115 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.02.022 contributor: fullname: Sui – volume: 276 start-page: 128 year: 2014 ident: 10.1016/j.applthermaleng.2021.116823_b0015 article-title: Study of various Brayton cycle designs for small modular sodium-cooled fast reactor publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.05.032 contributor: fullname: Ahn – volume: 108 start-page: 1409 year: 2016 ident: 10.1016/j.applthermaleng.2021.116823_b0145 article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.149 contributor: fullname: Chen – volume: 31 start-page: 4064 year: 2011 ident: 10.1016/j.applthermaleng.2021.116823_b0090 article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.08.012 contributor: fullname: Kim – volume: 153 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0040 article-title: Thermal performance of diffusion-bonded compact heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106384 contributor: fullname: Sarmiento – ident: 10.1016/j.applthermaleng.2021.116823_b0190 – volume: 171 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0075 article-title: Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115116 contributor: fullname: Cheng – volume: 97 start-page: 221 year: 2016 ident: 10.1016/j.applthermaleng.2021.116823_b0140 article-title: Experimental and numerical study of a printed circuit heat exchanger publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2016.07.010 contributor: fullname: Chen – ident: 10.1016/j.applthermaleng.2021.116823_b0005 – volume: 179 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0185 article-title: Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115686 contributor: fullname: Li – volume: 153 start-page: 190 year: 2019 ident: 10.1016/j.applthermaleng.2021.116823_b0130 article-title: Review on the characteristics of flow and heat transfer in printed circuit heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.131 contributor: fullname: Huang – ident: 10.1016/j.applthermaleng.2021.116823_b0025 doi: 10.1002/9780470172605 – ident: 10.1016/j.applthermaleng.2021.116823_b0155 – volume: 92 start-page: 175 year: 2016 ident: 10.1016/j.applthermaleng.2021.116823_b0100 article-title: CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2016.01.019 contributor: fullname: Kim – volume: 113 start-page: 1536 year: 2017 ident: 10.1016/j.applthermaleng.2021.116823_b0010 article-title: Study on CO 2 - water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.132 contributor: fullname: Baik – volume: 115435 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0180 article-title: Theoretical models for compact printed circuit heat exchangers with straight semicircular channels publication-title: Appl. Therm. Eng. contributor: fullname: Sarmiento – volume: 93 start-page: 995 year: 2016 ident: 10.1016/j.applthermaleng.2021.116823_b0030 article-title: Development of diffusion welded compact heat exchanger technology publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.021 contributor: fullname: Mortean – volume: 139 year: 2017 ident: 10.1016/j.applthermaleng.2021.116823_b0060 article-title: Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide publication-title: J. Heat Transfer doi: 10.1115/1.4035603 contributor: fullname: Guo – ident: 10.1016/j.applthermaleng.2021.116823_b0020 doi: 10.1016/B978-0-08-100305-3.00002-1 – volume: 238 start-page: 3269 year: 2008 ident: 10.1016/j.applthermaleng.2021.116823_b0055 article-title: Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2008.08.002 contributor: fullname: Kim – volume: 224 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0080 article-title: Numerical investigation of thermal and hydraulic characteristics of sCO2-water printed circuit heat exchangers with zigzag channels publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113375 contributor: fullname: Saeed – ident: 10.1016/j.applthermaleng.2021.116823_b0165 doi: 10.1007/BFb0067700 – volume: 110 start-page: 285 year: 2016 ident: 10.1016/j.applthermaleng.2021.116823_b0035 article-title: Diffusion bonded cross-flow compact heat exchangers: Theoretical predictions and experiments publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.07.010 contributor: fullname: Mortean – volume: 118 start-page: 423 year: 2017 ident: 10.1016/j.applthermaleng.2021.116823_b0125 article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.05.013 contributor: fullname: Lin – volume: 113 start-page: 184 year: 2017 ident: 10.1016/j.applthermaleng.2021.116823_b0105 article-title: Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.059 contributor: fullname: Chu – volume: 53 start-page: 2498 year: 2014 ident: 10.1016/j.applthermaleng.2021.116823_b0135 article-title: Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4033999 contributor: fullname: Bell – ident: 10.1016/j.applthermaleng.2021.116823_b0070 doi: 10.2514/6.2019-3467 – volume: 38 start-page: 63 year: 2011 ident: 10.1016/j.applthermaleng.2021.116823_b0110 article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.09.012 contributor: fullname: Mohammed – volume: 63 start-page: 134 year: 2013 ident: 10.1016/j.applthermaleng.2021.116823_b0200 article-title: On heat transfer in tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.04.015 contributor: fullname: Gnielinski – volume: 34 start-page: 1172 year: 2009 ident: 10.1016/j.applthermaleng.2021.116823_b0085 article-title: Second law analysis of supercritical CO2 recompression Brayton cycle publication-title: Energy doi: 10.1016/j.energy.2009.04.030 contributor: fullname: Sarkar – volume: 17 start-page: 3438 year: 2015 ident: 10.1016/j.applthermaleng.2021.116823_b0095 article-title: Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers publication-title: Entropy doi: 10.3390/e17053438 contributor: fullname: Seo – ident: 10.1016/j.applthermaleng.2021.116823_b0170 doi: 10.1038/s41592-020-0772-5 – volume: 148 year: 2020 ident: 10.1016/j.applthermaleng.2021.116823_b0195 article-title: Test platform and experimental test on 100 kW class Printed Circuit Heat Exchanger for Supercritical CO2 Brayton Cycle publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118540 contributor: fullname: Zhou – volume: 50 start-page: 2473 year: 2011 ident: 10.1016/j.applthermaleng.2021.116823_b0120 article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.06.017 contributor: fullname: Sui |
SSID | ssj0012874 |
Score | 2.3852882 |
Snippet | •Diffusion-bonded heat exchanger with a zigzag channel experimentally investigated.•Study of water stream influence in the thermal performance of the heat... Supercritical CO2 (S-CO2) Brayton cycle components are subject to high pressure and temperature conditions, which are intrinsic to the operation cycle. Among... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 116823 |
SubjectTerms | Brayton cycle Carbon dioxide Coolers Diffusion bonded heat exchangers Diffusion welding Dimensionless numbers Experimental investigation Fluid dynamics Fluid flow Heat exchangers Heat transfer Laminar flow Nusselt number Pre-cooler Pressure Reynolds number Straight channels Supercritical processes Thermal performance Turbulent flow Water and CO2 |
Title | Heat transfer investigation of a 90° zigzag channel diffusion-bonded heat exchanger |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2021.116823 https://www.proquest.com/docview/2525714297 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6TULwgLhqg4H8sD1FiRwnzuUJlVJUECC0FWlvkZ3YVabRoF4Q2q_iN_DLOCfOpS2aNIR4iSq3sttzvtrfOT4XQk6kEjzXTLvMJKEb8ti4iknpGgYbMvZ5yGtDcXIef7pI3ozD8WDQds3ox_6rpmEMdI2Zs3-h7W5SGIDXoHN4gtbheSu9T9DkX9V0VGOoeVdGwxJD6aTsdMRPXzPnupxdy1md-jvXV3WrlDX6zlxVoVscOeTK0T-a1OBNFttSVySPX0HHui9q2N9pwI9CtZXO8Oq7XFhH9VlVLMpZ1bl1JMAMTr2qDa201_ZL57M38rqZyrqWQ01yP6zLpTPxzro3P5YYrGubQzYu8Qo-sOnL4D5ew9u8Z-tga5Ns-ogm3JMDkbrAc_ytTds2Gf3jALC-iEsPr_8bIYAMPFwMTocoscnNOyW2z3EJXIFjQdqYR3vkgMPGBfvmwfDd-OJ9dy-F3QFqE775SnfISR8xePOaN5GeneO_5jTTB-R-Y4zQoUXRQzLQ80fk3kaJysdkiniiLZ7oFp5oZaikKfv1k1os0QZLdBdLFLFEOyw9IV_ejqejidt04nBzoLcrN0mjVORxrGIVCBlwIaWQqc-5ChKmchWq3IQiNTLPQxOrQjATFrGJfD_WvpJ58JTsz6u5PiS04IFhAZgJgU6AvEdJUCSxYSKRRomcR0dEtKLKvtmCK1kbiXiZbYs4QxFnVsRH5FUr16whj5YUZgCNW85w3Koja_7Qy4xjtWAfSFv87J8XeE7u9qA_JvurxVq_IHvLYv2ywdlvo9ynSg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+investigation+of+a+90%C2%B0+zigzag+channel+diffusion-bonded+heat+exchanger&rft.jtitle=Applied+thermal+engineering&rft.au=Cavalcanti+Alvarez%2C+Rodrigo&rft.au=Sarmiento%2C+Andr%C3%A9s+P.C.&rft.au=Cisterna%2C+Luis+H.R.&rft.au=Milanese%2C+Fernando+H.&rft.date=2021-05-25&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=190&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.116823&rft.externalDocID=S1359431121002726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |