Using Data Mining for Due Date Assignment in a Dynamic Job Shop Environment

Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are impacted by the quality of the due date assignment methods. Among the simple and easy to implement due date assignment methods, the total work c...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 25; no. 11-12; pp. 1164 - 1174
Main Authors: Sha, D.Y., Liu, C.-H.
Format: Journal Article
Language:English
Published: Heidelberg Springer Nature B.V 01-06-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are impacted by the quality of the due date assignment methods. Among the simple and easy to implement due date assignment methods, the total work content (TWK) method achieves the best performance for tardiness related performance criteria and is most widely used in practice and in study. The performance of the TWK method can be improved if the due date allowance factor k could render a more precise and accurate flowtime estimation of each individual job. In this study, in order to improve the performance of the TWK method, we have presented a model that incorporated a data mining tool – Decision Tree – for mining the knowledge of job scheduling about due date assignment in a dynamic job shop environment, which is represented by IF-THEN rules and is able to adjust an appropriate factor k according to the condition of the shop at the instant of job arrival, thereby reducing the due date prediction errors of the TWK method. Simulation results show that our proposed rule-based TWK due date assignment (RTWK) model is significantly better than its static and dynamic counterparts (i.e., TWK and Dynamic TWK methods). In addition, the RTWK model also extracted comprehensive scheduling knowledge about due date assignment, expressed in the form of IF-THEN rules, allowing production managers to easily understand the principles of due date assignment .
AbstractList Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are impacted by the quality of the due date assignment methods. Among the simple and easy to implement due date assignment methods, the total work content (TWK) method achieves the best performance for tardiness related performance criteria and is most widely used in practice and in study. The performance of the TWK method can be improved if the due date allowance factor k could render a more precise and accurate flowtime estimation of each individual job. In this study, in order to improve the performance of the TWK method, we have presented a model that incorporated a data mining tool – Decision Tree – for mining the knowledge of job scheduling about due date assignment in a dynamic job shop environment, which is represented by IF-THEN rules and is able to adjust an appropriate factor k according to the condition of the shop at the instant of job arrival, thereby reducing the due date prediction errors of the TWK method. Simulation results show that our proposed rule-based TWK due date assignment (RTWK) model is significantly better than its static and dynamic counterparts (i.e., TWK and Dynamic TWK methods). In addition, the RTWK model also extracted comprehensive scheduling knowledge about due date assignment, expressed in the form of IF-THEN rules, allowing production managers to easily understand the principles of due date assignment .
Author Sha, D.Y.
Liu, C.-H.
Author_xml – sequence: 1
  givenname: D.Y.
  surname: Sha
  fullname: Sha, D.Y.
– sequence: 2
  givenname: C.-H.
  surname: Liu
  fullname: Liu, C.-H.
BookMark eNotkMtOwzAQRS1UJNrCB7CzxNow9jh2sqzaUh5FLKBrywlOSUXtYqdI-XsSyuqOro7mSmdCRj54R8g1h1sOoO8SANfAAJDxAjXrzsiYS0SGwLMRGYNQOUOt8gsySWnX04qrfEyeN6nxW7qwraUvjR_uOkS6OLqhc3SWUrP1e-db2nhq6aLzdt9U9CmU9O0zHOjS_zQx_BGX5Ly2X8ld_eeUbO6X7_MHtn5dPc5na1YJjS3LwBUFio-ilplSVgqp-yiLzGZaWZR5rW1dYckd5ChKIWsHUjtwvFAIBeKU3Jz-HmL4PrrUml04Rt9PGiGUyHgueNZT_ERVMaQUXW0Osdnb2BkOZnBmTs5M78wMzkyHv6orXpI
CitedBy_id crossref_primary_10_1155_2018_2456010
crossref_primary_10_1155_2019_1572614
crossref_primary_10_1007_s00170_013_5354_6
crossref_primary_10_1007_s00170_015_7304_y
crossref_primary_10_1080_00207540701197036
crossref_primary_10_1080_00207540903479778
crossref_primary_10_1016_j_procir_2019_03_179
crossref_primary_10_1016_j_promfg_2017_07_309
crossref_primary_10_1080_00207540802662896
crossref_primary_10_1088_1757_899X_212_1_012022
crossref_primary_10_1016_j_eswa_2014_11_068
crossref_primary_10_1109_TEVC_2013_2248159
crossref_primary_10_1080_00207540802043980
crossref_primary_10_1016_j_procir_2016_07_017
crossref_primary_10_1243_09544054JEM980
crossref_primary_10_4028_www_scientific_net_AMR_629_730
crossref_primary_10_1080_13675561003747423
crossref_primary_10_1016_j_cie_2017_05_026
crossref_primary_10_1080_00207543_2014_930535
crossref_primary_10_1016_j_jmsy_2013_12_007
crossref_primary_10_1007_s00170_022_08767_3
crossref_primary_10_1016_j_cie_2021_107211
crossref_primary_10_1080_10170660709509039
crossref_primary_10_1016_j_asoc_2012_07_033
crossref_primary_10_1080_00207543_2010_539276
crossref_primary_10_1109_ACCESS_2020_2988274
crossref_primary_10_1162_EVCO_a_00105
crossref_primary_10_1007_s10845_008_0145_x
crossref_primary_10_1016_j_procir_2014_05_012
crossref_primary_10_1016_j_eswa_2008_04_009
crossref_primary_10_1108_VJIKMS_08_2021_0146
crossref_primary_10_1016_j_jmsy_2011_02_005
crossref_primary_10_1016_j_asoc_2021_107280
crossref_primary_10_1016_j_ijpe_2010_08_017
crossref_primary_10_1080_1463922X_2011_617112
crossref_primary_10_7737_MSFE_2014_20_1_001
crossref_primary_10_1007_s11066_011_9064_7
crossref_primary_10_1007_s12159_015_0130_7
crossref_primary_10_1080_00207540903307581
Cites_doi 10.1287/mnsc.28.11.1337
10.1016/S0305-0483(02)00058-0
10.1016/0278-6125(95)90063-Q
10.1109/TEVC.2002.802452
10.1109/CEC.2002.1004431
10.1109/66.983448
10.1287/mnsc.30.9.1093
10.1109/CEC.2000.870330
10.1016/0272-6963(93)90034-M
10.1016/0898-1221(87)90184-2
10.1016/S0360-8352(97)00317-3
10.1080/05695558108974544
10.1109/SSDM.1997.621141
10.1057/jors.1984.84
ContentType Journal Article
Copyright The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2004). All Rights Reserved.
Copyright_xml – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2004). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00170-003-1937-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Engineering Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1174
ExternalDocumentID 10_1007_s00170_003_1937_y
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ABYXP
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
ACIPQ
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c273t-50e9932d9f4566a424766ab95a576a348f7afc3b1e0832b24fe047e0e19630933
ISSN 0268-3768
IngestDate Thu Oct 10 16:33:47 EDT 2024
Thu Nov 21 21:14:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11-12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-50e9932d9f4566a424766ab95a576a348f7afc3b1e0832b24fe047e0e19630933
PQID 2262518215
PQPubID 2044010
PageCount 11
ParticipantIDs proquest_journals_2262518215
crossref_primary_10_1007_s00170_003_1937_y
PublicationCentury 2000
PublicationDate 2005-6-00
20050601
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: 2005-6-00
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationYear 2005
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 1937_CR9
Michael (1937_CR15) 1997; techniques
Baker (1937_CR1) 1984; 30
1937_CR8
Quinlan (1937_CR17) 1986; 1
Braha (1937_CR18) 2002; 15
1937_CR16
Lawrence (1937_CR19) 1984; scheduling
1937_CR13
1937_CR11
1937_CR12
Kanet (1937_CR7) 1982; 28
Han (1937_CR14) 2001; mining
Cheng (1937_CR5) 1988; 14
Parpinelli (1937_CR10) 2002; 6
Baker (1937_CR2) 1981; 13
Chang (1937_CR3) 1994; 13
Cheng (1937_CR4) 1984; 35
Vig (1937_CR20) 1993; 11
Cheng (1937_CR6) 1998; 34
References_xml – volume: 28
  start-page: 1337
  year: 1982
  ident: 1937_CR7
  publication-title: Manage Sci
  doi: 10.1287/mnsc.28.11.1337
  contributor:
    fullname: Kanet
– ident: 1937_CR8
  doi: 10.1016/S0305-0483(02)00058-0
– volume: scheduling
  start-page: an
  year: 1984
  ident: 1937_CR19
  publication-title: Resource constrained project
  contributor:
    fullname: Lawrence
– volume: 13
  start-page: 393
  year: 1994
  ident: 1937_CR3
  publication-title: J Manuf Syst
  doi: 10.1016/0278-6125(95)90063-Q
  contributor:
    fullname: Chang
– volume: 6
  start-page: 321
  year: 2002
  ident: 1937_CR10
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.802452
  contributor:
    fullname: Parpinelli
– ident: 1937_CR12
  doi: 10.1109/CEC.2002.1004431
– volume: 15
  start-page: 91
  year: 2002
  ident: 1937_CR18
  publication-title: IEEE Trans Semiconductor Manuf
  doi: 10.1109/66.983448
  contributor:
    fullname: Braha
– volume: 30
  start-page: 1093
  year: 1984
  ident: 1937_CR1
  publication-title: Manage Sci
  doi: 10.1287/mnsc.30.9.1093
  contributor:
    fullname: Baker
– ident: 1937_CR13
  doi: 10.1109/CEC.2000.870330
– volume: techniques
  start-page: for
  year: 1997
  ident: 1937_CR15
  publication-title: Data mining
  contributor:
    fullname: Michael
– volume: 11
  start-page: 67
  year: 1993
  ident: 1937_CR20
  publication-title: J Oper Manage
  doi: 10.1016/0272-6963(93)90034-M
  contributor:
    fullname: Vig
– volume: 14
  start-page: 579
  year: 1988
  ident: 1937_CR5
  publication-title: Comput Math Appl
  doi: 10.1016/0898-1221(87)90184-2
  contributor:
    fullname: Cheng
– volume: 34
  start-page: 297
  year: 1998
  ident: 1937_CR6
  publication-title: Comput Ind Eng
  doi: 10.1016/S0360-8352(97)00317-3
  contributor:
    fullname: Cheng
– volume: 13
  start-page: 123
  year: 1981
  ident: 1937_CR2
  publication-title: AIIE Trans
  doi: 10.1080/05695558108974544
  contributor:
    fullname: Baker
– ident: 1937_CR9
  doi: 10.1109/SSDM.1997.621141
– ident: 1937_CR11
– volume: 35
  start-page: 433
  year: 1984
  ident: 1937_CR4
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.1984.84
  contributor:
    fullname: Cheng
– volume: 1
  start-page: 81
  year: 1986
  ident: 1937_CR17
  publication-title: Mach Learn
  contributor:
    fullname: Quinlan
– volume: mining
  start-page: Concepts
  year: 2001
  ident: 1937_CR14
  publication-title: Data
  contributor:
    fullname: Han
– ident: 1937_CR16
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.0453777
Snippet Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 1164
SubjectTerms Computer simulation
Customer satisfaction
Data mining
Decision trees
Job shop scheduling
Job shops
Methods
Performance enhancement
Production scheduling
Sequential scheduling
Title Using Data Mining for Due Date Assignment in a Dynamic Job Shop Environment
URI https://www.proquest.com/docview/2262518215
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYdoED2vgQYwP5wInIUpzYdXKc1o5uE1xaJG6R3djQA-nEmsP-e96znS9NQnDgklaulCp-v_z88_P7IOSDKTRXRlhmalEzoZVhpnCSWQPi1JYlrODocFuu1JdvxXwhFkN5gmHsv1oaxsDWmDn7D9bubwoD8B1sDlewOlz_yu4hBmCu9zr57Js_-EDCeWtxzKI5tt9DBMC2SXQyDx3pk5udSVY_dnfJYsh8GwvXqedwVG-iDyL4qZsW0yRC3uP-kct-FY-Wkl48X7JlcAu0E9-DHGKkJr5HDKzG444-N8bTVzYrkL4Cu9pAryLPGVCKHPNvSHzucMZZDKsOhMp5KHIeF2fOQ0-fR8QfYj18Q3fMlM8ZCFPFHg7IUQYMBAR4dHG9_nTVUQ0vFbZL7akoK0F5qoHqciHzcAAaD6Rm3GdV9g_VHZCnvh7t9E-nEme6wnvZsj4mz-N-g14EoJyQJ7Z5QZ6NqlC-JLceMhQhQwNkKECGAmRwzNIBMnTbUE0jZChAhiJk6Agyr8jXq8X6cslijw22AeG6ZzKFFzLP6tKBkp5pkQkFH6aUGjaiOheFU9ptcsMtaPXMZMLZVCibWmRu9Ia9JofNrrFvCJXKudQ6abBpgdOzQgDdW57VIDo3sshOycduWqq7UEql6otm-znEQrUVzmH1cErOu4mrIqbvK9gqgBwvQKW-_fPPZ-TpANdzcrj_1dp35OC-bt9HIPwGa-Jm0A
link.rule.ids 315,782,786,27933,27934
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Data+Mining+for+Due+Date+Assignment+in+a+Dynamic+Job+Shop+Environment&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Sha%2C+D+Y&rft.au=C-H%2C+Liu&rft.date=2005-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=25&rft.issue=11-12&rft.spage=1164&rft.epage=1174&rft_id=info:doi/10.1007%2Fs00170-003-1937-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon