Using Data Mining for Due Date Assignment in a Dynamic Job Shop Environment
Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are impacted by the quality of the due date assignment methods. Among the simple and easy to implement due date assignment methods, the total work c...
Saved in:
Published in: | International journal of advanced manufacturing technology Vol. 25; no. 11-12; pp. 1164 - 1174 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Heidelberg
Springer Nature B.V
01-06-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are impacted by the quality of the due date assignment methods. Among the simple and easy to implement due date assignment methods, the total work content (TWK) method achieves the best performance for tardiness related performance criteria and is most widely used in practice and in study. The performance of the TWK method can be improved if the due date allowance factor k could render a more precise and accurate flowtime estimation of each individual job. In this study, in order to improve the performance of the TWK method, we have presented a model that incorporated a data mining tool – Decision Tree – for mining the knowledge of job scheduling about due date assignment in a dynamic job shop environment, which is represented by IF-THEN rules and is able to adjust an appropriate factor k according to the condition of the shop at the instant of job arrival, thereby reducing the due date prediction errors of the TWK method. Simulation results show that our proposed rule-based TWK due date assignment (RTWK) model is significantly better than its static and dynamic counterparts (i.e., TWK and Dynamic TWK methods). In addition, the RTWK model also extracted comprehensive scheduling knowledge about due date assignment, expressed in the form of IF-THEN rules, allowing production managers to easily understand the principles of due date assignment . |
---|---|
AbstractList | Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are impacted by the quality of the due date assignment methods. Among the simple and easy to implement due date assignment methods, the total work content (TWK) method achieves the best performance for tardiness related performance criteria and is most widely used in practice and in study. The performance of the TWK method can be improved if the due date allowance factor k could render a more precise and accurate flowtime estimation of each individual job. In this study, in order to improve the performance of the TWK method, we have presented a model that incorporated a data mining tool – Decision Tree – for mining the knowledge of job scheduling about due date assignment in a dynamic job shop environment, which is represented by IF-THEN rules and is able to adjust an appropriate factor k according to the condition of the shop at the instant of job arrival, thereby reducing the due date prediction errors of the TWK method. Simulation results show that our proposed rule-based TWK due date assignment (RTWK) model is significantly better than its static and dynamic counterparts (i.e., TWK and Dynamic TWK methods). In addition, the RTWK model also extracted comprehensive scheduling knowledge about due date assignment, expressed in the form of IF-THEN rules, allowing production managers to easily understand the principles of due date assignment . |
Author | Sha, D.Y. Liu, C.-H. |
Author_xml | – sequence: 1 givenname: D.Y. surname: Sha fullname: Sha, D.Y. – sequence: 2 givenname: C.-H. surname: Liu fullname: Liu, C.-H. |
BookMark | eNotkMtOwzAQRS1UJNrCB7CzxNow9jh2sqzaUh5FLKBrywlOSUXtYqdI-XsSyuqOro7mSmdCRj54R8g1h1sOoO8SANfAAJDxAjXrzsiYS0SGwLMRGYNQOUOt8gsySWnX04qrfEyeN6nxW7qwraUvjR_uOkS6OLqhc3SWUrP1e-db2nhq6aLzdt9U9CmU9O0zHOjS_zQx_BGX5Ly2X8ld_eeUbO6X7_MHtn5dPc5na1YJjS3LwBUFio-ilplSVgqp-yiLzGZaWZR5rW1dYckd5ChKIWsHUjtwvFAIBeKU3Jz-HmL4PrrUml04Rt9PGiGUyHgueNZT_ERVMaQUXW0Osdnb2BkOZnBmTs5M78wMzkyHv6orXpI |
CitedBy_id | crossref_primary_10_1155_2018_2456010 crossref_primary_10_1155_2019_1572614 crossref_primary_10_1007_s00170_013_5354_6 crossref_primary_10_1007_s00170_015_7304_y crossref_primary_10_1080_00207540701197036 crossref_primary_10_1080_00207540903479778 crossref_primary_10_1016_j_procir_2019_03_179 crossref_primary_10_1016_j_promfg_2017_07_309 crossref_primary_10_1080_00207540802662896 crossref_primary_10_1088_1757_899X_212_1_012022 crossref_primary_10_1016_j_eswa_2014_11_068 crossref_primary_10_1109_TEVC_2013_2248159 crossref_primary_10_1080_00207540802043980 crossref_primary_10_1016_j_procir_2016_07_017 crossref_primary_10_1243_09544054JEM980 crossref_primary_10_4028_www_scientific_net_AMR_629_730 crossref_primary_10_1080_13675561003747423 crossref_primary_10_1016_j_cie_2017_05_026 crossref_primary_10_1080_00207543_2014_930535 crossref_primary_10_1016_j_jmsy_2013_12_007 crossref_primary_10_1007_s00170_022_08767_3 crossref_primary_10_1016_j_cie_2021_107211 crossref_primary_10_1080_10170660709509039 crossref_primary_10_1016_j_asoc_2012_07_033 crossref_primary_10_1080_00207543_2010_539276 crossref_primary_10_1109_ACCESS_2020_2988274 crossref_primary_10_1162_EVCO_a_00105 crossref_primary_10_1007_s10845_008_0145_x crossref_primary_10_1016_j_procir_2014_05_012 crossref_primary_10_1016_j_eswa_2008_04_009 crossref_primary_10_1108_VJIKMS_08_2021_0146 crossref_primary_10_1016_j_jmsy_2011_02_005 crossref_primary_10_1016_j_asoc_2021_107280 crossref_primary_10_1016_j_ijpe_2010_08_017 crossref_primary_10_1080_1463922X_2011_617112 crossref_primary_10_7737_MSFE_2014_20_1_001 crossref_primary_10_1007_s11066_011_9064_7 crossref_primary_10_1007_s12159_015_0130_7 crossref_primary_10_1080_00207540903307581 |
Cites_doi | 10.1287/mnsc.28.11.1337 10.1016/S0305-0483(02)00058-0 10.1016/0278-6125(95)90063-Q 10.1109/TEVC.2002.802452 10.1109/CEC.2002.1004431 10.1109/66.983448 10.1287/mnsc.30.9.1093 10.1109/CEC.2000.870330 10.1016/0272-6963(93)90034-M 10.1016/0898-1221(87)90184-2 10.1016/S0360-8352(97)00317-3 10.1080/05695558108974544 10.1109/SSDM.1997.621141 10.1057/jors.1984.84 |
ContentType | Journal Article |
Copyright | The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2004). All Rights Reserved. |
Copyright_xml | – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2004). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PTHSS |
DOI | 10.1007/s00170-003-1937-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Engineering Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1174 |
ExternalDocumentID | 10_1007_s00170_003_1937_y |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAEOY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ABYXP ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX ACIPQ DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c273t-50e9932d9f4566a424766ab95a576a348f7afc3b1e0832b24fe047e0e19630933 |
ISSN | 0268-3768 |
IngestDate | Thu Oct 10 16:33:47 EDT 2024 Thu Nov 21 21:14:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11-12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-50e9932d9f4566a424766ab95a576a348f7afc3b1e0832b24fe047e0e19630933 |
PQID | 2262518215 |
PQPubID | 2044010 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2262518215 crossref_primary_10_1007_s00170_003_1937_y |
PublicationCentury | 2000 |
PublicationDate | 2005-6-00 20050601 |
PublicationDateYYYYMMDD | 2005-06-01 |
PublicationDate_xml | – month: 06 year: 2005 text: 2005-6-00 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationYear | 2005 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 1937_CR9 Michael (1937_CR15) 1997; techniques Baker (1937_CR1) 1984; 30 1937_CR8 Quinlan (1937_CR17) 1986; 1 Braha (1937_CR18) 2002; 15 1937_CR16 Lawrence (1937_CR19) 1984; scheduling 1937_CR13 1937_CR11 1937_CR12 Kanet (1937_CR7) 1982; 28 Han (1937_CR14) 2001; mining Cheng (1937_CR5) 1988; 14 Parpinelli (1937_CR10) 2002; 6 Baker (1937_CR2) 1981; 13 Chang (1937_CR3) 1994; 13 Cheng (1937_CR4) 1984; 35 Vig (1937_CR20) 1993; 11 Cheng (1937_CR6) 1998; 34 |
References_xml | – volume: 28 start-page: 1337 year: 1982 ident: 1937_CR7 publication-title: Manage Sci doi: 10.1287/mnsc.28.11.1337 contributor: fullname: Kanet – ident: 1937_CR8 doi: 10.1016/S0305-0483(02)00058-0 – volume: scheduling start-page: an year: 1984 ident: 1937_CR19 publication-title: Resource constrained project contributor: fullname: Lawrence – volume: 13 start-page: 393 year: 1994 ident: 1937_CR3 publication-title: J Manuf Syst doi: 10.1016/0278-6125(95)90063-Q contributor: fullname: Chang – volume: 6 start-page: 321 year: 2002 ident: 1937_CR10 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.802452 contributor: fullname: Parpinelli – ident: 1937_CR12 doi: 10.1109/CEC.2002.1004431 – volume: 15 start-page: 91 year: 2002 ident: 1937_CR18 publication-title: IEEE Trans Semiconductor Manuf doi: 10.1109/66.983448 contributor: fullname: Braha – volume: 30 start-page: 1093 year: 1984 ident: 1937_CR1 publication-title: Manage Sci doi: 10.1287/mnsc.30.9.1093 contributor: fullname: Baker – ident: 1937_CR13 doi: 10.1109/CEC.2000.870330 – volume: techniques start-page: for year: 1997 ident: 1937_CR15 publication-title: Data mining contributor: fullname: Michael – volume: 11 start-page: 67 year: 1993 ident: 1937_CR20 publication-title: J Oper Manage doi: 10.1016/0272-6963(93)90034-M contributor: fullname: Vig – volume: 14 start-page: 579 year: 1988 ident: 1937_CR5 publication-title: Comput Math Appl doi: 10.1016/0898-1221(87)90184-2 contributor: fullname: Cheng – volume: 34 start-page: 297 year: 1998 ident: 1937_CR6 publication-title: Comput Ind Eng doi: 10.1016/S0360-8352(97)00317-3 contributor: fullname: Cheng – volume: 13 start-page: 123 year: 1981 ident: 1937_CR2 publication-title: AIIE Trans doi: 10.1080/05695558108974544 contributor: fullname: Baker – ident: 1937_CR9 doi: 10.1109/SSDM.1997.621141 – ident: 1937_CR11 – volume: 35 start-page: 433 year: 1984 ident: 1937_CR4 publication-title: J Oper Res Soc doi: 10.1057/jors.1984.84 contributor: fullname: Cheng – volume: 1 start-page: 81 year: 1986 ident: 1937_CR17 publication-title: Mach Learn contributor: fullname: Quinlan – volume: mining start-page: Concepts year: 2001 ident: 1937_CR14 publication-title: Data contributor: fullname: Han – ident: 1937_CR16 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.0453777 |
Snippet | Due date assignment is an important task in shop floor control, affecting both timely delivery and customer satisfaction. Due date related performances are... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 1164 |
SubjectTerms | Computer simulation Customer satisfaction Data mining Decision trees Job shop scheduling Job shops Methods Performance enhancement Production scheduling Sequential scheduling |
Title | Using Data Mining for Due Date Assignment in a Dynamic Job Shop Environment |
URI | https://www.proquest.com/docview/2262518215 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYdoED2vgQYwP5wInIUpzYdXKc1o5uE1xaJG6R3djQA-nEmsP-e96znS9NQnDgklaulCp-v_z88_P7IOSDKTRXRlhmalEzoZVhpnCSWQPi1JYlrODocFuu1JdvxXwhFkN5gmHsv1oaxsDWmDn7D9bubwoD8B1sDlewOlz_yu4hBmCu9zr57Js_-EDCeWtxzKI5tt9DBMC2SXQyDx3pk5udSVY_dnfJYsh8GwvXqedwVG-iDyL4qZsW0yRC3uP-kct-FY-Wkl48X7JlcAu0E9-DHGKkJr5HDKzG444-N8bTVzYrkL4Cu9pAryLPGVCKHPNvSHzucMZZDKsOhMp5KHIeF2fOQ0-fR8QfYj18Q3fMlM8ZCFPFHg7IUQYMBAR4dHG9_nTVUQ0vFbZL7akoK0F5qoHqciHzcAAaD6Rm3GdV9g_VHZCnvh7t9E-nEme6wnvZsj4mz-N-g14EoJyQJ7Z5QZ6NqlC-JLceMhQhQwNkKECGAmRwzNIBMnTbUE0jZChAhiJk6Agyr8jXq8X6cslijw22AeG6ZzKFFzLP6tKBkp5pkQkFH6aUGjaiOheFU9ptcsMtaPXMZMLZVCibWmRu9Ia9JofNrrFvCJXKudQ6abBpgdOzQgDdW57VIDo3sshOycduWqq7UEql6otm-znEQrUVzmH1cErOu4mrIqbvK9gqgBwvQKW-_fPPZ-TpANdzcrj_1dp35OC-bt9HIPwGa-Jm0A |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Data+Mining+for+Due+Date+Assignment+in+a+Dynamic+Job+Shop+Environment&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Sha%2C+D+Y&rft.au=C-H%2C+Liu&rft.date=2005-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=25&rft.issue=11-12&rft.spage=1164&rft.epage=1174&rft_id=info:doi/10.1007%2Fs00170-003-1937-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |