Investigation of structural, morphological, and transport properties of a multifunctional Li-ferrite compound
The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesize...
Saved in:
Published in: | RSC advances Vol. 12; no. 29; pp. 18697 - 1878 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Royal Society of Chemistry
22-06-2022
The Royal Society of Chemistry |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesized LiMn
0.5
Fe
2
O
4
sintered at a temperature of 1100 °C. The X-ray powder diffraction analysis reveals the presence of one cubic phase with the
Fd
3&cmb.macr;
m
space group and confirms the spinel structure formation. Moreover, the elemental analysis by EDX reveals the homogeneous distribution of iron and manganese cations. Scanning electron microscopy shows that the grain size is of the order of 2.48 μm. Impedance spectroscopy was performed in the temperature and frequency ranges from 200 K to 380 K and 40 Hz to 10
6
Hz, respectively. The Nyquist plots revealed the presence of grains and grain boundary contributions. The semiconductor nature, obtained by the conductivity study, indicates that LiMn
0.5
Fe
2
O
4
is promising in optoelectronic applications. Dc conductivity is found to be thermally activated with an activation energy of 370 meV, 255 meV, and 199 meV for 200-270 K, 280-330 K, and 340-380 K regions, respectively. From the Jonscher power law, the correlated barrier hopping model (CBH) and non-overlapping small polaron tunneling (NSPT) prevailed in the conduction process. Besides, the temperature coefficient of resistivity (TCR) affirmed that LiMn
0.5
Fe
2
O
4
is a good candidate for detecting infrared radiations and infrared bolometric applications.
Oxide lithium-manganese ferrite spinel representation, with stoichiometry LiMn
0.5
Fe
2
O
4
, in the (110) plane. |
---|---|
AbstractList | The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesized LiMn
0.5
Fe
2
O
4
sintered at a temperature of 1100 °C. The X-ray powder diffraction analysis reveals the presence of one cubic phase with the
Fd
3̄
m
space group and confirms the spinel structure formation. Moreover, the elemental analysis by EDX reveals the homogeneous distribution of iron and manganese cations. Scanning electron microscopy shows that the grain size is of the order of 2.48 μm. Impedance spectroscopy was performed in the temperature and frequency ranges from 200 K to 380 K and 40 Hz to 10
6
Hz, respectively. The Nyquist plots revealed the presence of grains and grain boundary contributions. The semiconductor nature, obtained by the conductivity study, indicates that LiMn
0.5
Fe
2
O
4
is promising in optoelectronic applications. Dc conductivity is found to be thermally activated with an activation energy of 370 meV, 255 meV, and 199 meV for 200–270 K, 280–330 K, and 340–380 K regions, respectively. From the Jonscher power law, the correlated barrier hopping model (CBH) and non-overlapping small polaron tunneling (NSPT) prevailed in the conduction process. Besides, the temperature coefficient of resistivity (TCR) affirmed that LiMn
0.5
Fe
2
O
4
is a good candidate for detecting infrared radiations and infrared bolometric applications. The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesized LiMn 0.5 Fe 2 O 4 sintered at a temperature of 1100 °C. The X-ray powder diffraction analysis reveals the presence of one cubic phase with the Fd 3&cmb.macr; m space group and confirms the spinel structure formation. Moreover, the elemental analysis by EDX reveals the homogeneous distribution of iron and manganese cations. Scanning electron microscopy shows that the grain size is of the order of 2.48 μm. Impedance spectroscopy was performed in the temperature and frequency ranges from 200 K to 380 K and 40 Hz to 10 6 Hz, respectively. The Nyquist plots revealed the presence of grains and grain boundary contributions. The semiconductor nature, obtained by the conductivity study, indicates that LiMn 0.5 Fe 2 O 4 is promising in optoelectronic applications. Dc conductivity is found to be thermally activated with an activation energy of 370 meV, 255 meV, and 199 meV for 200-270 K, 280-330 K, and 340-380 K regions, respectively. From the Jonscher power law, the correlated barrier hopping model (CBH) and non-overlapping small polaron tunneling (NSPT) prevailed in the conduction process. Besides, the temperature coefficient of resistivity (TCR) affirmed that LiMn 0.5 Fe 2 O 4 is a good candidate for detecting infrared radiations and infrared bolometric applications. Oxide lithium-manganese ferrite spinel representation, with stoichiometry LiMn 0.5 Fe 2 O 4 , in the (110) plane. The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesized LiMn0.5Fe2O4 sintered at a temperature of 1100 °C. The X-ray powder diffraction analysis reveals the presence of one cubic phase with the Fd3m space group and confirms the spinel structure formation. Moreover, the elemental analysis by EDX reveals the homogeneous distribution of iron and manganese cations. Scanning electron microscopy shows that the grain size is of the order of 2.48 μm. Impedance spectroscopy was performed in the temperature and frequency ranges from 200 K to 380 K and 40 Hz to 106 Hz, respectively. The Nyquist plots revealed the presence of grains and grain boundary contributions. The semiconductor nature, obtained by the conductivity study, indicates that LiMn0.5Fe2O4 is promising in optoelectronic applications. Dc conductivity is found to be thermally activated with an activation energy of 370 meV, 255 meV, and 199 meV for 200–270 K, 280–330 K, and 340–380 K regions, respectively. From the Jonscher power law, the correlated barrier hopping model (CBH) and non-overlapping small polaron tunneling (NSPT) prevailed in the conduction process. Besides, the temperature coefficient of resistivity (TCR) affirmed that LiMn0.5Fe2O4 is a good candidate for detecting infrared radiations and infrared bolometric applications. The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesized LiMn 0.5 Fe 2 O 4 sintered at a temperature of 1100 °C. The X-ray powder diffraction analysis reveals the presence of one cubic phase with the Fd 3̄ m space group and confirms the spinel structure formation. Moreover, the elemental analysis by EDX reveals the homogeneous distribution of iron and manganese cations. Scanning electron microscopy shows that the grain size is of the order of 2.48 μm. Impedance spectroscopy was performed in the temperature and frequency ranges from 200 K to 380 K and 40 Hz to 10 6 Hz, respectively. The Nyquist plots revealed the presence of grains and grain boundary contributions. The semiconductor nature, obtained by the conductivity study, indicates that LiMn 0.5 Fe 2 O 4 is promising in optoelectronic applications. Dc conductivity is found to be thermally activated with an activation energy of 370 meV, 255 meV, and 199 meV for 200–270 K, 280–330 K, and 340–380 K regions, respectively. From the Jonscher power law, the correlated barrier hopping model (CBH) and non-overlapping small polaron tunneling (NSPT) prevailed in the conduction process. Besides, the temperature coefficient of resistivity (TCR) affirmed that LiMn 0.5 Fe 2 O 4 is a good candidate for detecting infrared radiations and infrared bolometric applications. Oxide lithium-manganese ferrite spinel representation, with stoichiometry LiMn 0.5 Fe 2 O 4 , in the (110) plane. The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications. In this context, the exceptional properties of ferrite materials have attracted the attention of researchers. For this reason, we synthesized LiMn Fe O sintered at a temperature of 1100 °C. The X-ray powder diffraction analysis reveals the presence of one cubic phase with the 3̄ space group and confirms the spinel structure formation. Moreover, the elemental analysis by EDX reveals the homogeneous distribution of iron and manganese cations. Scanning electron microscopy shows that the grain size is of the order of 2.48 μm. Impedance spectroscopy was performed in the temperature and frequency ranges from 200 K to 380 K and 40 Hz to 10 Hz, respectively. The Nyquist plots revealed the presence of grains and grain boundary contributions. The semiconductor nature, obtained by the conductivity study, indicates that LiMn Fe O is promising in optoelectronic applications. Dc conductivity is found to be thermally activated with an activation energy of 370 meV, 255 meV, and 199 meV for 200-270 K, 280-330 K, and 340-380 K regions, respectively. From the Jonscher power law, the correlated barrier hopping model (CBH) and non-overlapping small polaron tunneling (NSPT) prevailed in the conduction process. Besides, the temperature coefficient of resistivity (TCR) affirmed that LiMn Fe O is a good candidate for detecting infrared radiations and infrared bolometric applications. |
Author | Soudani, Ibtihel Slimi, Houda Aydi, Abdelhedi Oueslati, Abderrazek Ben Brahim, Khawla Khirouni, Kamel |
AuthorAffiliation | LR16ES18, Faculty of Sciences of Sfax Laboratory of Physics of Materials and Nanomaterials Applied to the Environment (LaPHYMNE) University of Gabès Cited Erriadh University of Sfax Faculty of Sciences Laboratory of Multifunctional Materials and Applications (LaMMA) Laboratory for Spectroscopic and Optical Characterization of Materials (LaSCOM) |
AuthorAffiliation_xml | – name: LR16ES18, Faculty of Sciences of Sfax – name: Faculty of Sciences – name: University of Sfax – name: University of Gabès Cited Erriadh – name: Laboratory of Multifunctional Materials and Applications (LaMMA) – name: Laboratory for Spectroscopic and Optical Characterization of Materials (LaSCOM) – name: Laboratory of Physics of Materials and Nanomaterials Applied to the Environment (LaPHYMNE) |
Author_xml | – sequence: 1 givenname: Ibtihel surname: Soudani fullname: Soudani, Ibtihel – sequence: 2 givenname: Khawla surname: Ben Brahim fullname: Ben Brahim, Khawla – sequence: 3 givenname: Abderrazek surname: Oueslati fullname: Oueslati, Abderrazek – sequence: 4 givenname: Houda surname: Slimi fullname: Slimi, Houda – sequence: 5 givenname: Abdelhedi surname: Aydi fullname: Aydi, Abdelhedi – sequence: 6 givenname: Kamel surname: Khirouni fullname: Khirouni, Kamel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35799943$$D View this record in MEDLINE/PubMed |
BookMark | eNpdks1LHTEUxUNRqrVuulcGuinFaTOZmWSyKYhaFR4IpV2HTHJnjMwkYz6E_vfN89nnRzbJ5f7u4XBPPqAd6ywg9KnC3ypc8--aeIkJa9n4Du0T3NCSYMp3Xrz30GEIdzgf2laEVu_RXt0yznlT76P52j5AiGaU0ThbuKEI0ScVk5fTSTE7v9y6yY1GrUtpdRG9tGFxPhaLdwv4aCCsx2QxpymaIVm1VpJTsTLlAN6bCIVy8-KS1R_R7iCnAIdP9wH68_Pi99lVubq5vD47XZWKsHostZas1o2SEvd1J3vQhDfQKaKg69oWFK4471rSsgpT2jWyHyrJAPfdoHucZw_Qj43ukvoZtAKbbU9i8WaW_q9w0ojXHWtuxegeBCeE0YZmgS9PAt7dp7wgMZugYJqkBZeCILRjjNRNSzL6-Q1655LPC3ikCGOcsiZTXzeU8i4ED8PWTIXFOkhxTn6dPgZ5meHjl_a36P_YMnC0AXxQ2-7zT6j_AZVvp7E |
CitedBy_id | crossref_primary_10_1039_D3RA03393G crossref_primary_10_1039_D4RA00260A crossref_primary_10_1007_s10876_024_02545_9 crossref_primary_10_1016_j_optmat_2024_115664 crossref_primary_10_1039_D3RA00985H crossref_primary_10_1016_j_ceramint_2024_02_389 crossref_primary_10_1007_s11581_022_04838_3 crossref_primary_10_1039_D3RA06962A crossref_primary_10_1039_D2RA07970D |
Cites_doi | 10.1016/j.ceramint.2019.03.097 10.1016/j.jallcom.2017.02.015 10.1016/S0254-0584(00)00273-X 10.1039/C8RA07671E 10.1063/1.4845895 10.1016/j.molstruc.2020.128859 10.1021/acs.jpcc.1c09838 10.1016/j.physb.2021.413129 10.1039/D0RA10140K 10.1063/1.1750906 10.1109/TMAG.1970.1066678 10.1039/D0RA08405K 10.1039/C9RA02238D 10.1016/j.ceramint.2015.10.077 10.1016/S1002-0721(07)60049-0 10.1016/S0304-8853(99)00685-X 10.1016/j.ceramint.2012.10.051 10.1016/j.jmmm.2013.09.022 10.1016/j.jpowsour.2013.10.092 10.1039/C9RA07569K 10.1016/j.matchemphys.2010.02.057 10.1016/j.spmi.2018.03.048 10.1039/D0RA05133K 10.1016/j.materresbull.2018.04.035 10.1016/j.rinp.2018.11.048 10.1002/pssa.200622146 10.1002/pssa.200306741 10.1016/j.jmmm.2017.11.068 10.1088/0953-8984/6/29/014 10.1088/0022-3727/46/6/065308 10.1016/j.ceramint.2021.04.280 10.1016/j.matchemphys.2007.02.037 10.1016/j.mssp.2013.11.027 10.1016/j.cplett.2020.137106 10.1007/s40145-015-0149-x 10.1016/j.electacta.2012.04.020 10.1016/j.jmmm.2021.167806 10.1080/1023666X.2012.658651 10.1080/13642818508243162 10.1080/01418638008221874 10.1016/j.ssi.2019.115042 10.1039/C5DT00444F 10.1021/ic011302k 10.1103/PhysRevB.98.064407 10.1016/j.jssc.2009.08.034 10.1039/D0RA05522K 10.1016/j.jallcom.2006.11.081 10.1107/S0021889869006558 10.1016/j.apsusc.2013.07.032 10.1080/00018738700101971 10.1016/S0167-577X(03)00093-4 10.1016/j.jmmm.2012.12.015 10.1051/epjconf/20122900023 10.1103/PhysRevLett.84.2188 10.1016/j.mseb.2003.09.028 10.1016/j.apt.2020.11.005 10.1016/j.jallcom.2013.09.021 10.1016/j.cap.2010.11.073 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d2ra02757g |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 1878 |
ExternalDocumentID | 10_1039_D2RA02757G 35799943 d2ra02757g |
Genre | Journal Article |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ H13 HZ H~N J3I JG O9- OK1 R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN -JG 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AHGCF AKBGW APEMP HZ~ M~E NPM PGMZT AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c273g-dda73d4caa0b38abed294e8c2ce8855ec019985257106684abf1a7e0b8fdb0a73 |
IEDL.DBID | RPM |
ISSN | 2046-2069 |
IngestDate | Tue Sep 17 20:37:02 EDT 2024 Sat Oct 26 00:31:16 EDT 2024 Thu Oct 10 19:31:24 EDT 2024 Thu Nov 21 22:25:30 EST 2024 Sat Nov 02 12:28:23 EDT 2024 Sun Jul 03 10:41:25 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273g-dda73d4caa0b38abed294e8c2ce8855ec019985257106684abf1a7e0b8fdb0a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3221-3401 0000-0002-2032-6011 0000-0002-9814-0380 0000-0003-1584-5957 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227646/ |
PMID | 35799943 |
PQID | 2682779674 |
PQPubID | 2047525 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d2ra02757g proquest_journals_2682779674 crossref_primary_10_1039_D2RA02757G pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227646 proquest_miscellaneous_2687723452 pubmed_primary_35799943 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jun-22 |
PublicationDateYYYYMMDD | 2022-06-22 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-Jun-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Dutta (D2RA02757G/cit53/1) 2008; 403 Bharti (D2RA02757G/cit52/1) 2011; 406 Ennefati (D2RA02757G/cit58/1) 2018; 29 Srivastava (D2RA02757G/cit13/1) 2019; 45 Elliott (D2RA02757G/cit56/1) 1987; 36 Gajula (D2RA02757G/cit29/1) 2018; 3 Rhouma (D2RA02757G/cit47/1) 2012; 29 Singh (D2RA02757G/cit66/1) 2017; 704 Ben Brahim (D2RA02757G/cit41/1) 2018; 8 Massoudi (D2RA02757G/cit28/1) 2021; 528 Hankare (D2RA02757G/cit22/1) 2009; 182 Ghosh (D2RA02757G/cit63/1) 2000; 84 Ravinder (D2RA02757G/cit9/1) 2003; 57 Hadded (D2RA02757G/cit34/1) 2020; 10 Chen (D2RA02757G/cit14/1) 2000; 209 Kurian (D2RA02757G/cit33/1) 2015; 4 Abdallah (D2RA02757G/cit44/1) 2018; 117 Jing (D2RA02757G/cit11/1) 2007; 25 L (D2RA02757G/cit49/1) 2008; 453 Moualhi (D2RA02757G/cit65/1) 2021; 616 Manzoor (D2RA02757G/cit10/1) 2021; 4 Watawe (D2RA02757G/cit17/1) 2007; 103 Soltan (D2RA02757G/cit45/1) 2017; 28 Megdiche (D2RA02757G/cit59/1) 2014; 584 Lahouli (D2RA02757G/cit3/1) 2019; 9 Pham (D2RA02757G/cit23/1) 2020; 10 Julien (D2RA02757G/cit62/1) 2004; 108 Verma (D2RA02757G/cit19/1) 2010; 122 Junaid (D2RA02757G/cit5/1) 2020; 1221 Verma (D2RA02757G/cit16/1) 2010; 122 Chatterjee (D2RA02757G/cit48/1) 2004; 201 Mott (D2RA02757G/cit57/1) 1980; 42 Aravind (D2RA02757G/cit12/1) 2016; 42 Kumar (D2RA02757G/cit18/1) 2020; 31 Zákutná (D2RA02757G/cit36/1) 2018; 98 Bouzayen (D2RA02757G/cit35/1) 2020; 741 Agajanian (D2RA02757G/cit31/1) 1970; 6 Massoudi (D2RA02757G/cit2/1) 2022; 126 Bhowmik (D2RA02757G/cit30/1) 2013; 114 Bouokkeze (D2RA02757G/cit7/1) 2019; 9 Rouahi (D2RA02757G/cit46/1) 2013; 46 Dabbebi (D2RA02757G/cit67/1) 2021; 56 Liu (D2RA02757G/cit70/1) 2013; 283 Chouaya (D2RA02757G/cit69/1) 2018; 451 Shah (D2RA02757G/cit42/1) 2013; 332 Bougoffa (D2RA02757G/cit51/1) 2019; 30 Okutan (D2RA02757G/cit61/1) 2005; 364 Tawichai (D2RA02757G/cit37/1) 2013; 39 Gupta (D2RA02757G/cit21/1) 2007; 204 Massoudi (D2RA02757G/cit71/1) 2020; 10 Yousif (D2RA02757G/cit8/1) 1994; 6 Heiba (D2RA02757G/cit20/1) 2019; 341 Cole (D2RA02757G/cit50/1) 1941; 9 Summerfield (D2RA02757G/cit64/1) 1985; 52 Rietveld (D2RA02757G/cit32/1) 1969; 2 Singh (D2RA02757G/cit6/1) 2011; 11 Hanen (D2RA02757G/cit55/1) 2020; 31 Assar (D2RA02757G/cit15/1) 2014; 350 Córdoba-Torres (D2RA02757G/cit39/1) 2012; 72 Moualhi (D2RA02757G/cit68/1) 2020; 31 Rahmouni (D2RA02757G/cit38/1) 2015; 44 Li (D2RA02757G/cit27/1) 2014; 249 Singh (D2RA02757G/cit60/1) 2019; 12 Morán (D2RA02757G/cit4/1) 2002; 41 Bellad (D2RA02757G/cit24/1) 2000; 66 Watawe (D2RA02757G/cit25/1) 2007; 103 Kharrat (D2RA02757G/cit40/1) 2018; 105 Massoudi (D2RA02757G/cit26/1) 2020; 31 Amri (D2RA02757G/cit1/1) 2021; 11 Şenkul (D2RA02757G/cit54/1) 2012; 17 Abu-Samaha (D2RA02757G/cit43/1) 2014; 19 |
References_xml | – volume: 45 start-page: 12028 year: 2019 ident: D2RA02757G/cit13/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.097 contributor: fullname: Srivastava – volume: 704 start-page: 707 year: 2017 ident: D2RA02757G/cit66/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.015 contributor: fullname: Singh – volume: 66 start-page: 58 year: 2000 ident: D2RA02757G/cit24/1 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(00)00273-X contributor: fullname: Bellad – volume: 8 start-page: 40676 year: 2018 ident: D2RA02757G/cit41/1 publication-title: RSC Adv. doi: 10.1039/C8RA07671E contributor: fullname: Ben Brahim – volume: 114 start-page: 223701 year: 2013 ident: D2RA02757G/cit30/1 publication-title: Int. J. Appl. Phys. doi: 10.1063/1.4845895 contributor: fullname: Bhowmik – volume: 1221 start-page: 128859 year: 2020 ident: D2RA02757G/cit5/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2020.128859 contributor: fullname: Junaid – volume: 126 start-page: 2857 year: 2022 ident: D2RA02757G/cit2/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c09838 contributor: fullname: Massoudi – volume: 616 start-page: 413129 year: 2021 ident: D2RA02757G/cit65/1 publication-title: Phys. B doi: 10.1016/j.physb.2021.413129 contributor: fullname: Moualhi – volume: 11 start-page: 13256 year: 2021 ident: D2RA02757G/cit1/1 publication-title: RSC Adv. doi: 10.1039/D0RA10140K contributor: fullname: Amri – volume: 9 start-page: 341 year: 1941 ident: D2RA02757G/cit50/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1750906 contributor: fullname: Cole – volume: 6 start-page: 90 year: 1970 ident: D2RA02757G/cit31/1 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1970.1066678 contributor: fullname: Agajanian – volume: 10 start-page: 1042542 year: 2020 ident: D2RA02757G/cit34/1 publication-title: RSC Adv. doi: 10.1039/D0RA08405K contributor: fullname: Hadded – volume: 9 start-page: 19949 year: 2019 ident: D2RA02757G/cit3/1 publication-title: RSC Adv. doi: 10.1039/C9RA02238D contributor: fullname: Lahouli – volume: 42 start-page: 2941 year: 2016 ident: D2RA02757G/cit12/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.10.077 contributor: fullname: Aravind – volume: 25 start-page: 79 year: 2007 ident: D2RA02757G/cit11/1 publication-title: J. Rare Earths doi: 10.1016/S1002-0721(07)60049-0 contributor: fullname: Jing – volume: 209 start-page: 193 year: 2000 ident: D2RA02757G/cit14/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(99)00685-X contributor: fullname: Chen – volume: 39 start-page: 145 year: 2013 ident: D2RA02757G/cit37/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.10.051 contributor: fullname: Tawichai – volume: 28 start-page: 6356 year: 2017 ident: D2RA02757G/cit45/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Soltan – volume: 350 start-page: 12 year: 2014 ident: D2RA02757G/cit15/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.09.022 contributor: fullname: Assar – volume: 249 start-page: 28 year: 2014 ident: D2RA02757G/cit27/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.092 contributor: fullname: Li – volume: 9 start-page: 40940 year: 2019 ident: D2RA02757G/cit7/1 publication-title: RSC Adv. doi: 10.1039/C9RA07569K contributor: fullname: Bouokkeze – volume: 31 start-page: 9231 year: 2020 ident: D2RA02757G/cit18/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Kumar – volume: 122 start-page: 133 year: 2010 ident: D2RA02757G/cit19/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.02.057 contributor: fullname: Verma – volume: 117 start-page: 260 year: 2018 ident: D2RA02757G/cit44/1 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.03.048 contributor: fullname: Abdallah – volume: 10 start-page: 31622 year: 2020 ident: D2RA02757G/cit23/1 publication-title: RSC Adv. doi: 10.1039/D0RA05133K contributor: fullname: Pham – volume: 105 start-page: 75 year: 2018 ident: D2RA02757G/cit40/1 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.04.035 contributor: fullname: Kharrat – volume: 12 start-page: 223 year: 2019 ident: D2RA02757G/cit60/1 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.11.048 contributor: fullname: Singh – volume: 204 start-page: 2441 year: 2007 ident: D2RA02757G/cit21/1 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200622146 contributor: fullname: Gupta – volume: 201 start-page: 588 year: 2004 ident: D2RA02757G/cit48/1 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200306741 contributor: fullname: Chatterjee – volume: 451 start-page: 344 year: 2018 ident: D2RA02757G/cit69/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.11.068 contributor: fullname: Chouaya – volume: 6 start-page: 5717 year: 1994 ident: D2RA02757G/cit8/1 publication-title: J. Condens. Matter Phys doi: 10.1088/0953-8984/6/29/014 contributor: fullname: Yousif – volume: 46 start-page: 65308 year: 2013 ident: D2RA02757G/cit46/1 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/6/065308 contributor: fullname: Rouahi – volume: 4 start-page: 22662 year: 2021 ident: D2RA02757G/cit10/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.04.280 contributor: fullname: Manzoor – volume: 103 start-page: 323 year: 2007 ident: D2RA02757G/cit17/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2007.02.037 contributor: fullname: Watawe – volume: 19 start-page: 50 year: 2014 ident: D2RA02757G/cit43/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2013.11.027 contributor: fullname: Abu-Samaha – volume: 364 start-page: 300 year: 2005 ident: D2RA02757G/cit61/1 publication-title: Phys. Rev. B contributor: fullname: Okutan – volume: 56 start-page: 1 year: 2021 ident: D2RA02757G/cit67/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Dabbebi – volume: 741 start-page: 137106 year: 2020 ident: D2RA02757G/cit35/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137106 contributor: fullname: Bouzayen – volume: 4 start-page: 199 year: 2015 ident: D2RA02757G/cit33/1 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-015-0149-x contributor: fullname: Kurian – volume: 72 start-page: 172 year: 2012 ident: D2RA02757G/cit39/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.04.020 contributor: fullname: Córdoba-Torres – volume: 528 start-page: 167806 year: 2021 ident: D2RA02757G/cit28/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.167806 contributor: fullname: Massoudi – volume: 17 start-page: 257 year: 2012 ident: D2RA02757G/cit54/1 publication-title: Int. J. Polym. Anal. Charact. doi: 10.1080/1023666X.2012.658651 contributor: fullname: Şenkul – volume: 52 start-page: 9 year: 1985 ident: D2RA02757G/cit64/1 publication-title: Philos. Mag. Part B doi: 10.1080/13642818508243162 contributor: fullname: Summerfield – volume: 42 start-page: 327 year: 1980 ident: D2RA02757G/cit57/1 publication-title: Philos. Mag. B doi: 10.1080/01418638008221874 contributor: fullname: Mott – volume: 29 start-page: 171 year: 2018 ident: D2RA02757G/cit58/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Ennefati – volume: 122 start-page: 133 year: 2010 ident: D2RA02757G/cit16/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.02.057 contributor: fullname: Verma – volume: 403 start-page: 3389 year: 2008 ident: D2RA02757G/cit53/1 publication-title: Phys. Rev. B contributor: fullname: Dutta – volume: 341 start-page: 115042 year: 2019 ident: D2RA02757G/cit20/1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2019.115042 contributor: fullname: Heiba – volume: 44 start-page: 10457 year: 2015 ident: D2RA02757G/cit38/1 publication-title: Dalton Trans. doi: 10.1039/C5DT00444F contributor: fullname: Rahmouni – volume: 31 start-page: 16830 year: 2020 ident: D2RA02757G/cit55/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Hanen – volume: 30 start-page: 21018 year: 2019 ident: D2RA02757G/cit51/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Bougoffa – volume: 406 start-page: 1827 year: 2011 ident: D2RA02757G/cit52/1 publication-title: Phys. Rev. B contributor: fullname: Bharti – volume: 41 start-page: 5961 year: 2002 ident: D2RA02757G/cit4/1 publication-title: Inorg. Chem. doi: 10.1021/ic011302k contributor: fullname: Morán – volume: 3 start-page: 230 year: 2018 ident: D2RA02757G/cit29/1 publication-title: J. Sci.: Adv. Mater. Devices contributor: fullname: Gajula – volume: 98 start-page: 064407 year: 2018 ident: D2RA02757G/cit36/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.064407 contributor: fullname: Zákutná – volume: 182 start-page: 3217 year: 2009 ident: D2RA02757G/cit22/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.08.034 contributor: fullname: Hankare – volume: 10 start-page: 34556 year: 2020 ident: D2RA02757G/cit71/1 publication-title: RSC Adv. doi: 10.1039/D0RA05522K contributor: fullname: Massoudi – volume: 453 start-page: 325 year: 2008 ident: D2RA02757G/cit49/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.11.081 contributor: fullname: L – volume: 2 start-page: 65 year: 1969 ident: D2RA02757G/cit32/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889869006558 contributor: fullname: Rietveld – volume: 283 start-page: 851 year: 2013 ident: D2RA02757G/cit70/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.07.032 contributor: fullname: Liu – volume: 36 start-page: 135 year: 1987 ident: D2RA02757G/cit56/1 publication-title: Adv. Phys. doi: 10.1080/00018738700101971 contributor: fullname: Elliott – volume: 57 start-page: 4344 year: 2003 ident: D2RA02757G/cit9/1 publication-title: Mater. Lett. doi: 10.1016/S0167-577X(03)00093-4 contributor: fullname: Ravinder – volume: 332 start-page: 61 year: 2013 ident: D2RA02757G/cit42/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.12.015 contributor: fullname: Shah – volume: 29 start-page: 23 year: 2012 ident: D2RA02757G/cit47/1 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/20122900023 contributor: fullname: Rhouma – volume: 103 start-page: 323 year: 2007 ident: D2RA02757G/cit25/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2007.02.037 contributor: fullname: Watawe – volume: 31 start-page: 21046 year: 2020 ident: D2RA02757G/cit68/1 publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Moualhi – volume: 84 start-page: 2188 year: 2000 ident: D2RA02757G/cit63/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2188 contributor: fullname: Ghosh – volume: 108 start-page: 179 year: 2004 ident: D2RA02757G/cit62/1 publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2003.09.028 contributor: fullname: Julien – volume: 31 start-page: 4714 year: 2020 ident: D2RA02757G/cit26/1 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.11.005 contributor: fullname: Massoudi – volume: 584 start-page: 209 year: 2014 ident: D2RA02757G/cit59/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.09.021 contributor: fullname: Megdiche – volume: 11 start-page: 783 year: 2011 ident: D2RA02757G/cit6/1 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.11.073 contributor: fullname: Singh |
SSID | ssj0000651261 |
Score | 2.3913066 |
Snippet | The development of multifunctional materials is an exceptional research area, which is aimed at enhancing the versatility of materials in various applications.... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 18697 |
SubjectTerms | Chemistry Ferrites Frequency ranges Grain boundaries Grain size Manganese Multifunctional materials Nyquist plots Optoelectronics Sintering (powder metallurgy) Transport properties X ray powder diffraction |
Title | Investigation of structural, morphological, and transport properties of a multifunctional Li-ferrite compound |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35799943 https://www.proquest.com/docview/2682779674 https://search.proquest.com/docview/2687723452 https://pubmed.ncbi.nlm.nih.gov/PMC9227646 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYYB-CCeFNeCoIjYV2SNukRjdcBEOIhcavSPGASa6cB_58kXQYTN855tLKd2I7tzwDH0hLrzHqNKaUas9waXCibYZXSQiofTQzvkNeP_O5FnF94mJws1sKEpH1VDU7r9-FpPXgLuZWjoerGPLHu_W2_IITnLO92oONsw18uenv9Oh2W9yIUKS26moylj87x1yVYoBl3NhGjs3roj3H5N0eyM44tQYLquVyB5YnNiM7af1uFOVOvwWI_tmpbh-EvtIymRo1FLSysh9Q4QcPG0TLecSdI1hp9RkhzNPKP8WOPquqXSRQSDL2ya98I0c0AWw_e-GmQzz73TZg24Pny4ql_jSd9FLByxskr1lpyqpmSMq2okJXRpGBGKKKMEFlmVOoL7TwsqvMPc8FkZXuSm7QSVlepW7sJ83VTm21AjoWE2IoLVrnTL62wglLFU2J6hTGUJXAUqVqOWriMMoS5aVGek4ezwIarBPYiwcvJkfkoSS4I50XO3SaH02FHSB_BkLVpvsIc5w1QlpEEtlr-TD8TGZsAn-HcdIIH0p4dcfIVALUn8pTApuPxdP6P2Oz8e8tdWCK-XiLNMSF7MO-Yb_ah86G_DoL3fxBk9xsSLPcZ |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB41VCpcgD4oy6N11R4xcWzv2ntEAZqqAVUtlXpbef2gkchuFOD_Y3vjQMSNs1-r_caesWfmG4BvylHnzXqDGWMG88JZXGqXY01YqXTwJsZ3yNEfcflPnp4Fmpw85cLEoH1dT46bm-lxM_kfYytnU91PcWL9XxfDklJR8KLfg9d-vxLy5JLeHcBeixWDREbKyr6hcxX8c-J6A96wXHiriLNVTfTMvHweJdmbp6IgUfmcb73ws7dhc2FtopOu-S28ss07WB-mIm_vYfqEZ6NtUOtQRygbyDiO0LT1KKTT8QipxqC7RIaOZuEZfx74WMMwhWJoYlCT3esiGk-wC7SPdxaFuPVQvukD_D0_uxqO8KICA9berLnGxijBDNdKkZpJVVtDS26lptpKmedWk5CiFwhV_c2ykFzVbqCEJbV0piZ-7A6sNW1jdwF58Cl1tZC89ueGctJJxrQg1A5KaxnP4GtCo5p1RBtVdJCzsjqlv08ifN8zOEhAVYvNdlvRQlIhykL4Sb4sm_2PDL4P1dj2Pvbx9wjGc5rBxw7X5TJJIDIQK4gvOwQK7tUWD3Gk4l5AmsGOl41l_0dx23vxlJ9hfXR1Ma7GPy5_7sMGDVkXpMCUHsCaFwR7CL1bc_8pSv4Dn-ILvw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xVKJcoC8ghbau2iMmWduJnSPaZaHiIdSH1Fvk-AErsclqgf9f21mnrLi1Z4_tKN_YM_aMvwH4Ki2xzq3XmFKqMSuswaWyOVYZLaXy0cRwD3n2g1_9FuMTT5PTl_oKSfuqnh41d7OjZnobcivnM5XGPLH0-nJUEsILVqRzbdMBvHBrNiNPDurdJuwsWTGMhKS0TDVZSB-j4zebsEFz7jwjRlet0TMX83mm5GARC4MEAzTZ_o9PfwVbS68THXcir2HNNG_g5SgWe3sLsyd8G22DWos6YllPynGIZq1DI-6Sh0g2Gj1EUnQ099f5C8_L6rtJFFIUvbnsbhnRxRRbT__4YJDPX_dlnN7Br8nJz9EZXlZiwMq5NzdYa8mpZkrKrKZC1kaTkhmhiDJC5LlRmX-q54lV3QmzEEzWdii5yWphdZ25vjuw3rSN2QPklIAQW3PBard_SCusoFTxjJhhaQxlCXyJiFTzjnCjCoFyWlZj8v04QHiawEEEq1ouuvuKFIJwXhbcDfK5b3Y_0sdAZGPaxyDjzhOU5SSB3Q7bfpqoFAnwFdR7AU_FvdriYA6U3EtYE9hx-tHL_1W59_885CfYuB5PqotvV-f7sEn844uswIQcwLrTA_MBBvf68WNQ_j_yNA4_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+structural%2C+morphological%2C+and+transport+properties+of+a+multifunctional+Li-ferrite+compound&rft.jtitle=RSC+advances&rft.au=Soudani%2C+Ibtihel&rft.au=Khawla+Ben+Brahim&rft.au=Oueslati%2C+Abderrazek&rft.au=Slimi%2C+Houda&rft.date=2022-06-22&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=12&rft.issue=29&rft.spage=18697&rft.epage=18708&rft_id=info:doi/10.1039%2Fd2ra02757g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |