Highly Stretchable and Transparent Conductive Electrodes for Resistive Strain Sensors

Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular symposia. Vol. 403; no. 1
Main Authors: Chen, Ke, Ren, Quanbin, Li, Chunxiang
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-06-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10−4 S cm−1. These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles).
AbstractList Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10−4 S cm−1. These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles).
Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10 −4 S cm −1 . These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles).
Author Ren, Quanbin
Chen, Ke
Li, Chunxiang
Author_xml – sequence: 1
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Quanbin
  surname: Ren
  fullname: Ren, Quanbin
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Chunxiang
  orcidid: 0000-0002-9340-667X
  surname: Li
  fullname: Li, Chunxiang
  email: lichx@hit.edu.cn
  organization: Harbin Institute of Technology
BookMark eNqFkM1PAjEQxRuDiYhePTfxDE5b96NHQlBMMCYCB09Nt52VJUuL7aLZ_94FjB49zUzm_d5M3iXpOe-QkBsGIwbA77Y6tiMO_DBIfkb6LOFsKCRAr-uB8yETKVyQyxg3ACBlxvpkNave13VLF03Axqx1USPVztJl0C7udEDX0Il3dm-a6hPptEbTBG8x0tIH-oqxisdFx-vK0QW66EO8IuelriNe_9QBWT1Ml5PZcP7y-DQZz4eGZ90_0kqTm0Sz3HBWmEwiS7kQuTQGk1SATdh9kuW2KHMhjZWFtqVlYNJMJlZIJgbk9uS7C_5jj7FRG78PrjupeJrlRy_RqUYnlQk-xoCl2oVqq0OrGKhDWuoQnfqNrgPkCfiqamz_Uavn8eLtj_0GbxN1OA
Cites_doi 10.1021/acs.nanolett.5b01505
10.1016/j.tsf.2016.05.025
10.1038/nnano.2014.56
10.1021/acsnano.5b02781
10.1021/acsanm.0c00487
10.1002/adma.201504239
10.1016/j.jphotochem.2007.07.009
10.1038/ncomms4132
10.1021/acsnano.6b03813
10.1021/acs.chemmater.5b04879
10.1002/adma.201505124
10.1021/am2002873
10.1002/smll.201403532
10.1021/nl302959a
10.1039/c3nr03536k
10.1021/la8029177
10.1039/C7NR09022F
10.1002/adma.201801291
10.1039/C7NR02147J
10.1039/C6TC03713E
10.1002/adma.201804602
10.1002/cphc.201402810
10.1016/j.carbon.2013.08.058
10.1039/C4NR03295K
10.1021/nn506341u
10.1021/nn501204t
10.1002/adfm.201504717
10.1039/C3NR04521H
10.1002/adma.201501828
10.1002/adma.201503558
10.1039/C1JM14790K
10.1038/ncomms4582
10.1016/j.orgel.2019.01.008
10.1021/acsomega.7b00834
10.1002/adma.201605099
10.1126/science.aac5082
10.1002/adma.201401367
10.1002/chem.201001364
10.1021/acsnano.8b08911
10.1021/acsnano.5b05609
10.1002/adfm.201500094
10.1002/adfm.201501000
10.1021/acsanm.9b00174
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/masy.202100292
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3900
EndPage n/a
ExternalDocumentID 10_1002_masy_202100292
MASY202100292
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 2016ZX05022‐006
– fundername: Innovation Talent project (Distinguished Young Scholars) of Harbin Science and Technology Bureau
  funderid: 2017RAYXJ015
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
H~9
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NNB
O66
OIG
P2P
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RDN
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZE2
ZZTAW
~IA
~KM
~WT
AAMNL
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2722-9d9c8c5a18c21bc79e1623389cce5630d514578dbf839cd9badfd10c6795d3913
IEDL.DBID 33P
ISSN 1022-1360
IngestDate Thu Oct 10 19:09:25 EDT 2024
Thu Nov 21 23:04:10 EST 2024
Sat Aug 24 01:07:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2722-9d9c8c5a18c21bc79e1623389cce5630d514578dbf839cd9badfd10c6795d3913
ORCID 0000-0002-9340-667X
PQID 2678233893
PQPubID 2034342
PageCount 7
ParticipantIDs proquest_journals_2678233893
crossref_primary_10_1002_masy_202100292
wiley_primary_10_1002_masy_202100292_MASY202100292
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular symposia.
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2009; 25
2015; 15
2010; 16
2015; 16
2017; 2
2019; 2
2019; 13
2015; 11
2016; 10
2014; 26
2011; 3
2015; 9
2012; 12
2013; 5
2017; 9
2014; 66
2015; 25
2014; 5
2020; 3
2015; 27
2019; 67
2018; 30
2017; 19
2016; 611
2014; 9
2016; 28
2014; 8
2018; 10
2014; 6
2012; 22
2016; 26
2016; 351
2008; 194
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 2
  start-page: 4604
  year: 2017
  publication-title: ACS Omega
– volume: 10
  start-page: 7901
  year: 2016
  publication-title: ACS Nano
– volume: 2
  start-page: 2222
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 5
  start-page: 3582
  year: 2014
  publication-title: Nat. Commun.
– volume: 28
  start-page: 2556
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 28
  start-page: 2466
  year: 2016
  publication-title: Chem. Mater.
– volume: 25
  start-page: 4228
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 3225
  year: 2019
  publication-title: ACS Nano
– volume: 19
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5018
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2380
  year: 2015
  publication-title: Small
– volume: 67
  start-page: 26
  year: 2019
  publication-title: Org. Electronics
– volume: 12
  start-page: 5714
  year: 2012
  publication-title: Nano Lett.
– volume: 15
  start-page: 5240
  year: 2015
  publication-title: Nano Lett.
– volume: 28
  start-page: 4441
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 5264
  year: 2018
  publication-title: Nanoscale
– volume: 25
  start-page: 3276
  year: 2009
  publication-title: Langmuir
– volume: 25
  start-page: 2395
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 2173
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 16
  year: 2010
  publication-title: Chem.Eur. J.
– volume: 27
  start-page: 7365
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1622
  year: 2015
  publication-title: ACS Nano
– volume: 66
  start-page: 191
  year: 2014
  publication-title: Carbon
– volume: 26
  start-page: 1322
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  start-page: 4357
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 194
  start-page: 20
  year: 2008
  publication-title: J. Photochem. Photobiol. A
– volume: 22
  start-page: 2299
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 351
  start-page: 1071
  year: 2016
  publication-title: Science
– volume: 16
  start-page: 1155
  year: 2015
  publication-title: ChemPhysChem
– volume: 9
  start-page: 8933
  year: 2015
  publication-title: ACS Nano
– volume: 9
  start-page: 7631
  year: 2017
  publication-title: Nanoscale
– volume: 8
  start-page: 5154
  year: 2014
  publication-title: ACS Nano
– volume: 611
  start-page: 107
  year: 2016
  publication-title: Thin Solid Film
– volume: 6
  start-page: 699
  year: 2014
  publication-title: Nanoscale
– volume: 9
  start-page: 378
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 73
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 722
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  year: 2013
  publication-title: Nanoscale
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.nanolett.5b01505
– ident: e_1_2_8_20_1
  doi: 10.1016/j.tsf.2016.05.025
– ident: e_1_2_8_26_1
  doi: 10.1038/nnano.2014.56
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.5b02781
– ident: e_1_2_8_6_1
  doi: 10.1021/acsanm.0c00487
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201504239
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jphotochem.2007.07.009
– ident: e_1_2_8_32_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_8_38_1
  doi: 10.1021/acsnano.6b03813
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.chemmater.5b04879
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201505124
– ident: e_1_2_8_5_1
  doi: 10.1021/am2002873
– ident: e_1_2_8_33_1
  doi: 10.1002/smll.201403532
– ident: e_1_2_8_3_1
  doi: 10.1021/nl302959a
– ident: e_1_2_8_9_1
  doi: 10.1039/c3nr03536k
– ident: e_1_2_8_24_1
  doi: 10.1021/la8029177
– ident: e_1_2_8_16_1
  doi: 10.1039/C7NR09022F
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201801291
– ident: e_1_2_8_43_1
  doi: 10.1039/C7NR02147J
– ident: e_1_2_8_42_1
  doi: 10.1039/C6TC03713E
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201804602
– ident: e_1_2_8_4_1
  doi: 10.1002/cphc.201402810
– ident: e_1_2_8_29_1
  doi: 10.1016/j.carbon.2013.08.058
– ident: e_1_2_8_30_1
  doi: 10.1039/C4NR03295K
– ident: e_1_2_8_12_1
  doi: 10.1021/nn506341u
– ident: e_1_2_8_31_1
  doi: 10.1021/nn501204t
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201504717
– ident: e_1_2_8_18_1
  doi: 10.1039/C6TC03713E
– ident: e_1_2_8_10_1
  doi: 10.1039/C3NR04521H
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201501828
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_8_21_1
  doi: 10.1039/C1JM14790K
– ident: e_1_2_8_27_1
  doi: 10.1038/ncomms4582
– ident: e_1_2_8_17_1
  doi: 10.1016/j.orgel.2019.01.008
– ident: e_1_2_8_25_1
  doi: 10.1021/acsomega.7b00834
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201605099
– ident: e_1_2_8_15_1
  doi: 10.1126/science.aac5082
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201401367
– ident: e_1_2_8_22_1
  doi: 10.1002/chem.201001364
– ident: e_1_2_8_2_1
  doi: 10.1021/acsnano.8b08911
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.5b05609
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201500094
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.201501000
– ident: e_1_2_8_7_1
  doi: 10.1021/acsanm.9b00174
SSID ssj0009971
Score 2.366124
Snippet Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Conducting polymers
conductive polymers
Electric devices
Electrical conductivity
Electrical resistivity
Electrodes
Inorganic materials
Ion currents
ionic liquid
Optoelectronic devices
Organic materials
Phase separation
Polymers
resistive strain sensor
Sensitivity
Sensors
Stretchability
Stretching
Title Highly Stretchable and Transparent Conductive Electrodes for Resistive Strain Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmasy.202100292
https://www.proquest.com/docview/2678233893
Volume 403
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYWCPCAxRU0c6sRjVVp1ASFCJZgi--xMkKKmHfrvuXOalk5IMFqRLet8j-8c33eM3abOog-EMCikNcG9liYwOkoD6KnQhMbeq5TqncdZ8vSWPgyJJmddxV_zQ6wv3MgyvL8mA9em6m5IQz91tcT8TtBQkRPGVMHXcMTPG9ZdVWdc9GQ9imXYsDaGors9fTsqbaDmT8DqI87o8P97PWIHK7TJ-7V6HLMdV56wvUHT5O2UTeidx8eS089pPD-qo-K6tLzmPKdCsTkfTEsihUW3yId10xzrKo5gl7-4ilwEfsh8qwmeYVI8nVVnbDIavg7GwarTQgAiQdkoqyCFHh4SiMhAolyEsAixDIAjAjGLsApN25oC8RRYZbQtbBSCTFTPxiqKz1mrnJbugnHtZAgu1gXIApOhlNi_daIMWJARyLTN7hpJ5181oUZeUyeLnMSUr8XUZp3mIPKVYVW5wODqdxa3mfAi_2WV_LGfva9Hl3-ZdMX2BWmQv3vpsNZ8tnDXbLeyixuvbt9NL9aG
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UD3jx24ii9mDiaWHroFuPBDEYgRiBRE9Nv3bSYRgc-O99b2MgJxPjsVnaNK_v4_e6vt8j5C52Fnyg8b2EW-01FdeeVkHsmZbwta9tU8RY79wbRcO3-KGLNDntsham4IdYX7ihZeT-Gg0cL6QbG9bQT5UtIcFjOBTghfeaHLQRqzjClw3vrihyLny0HoTcL3kbfdbYnr8dlzZg8ydkzWPO4-E_7PaIHKwAJ20XGnJMdlx6Qqqdss_bKZngU4-PJcX_03CEWEpFVWppQXuOtWJz2pmmyAsLnpF2i7451mUU8C59dRl6CfgwyrtN0BHkxdNZdkYmj91xp-etmi14hkUgHGGFiU0LzsmwQJtIuACQEcAZYxxyiFlAVmDdVicAqYwVWtnEBr7hkWjZUAThOamk09RdEKoc940LVWJ4AvlQjATgKhLaWMMDw-MauS9FLb8KTg1ZsCcziWKSazHVSL08CbmyrUwyiK_5zsIaYbnMf1lFDtqj9_Xo8i-Tbkm1Nx70Zf9p-HxF9hmqU34VUyeV-WzhrsluZhc3ue59A-5i2q4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSMDCG1Eo4AGJKSJxWiceqz5UBFQVoRJMVvzIBGnVtEP_PXdJk9IJCUYrsmWd7_Gd4_uOkLvQGvCB2nUSbpTTjLlyVOyFjm4JV7nKNEWI9c6DKBi-h90e0uRUVfwFP0R14YaWkftrNPCpSR7WpKFfcbaE_I7hUIAT3mkCFkf2fN8frWl3RZFy4Zt1z-duSdvosofN-ZthaY01fyLWPOT0D_-_2SNysIKbtF3oxzHZsukJ2euUXd5OyRgfenwuKf6dhgPEQioap4YWpOdYKTannUmKrLDgF2mv6JpjbEYB7dJXm6GPgA9R3muCRpAVT2bZGRn3e2-dgbNqteBoFoBshBE61C04Jc08pQNhPcBFAGa0tsggZgBXgW0blQCg0kao2CTGczUPRMv4wvPPSS2dpPaC0NhyV1s_TjRPIBsKkf47DoTSRnNP87BO7ktJy2nBqCEL7mQmUUyyElOdNMqDkCvLyiSD6JrvzK8Tlov8l1XkSzv6qEaXf5l0S3ZH3b58fhw-XZF9hsqU38M0SG0-W9hrsp2ZxU2ued9hMdlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stretchable+and+Transparent+Conductive+Electrodes+for+Resistive+Strain+Sensors&rft.jtitle=Macromolecular+symposia.&rft.au=Chen%2C+Ke&rft.au=Ren%2C+Quanbin&rft.au=Li%2C+Chunxiang&rft.date=2022-06-01&rft.issn=1022-1360&rft.eissn=1521-3900&rft.volume=403&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmasy.202100292&rft.externalDBID=10.1002%252Fmasy.202100292&rft.externalDocID=MASY202100292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1360&client=summon