Highly Stretchable and Transparent Conductive Electrodes for Resistive Strain Sensors
Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible...
Saved in:
Published in: | Macromolecular symposia. Vol. 403; no. 1 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
01-06-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10−4 S cm−1. These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles). |
---|---|
AbstractList | Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10−4 S cm−1. These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles). Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10 −4 S cm −1 . These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles). |
Author | Ren, Quanbin Chen, Ke Li, Chunxiang |
Author_xml | – sequence: 1 givenname: Ke surname: Chen fullname: Chen, Ke organization: Northwestern Polytechnical University – sequence: 2 givenname: Quanbin surname: Ren fullname: Ren, Quanbin organization: Northwestern Polytechnical University – sequence: 3 givenname: Chunxiang orcidid: 0000-0002-9340-667X surname: Li fullname: Li, Chunxiang email: lichx@hit.edu.cn organization: Harbin Institute of Technology |
BookMark | eNqFkM1PAjEQxRuDiYhePTfxDE5b96NHQlBMMCYCB09Nt52VJUuL7aLZ_94FjB49zUzm_d5M3iXpOe-QkBsGIwbA77Y6tiMO_DBIfkb6LOFsKCRAr-uB8yETKVyQyxg3ACBlxvpkNave13VLF03Axqx1USPVztJl0C7udEDX0Il3dm-a6hPptEbTBG8x0tIH-oqxisdFx-vK0QW66EO8IuelriNe_9QBWT1Ml5PZcP7y-DQZz4eGZ90_0kqTm0Sz3HBWmEwiS7kQuTQGk1SATdh9kuW2KHMhjZWFtqVlYNJMJlZIJgbk9uS7C_5jj7FRG78PrjupeJrlRy_RqUYnlQk-xoCl2oVqq0OrGKhDWuoQnfqNrgPkCfiqamz_Uavn8eLtj_0GbxN1OA |
Cites_doi | 10.1021/acs.nanolett.5b01505 10.1016/j.tsf.2016.05.025 10.1038/nnano.2014.56 10.1021/acsnano.5b02781 10.1021/acsanm.0c00487 10.1002/adma.201504239 10.1016/j.jphotochem.2007.07.009 10.1038/ncomms4132 10.1021/acsnano.6b03813 10.1021/acs.chemmater.5b04879 10.1002/adma.201505124 10.1021/am2002873 10.1002/smll.201403532 10.1021/nl302959a 10.1039/c3nr03536k 10.1021/la8029177 10.1039/C7NR09022F 10.1002/adma.201801291 10.1039/C7NR02147J 10.1039/C6TC03713E 10.1002/adma.201804602 10.1002/cphc.201402810 10.1016/j.carbon.2013.08.058 10.1039/C4NR03295K 10.1021/nn506341u 10.1021/nn501204t 10.1002/adfm.201504717 10.1039/C3NR04521H 10.1002/adma.201501828 10.1002/adma.201503558 10.1039/C1JM14790K 10.1038/ncomms4582 10.1016/j.orgel.2019.01.008 10.1021/acsomega.7b00834 10.1002/adma.201605099 10.1126/science.aac5082 10.1002/adma.201401367 10.1002/chem.201001364 10.1021/acsnano.8b08911 10.1021/acsnano.5b05609 10.1002/adfm.201500094 10.1002/adfm.201501000 10.1021/acsanm.9b00174 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/masy.202100292 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3900 |
EndPage | n/a |
ExternalDocumentID | 10_1002_masy_202100292 MASY202100292 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 2016ZX05022‐006 – fundername: Innovation Talent project (Distinguished Young Scholars) of Harbin Science and Technology Bureau funderid: 2017RAYXJ015 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG HBH HF~ HGLYW HHY HHZ HVGLF H~9 IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NNB O66 OIG P2P P2W P4D PALCI Q.N Q11 QB0 QRW R.K RDN RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZE2 ZZTAW ~IA ~KM ~WT AAMNL AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c2722-9d9c8c5a18c21bc79e1623389cce5630d514578dbf839cd9badfd10c6795d3913 |
IEDL.DBID | 33P |
ISSN | 1022-1360 |
IngestDate | Thu Oct 10 19:09:25 EDT 2024 Thu Nov 21 23:04:10 EST 2024 Sat Aug 24 01:07:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2722-9d9c8c5a18c21bc79e1623389cce5630d514578dbf839cd9badfd10c6795d3913 |
ORCID | 0000-0002-9340-667X |
PQID | 2678233893 |
PQPubID | 2034342 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2678233893 crossref_primary_10_1002_masy_202100292 wiley_primary_10_1002_masy_202100292_MASY202100292 |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular symposia. |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2009; 25 2015; 15 2010; 16 2015; 16 2017; 2 2019; 2 2019; 13 2015; 11 2016; 10 2014; 26 2011; 3 2015; 9 2012; 12 2013; 5 2017; 9 2014; 66 2015; 25 2014; 5 2020; 3 2015; 27 2019; 67 2018; 30 2017; 19 2016; 611 2014; 9 2016; 28 2014; 8 2018; 10 2014; 6 2012; 22 2016; 26 2016; 351 2008; 194 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 2 start-page: 4604 year: 2017 publication-title: ACS Omega – volume: 10 start-page: 7901 year: 2016 publication-title: ACS Nano – volume: 2 start-page: 2222 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 5 start-page: 3582 year: 2014 publication-title: Nat. Commun. – volume: 28 start-page: 2556 year: 2016 publication-title: Adv. Mater. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 28 start-page: 2466 year: 2016 publication-title: Chem. Mater. – volume: 25 start-page: 4228 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 3225 year: 2019 publication-title: ACS Nano – volume: 19 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 5018 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 2380 year: 2015 publication-title: Small – volume: 67 start-page: 26 year: 2019 publication-title: Org. Electronics – volume: 12 start-page: 5714 year: 2012 publication-title: Nano Lett. – volume: 15 start-page: 5240 year: 2015 publication-title: Nano Lett. – volume: 28 start-page: 4441 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 5264 year: 2018 publication-title: Nanoscale – volume: 25 start-page: 3276 year: 2009 publication-title: Langmuir – volume: 25 start-page: 2395 year: 2015 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 2173 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2014 publication-title: Nanoscale – volume: 16 year: 2010 publication-title: Chem.Eur. J. – volume: 27 start-page: 7365 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 1622 year: 2015 publication-title: ACS Nano – volume: 66 start-page: 191 year: 2014 publication-title: Carbon – volume: 26 start-page: 1322 year: 2016 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 4357 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 194 start-page: 20 year: 2008 publication-title: J. Photochem. Photobiol. A – volume: 22 start-page: 2299 year: 2012 publication-title: J. Mater. Chem. – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 351 start-page: 1071 year: 2016 publication-title: Science – volume: 16 start-page: 1155 year: 2015 publication-title: ChemPhysChem – volume: 9 start-page: 8933 year: 2015 publication-title: ACS Nano – volume: 9 start-page: 7631 year: 2017 publication-title: Nanoscale – volume: 8 start-page: 5154 year: 2014 publication-title: ACS Nano – volume: 611 start-page: 107 year: 2016 publication-title: Thin Solid Film – volume: 6 start-page: 699 year: 2014 publication-title: Nanoscale – volume: 9 start-page: 378 year: 2014 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 73 year: 2017 publication-title: J. Mater. Chem. C – volume: 28 start-page: 722 year: 2016 publication-title: Adv. Mater. – volume: 5 year: 2013 publication-title: Nanoscale – ident: e_1_2_8_37_1 doi: 10.1021/acs.nanolett.5b01505 – ident: e_1_2_8_20_1 doi: 10.1016/j.tsf.2016.05.025 – ident: e_1_2_8_26_1 doi: 10.1038/nnano.2014.56 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.5b02781 – ident: e_1_2_8_6_1 doi: 10.1021/acsanm.0c00487 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201504239 – ident: e_1_2_8_23_1 doi: 10.1016/j.jphotochem.2007.07.009 – ident: e_1_2_8_32_1 doi: 10.1038/ncomms4132 – ident: e_1_2_8_38_1 doi: 10.1021/acsnano.6b03813 – ident: e_1_2_8_19_1 doi: 10.1021/acs.chemmater.5b04879 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201505124 – ident: e_1_2_8_5_1 doi: 10.1021/am2002873 – ident: e_1_2_8_33_1 doi: 10.1002/smll.201403532 – ident: e_1_2_8_3_1 doi: 10.1021/nl302959a – ident: e_1_2_8_9_1 doi: 10.1039/c3nr03536k – ident: e_1_2_8_24_1 doi: 10.1021/la8029177 – ident: e_1_2_8_16_1 doi: 10.1039/C7NR09022F – ident: e_1_2_8_1_1 doi: 10.1002/adma.201801291 – ident: e_1_2_8_43_1 doi: 10.1039/C7NR02147J – ident: e_1_2_8_42_1 doi: 10.1039/C6TC03713E – ident: e_1_2_8_44_1 doi: 10.1002/adma.201804602 – ident: e_1_2_8_4_1 doi: 10.1002/cphc.201402810 – ident: e_1_2_8_29_1 doi: 10.1016/j.carbon.2013.08.058 – ident: e_1_2_8_30_1 doi: 10.1039/C4NR03295K – ident: e_1_2_8_12_1 doi: 10.1021/nn506341u – ident: e_1_2_8_31_1 doi: 10.1021/nn501204t – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201504717 – ident: e_1_2_8_18_1 doi: 10.1039/C6TC03713E – ident: e_1_2_8_10_1 doi: 10.1039/C3NR04521H – ident: e_1_2_8_14_1 doi: 10.1002/adma.201501828 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201503558 – ident: e_1_2_8_21_1 doi: 10.1039/C1JM14790K – ident: e_1_2_8_27_1 doi: 10.1038/ncomms4582 – ident: e_1_2_8_17_1 doi: 10.1016/j.orgel.2019.01.008 – ident: e_1_2_8_25_1 doi: 10.1021/acsomega.7b00834 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201605099 – ident: e_1_2_8_15_1 doi: 10.1126/science.aac5082 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201401367 – ident: e_1_2_8_22_1 doi: 10.1002/chem.201001364 – ident: e_1_2_8_2_1 doi: 10.1021/acsnano.8b08911 – ident: e_1_2_8_11_1 doi: 10.1021/acsnano.5b05609 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201500094 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.201501000 – ident: e_1_2_8_7_1 doi: 10.1021/acsanm.9b00174 |
SSID | ssj0009971 |
Score | 2.366124 |
Snippet | Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Conducting polymers conductive polymers Electric devices Electrical conductivity Electrical resistivity Electrodes Inorganic materials Ion currents ionic liquid Optoelectronic devices Organic materials Phase separation Polymers resistive strain sensor Sensitivity Sensors Stretchability Stretching |
Title | Highly Stretchable and Transparent Conductive Electrodes for Resistive Strain Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmasy.202100292 https://www.proquest.com/docview/2678233893 |
Volume | 403 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYWCPCAxRU0c6sRjVVp1ASFCJZgi--xMkKKmHfrvuXOalk5IMFqRLet8j-8c33eM3abOog-EMCikNcG9liYwOkoD6KnQhMbeq5TqncdZ8vSWPgyJJmddxV_zQ6wv3MgyvL8mA9em6m5IQz91tcT8TtBQkRPGVMHXcMTPG9ZdVWdc9GQ9imXYsDaGors9fTsqbaDmT8DqI87o8P97PWIHK7TJ-7V6HLMdV56wvUHT5O2UTeidx8eS089pPD-qo-K6tLzmPKdCsTkfTEsihUW3yId10xzrKo5gl7-4ilwEfsh8qwmeYVI8nVVnbDIavg7GwarTQgAiQdkoqyCFHh4SiMhAolyEsAixDIAjAjGLsApN25oC8RRYZbQtbBSCTFTPxiqKz1mrnJbugnHtZAgu1gXIApOhlNi_daIMWJARyLTN7hpJ5181oUZeUyeLnMSUr8XUZp3mIPKVYVW5wODqdxa3mfAi_2WV_LGfva9Hl3-ZdMX2BWmQv3vpsNZ8tnDXbLeyixuvbt9NL9aG |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UD3jx24ii9mDiaWHroFuPBDEYgRiBRE9Nv3bSYRgc-O99b2MgJxPjsVnaNK_v4_e6vt8j5C52Fnyg8b2EW-01FdeeVkHsmZbwta9tU8RY79wbRcO3-KGLNDntsham4IdYX7ihZeT-Gg0cL6QbG9bQT5UtIcFjOBTghfeaHLQRqzjClw3vrihyLny0HoTcL3kbfdbYnr8dlzZg8ydkzWPO4-E_7PaIHKwAJ20XGnJMdlx6Qqqdss_bKZngU4-PJcX_03CEWEpFVWppQXuOtWJz2pmmyAsLnpF2i7451mUU8C59dRl6CfgwyrtN0BHkxdNZdkYmj91xp-etmi14hkUgHGGFiU0LzsmwQJtIuACQEcAZYxxyiFlAVmDdVicAqYwVWtnEBr7hkWjZUAThOamk09RdEKoc940LVWJ4AvlQjATgKhLaWMMDw-MauS9FLb8KTg1ZsCcziWKSazHVSL08CbmyrUwyiK_5zsIaYbnMf1lFDtqj9_Xo8i-Tbkm1Nx70Zf9p-HxF9hmqU34VUyeV-WzhrsluZhc3ue59A-5i2q4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSMDCG1Eo4AGJKSJxWiceqz5UBFQVoRJMVvzIBGnVtEP_PXdJk9IJCUYrsmWd7_Gd4_uOkLvQGvCB2nUSbpTTjLlyVOyFjm4JV7nKNEWI9c6DKBi-h90e0uRUVfwFP0R14YaWkftrNPCpSR7WpKFfcbaE_I7hUIAT3mkCFkf2fN8frWl3RZFy4Zt1z-duSdvosofN-ZthaY01fyLWPOT0D_-_2SNysIKbtF3oxzHZsukJ2euUXd5OyRgfenwuKf6dhgPEQioap4YWpOdYKTannUmKrLDgF2mv6JpjbEYB7dJXm6GPgA9R3muCRpAVT2bZGRn3e2-dgbNqteBoFoBshBE61C04Jc08pQNhPcBFAGa0tsggZgBXgW0blQCg0kao2CTGczUPRMv4wvPPSS2dpPaC0NhyV1s_TjRPIBsKkf47DoTSRnNP87BO7ktJy2nBqCEL7mQmUUyyElOdNMqDkCvLyiSD6JrvzK8Tlov8l1XkSzv6qEaXf5l0S3ZH3b58fhw-XZF9hsqU38M0SG0-W9hrsp2ZxU2ued9hMdlU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stretchable+and+Transparent+Conductive+Electrodes+for+Resistive+Strain+Sensors&rft.jtitle=Macromolecular+symposia.&rft.au=Chen%2C+Ke&rft.au=Ren%2C+Quanbin&rft.au=Li%2C+Chunxiang&rft.date=2022-06-01&rft.issn=1022-1360&rft.eissn=1521-3900&rft.volume=403&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmasy.202100292&rft.externalDBID=10.1002%252Fmasy.202100292&rft.externalDocID=MASY202100292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1360&client=summon |