GENETIC CORRELATIONS BETWEEN BASAL AND MAXIMUM METABOLIC RATES IN A WILD RODENT: CONSEQUENCES FOR EVOLUTION OF ENDOTHERMY

According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor activity, rather than in a response to direct selection for thermoregulatory capabilities. A key assumption of the model is that aerobic capaci...

Full description

Saved in:
Bibliographic Details
Published in:Evolution Vol. 59; no. 3; pp. 672 - 681
Main Authors: Sadowska, Edyta T., Labocha, Marta K., Baliga, Katarzyna, Stanisz, Anna, Wróblewska, Aleksandra K., Jagusiak, Wojciech, Koteja, Pawel
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-03-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor activity, rather than in a response to direct selection for thermoregulatory capabilities. A key assumption of the model is that aerobic capacity is functionally linked to basal metabolic rate (BMR). The assumption has been tested in several studies at the level of phenotypic variation among individuals or species, but none has provided a clear answer whether the traits are genetically correlated. Here we present results of a genetic analysis based on measurements of the basal and the maximum swim‐ and cold‐induced oxygen consumption in about 1000 bank voles from six generations of a laboratory colony, reared from animals captured in the field. Narrow sense heritability (h2) was about 0.5 for body mass, about 0.4 for mass‐independent basal and maximum metabolic rates, and about 0.3 for factorial aerobic scopes. Dominance genetic and common environmental (5 maternal) effects were not significant. Additive genetic correlation between BMR and the swim‐induced aerobic capacity was high and positive, whereas correlation resulting from specific‐environmental effects was negative. However, BMR was not genetically correlated with the cold‐induced aerobic capacity. The results are consistent with the aerobic capacity model of the evolution of endothermy in birds and mammals.
AbstractList According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor activity, rather than in a response to direct selection for thermoregulatory capabilities. A key assumption of the model is that aerobic capacity is functionally linked to basal metabolic rate (BMR). The assumption has been tested in several studies at the level of phenotypic variation among individuals or species, but none has provided a clear answer whether the traits are genetically correlated. Here we present results of a genetic analysis based on measurements of the basal and the maximum swim‐ and cold‐induced oxygen consumption in about 1000 bank voles from six generations of a laboratory colony, reared from animals captured in the field. Narrow sense heritability (h2) was about 0.5 for body mass, about 0.4 for mass‐independent basal and maximum metabolic rates, and about 0.3 for factorial aerobic scopes. Dominance genetic and common environmental (5 maternal) effects were not significant. Additive genetic correlation between BMR and the swim‐induced aerobic capacity was high and positive, whereas correlation resulting from specific‐environmental effects was negative. However, BMR was not genetically correlated with the cold‐induced aerobic capacity. The results are consistent with the aerobic capacity model of the evolution of endothermy in birds and mammals.
Author Labocha, Marta K.
Baliga, Katarzyna
Koteja, Pawel
Sadowska, Edyta T.
Jagusiak, Wojciech
Wróblewska, Aleksandra K.
Stanisz, Anna
Author_xml – sequence: 1
  givenname: Edyta T.
  surname: Sadowska
  fullname: Sadowska, Edyta T.
  organization: Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
– sequence: 2
  givenname: Marta K.
  surname: Labocha
  fullname: Labocha, Marta K.
  organization: Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
– sequence: 3
  givenname: Katarzyna
  surname: Baliga
  fullname: Baliga, Katarzyna
  organization: Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
– sequence: 4
  givenname: Anna
  surname: Stanisz
  fullname: Stanisz, Anna
  organization: Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
– sequence: 5
  givenname: Aleksandra K.
  surname: Wróblewska
  fullname: Wróblewska, Aleksandra K.
  organization: Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
– sequence: 6
  givenname: Wojciech
  surname: Jagusiak
  fullname: Jagusiak, Wojciech
  organization: Agricultural University, Department of Genetics and Animal Breeding, al. Mickiewicza 24, 30-060, Kraków, Poland
– sequence: 7
  givenname: Pawel
  surname: Koteja
  fullname: Koteja, Pawel
  organization: Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
BookMark eNqVkMtq4zAUQEVpoWln_kHM3h49oljKoqA4SmKwJWo7k8xKyI4MSTttsQNN_r42KdmPNnehew7c8wBu397fPAC_MApx_34fQoTwOKCcoJAgxMJjhTAiLDzdgBFmjAdsMp7cgtF17R48dN0BISQYFiNwXiqtyiSGsclzlcoyMbqAM1VulNJwJguZQqnnMJPbJFtnMFOlnJm0B3JZqgImGkq4SdI5zM1c6XLai3ShntdKx_33wuRQ_THpevBCs4BKz025Unn29we4a9xr539-z0ewXqgyXgWpWSaxTIOaRJgE1DWejBvkxc7VuBI84lxw5oQjlSeOsIj6mtVU0IpHVeT9TpBK7JqaU865a-gjmF68dfveda1v7Ee7_-fas8XIDhHtwQ517FDHDhHtd0R76uGnC_y5f_Xn_yBtf_UkIr0guAj23dGfrgLXvthJRCNmN3ppF9t8xYpia1f0Cxq9gXw
CitedBy_id crossref_primary_10_1111_1365_2435_12313
crossref_primary_10_1111_j_1420_9101_2007_01384_x
crossref_primary_10_1086_689598
crossref_primary_10_1016_j_aquaculture_2018_03_034
crossref_primary_10_1242_jeb_054205
crossref_primary_10_1242_jeb_030874
crossref_primary_10_1093_jmammal_gyz026
crossref_primary_10_1111_j_1558_5646_2010_01135_x
crossref_primary_10_1086_689870
crossref_primary_10_1007_s00360_012_0698_z
crossref_primary_10_1242_jeb_108704
crossref_primary_10_1002_bies_202300026
crossref_primary_10_1093_jmammal_gyy173
crossref_primary_10_1111_j_1365_2435_2010_01764_x
crossref_primary_10_1098_rspb_2011_1778
crossref_primary_10_1086_674093
crossref_primary_10_1098_rspb_2014_1039
crossref_primary_10_1371_journal_pone_0037069
crossref_primary_10_1111_1365_2435_12203
crossref_primary_10_1111_1365_2656_12182
crossref_primary_10_1098_rspb_2009_0980
crossref_primary_10_1002_jez_2567
crossref_primary_10_1242_jeb_193243
crossref_primary_10_1086_590222
crossref_primary_10_1086_518376
crossref_primary_10_1086_597526
crossref_primary_10_1111_j_0014_3820_2005_tb01829_x
crossref_primary_10_1111_j_1420_9101_2011_02344_x
crossref_primary_10_3389_fphys_2017_01070
crossref_primary_10_1086_685893
crossref_primary_10_1086_716042
crossref_primary_10_1890_08_1386_1
crossref_primary_10_1007_s00227_010_1485_6
crossref_primary_10_1134_S1995425509030114
crossref_primary_10_1073_pnas_0702212104
crossref_primary_10_1111_j_1469_185X_2010_00122_x
crossref_primary_10_1086_674951
crossref_primary_10_1098_rspb_2012_2576
crossref_primary_10_1016_j_jtherbio_2019_01_012
crossref_primary_10_1111_j_1365_2656_2010_01689_x
crossref_primary_10_1086_672092
crossref_primary_10_1242_jeb_075598
crossref_primary_10_1242_jeb_076562
crossref_primary_10_1007_s00360_012_0736_x
crossref_primary_10_1111_brv_12350
crossref_primary_10_1016_j_anbehav_2014_04_011
crossref_primary_10_1554_04_408_1
crossref_primary_10_1016_j_chemosphere_2015_12_120
crossref_primary_10_1098_rspb_2008_1946
crossref_primary_10_1016_j_cbpa_2020_110858
crossref_primary_10_1111_j_1420_9101_2010_02053_x
crossref_primary_10_1242_jeb_211771
crossref_primary_10_1007_s00360_012_0675_6
crossref_primary_10_1111_evo_13862
crossref_primary_10_1134_S2079086411010026
crossref_primary_10_1086_698213
crossref_primary_10_1242_jeb_02780
crossref_primary_10_1111_brv_12115
crossref_primary_10_1111_j_1558_5646_2009_00641_x
crossref_primary_10_1111_1365_2435_12597
crossref_primary_10_1242_jeb_166876
crossref_primary_10_1242_jeb_037069
crossref_primary_10_1242_jeb_148890
crossref_primary_10_3109_19401736_2013_873895
crossref_primary_10_1007_s00360_014_0811_6
crossref_primary_10_1016_j_anbehav_2018_07_016
crossref_primary_10_1111_j_0030_1299_2008_16513_x
crossref_primary_10_1111_j_1365_2435_2007_01255_x
crossref_primary_10_3389_fphys_2020_576304
crossref_primary_10_1111_j_1420_9101_2009_01689_x
crossref_primary_10_1111_1365_2435_12879
crossref_primary_10_1016_j_jtherbio_2007_08_001
crossref_primary_10_1098_rstb_2019_0134
crossref_primary_10_1111_j_1365_2435_2012_01975_x
crossref_primary_10_1111_bij_12306
crossref_primary_10_1242_jeb_01631
crossref_primary_10_1111_jeb_14164
crossref_primary_10_1111_j_1755_0998_2009_02622_x
crossref_primary_10_1111_j_1420_9101_2009_01798_x
crossref_primary_10_1007_s00360_012_0676_5
crossref_primary_10_1086_587093
crossref_primary_10_1086_689290
crossref_primary_10_1111_j_1365_2435_2009_01561_x
crossref_primary_10_1111_j_1365_294X_2011_05436_x
crossref_primary_10_1007_s00360_017_1096_3
crossref_primary_10_1016_j_tree_2011_04_004
crossref_primary_10_1007_s10164_023_00787_0
crossref_primary_10_1111_j_1365_2435_2008_01505_x
crossref_primary_10_3158_2158_5520_5_1_126
crossref_primary_10_1242_jeb_088914
crossref_primary_10_1242_jeb_01941
crossref_primary_10_1086_680167
crossref_primary_10_1016_j_physbeh_2014_06_007
crossref_primary_10_1038_hdy_2014_122
crossref_primary_10_1086_666970
crossref_primary_10_3389_fphys_2019_00640
crossref_primary_10_1007_s10211_013_0147_3
crossref_primary_10_1016_j_ygcen_2012_12_006
crossref_primary_10_1093_icb_icaa066
crossref_primary_10_1098_rspb_2015_0025
crossref_primary_10_3398_064_075_0402
crossref_primary_10_1016_j_cbpa_2014_11_003
crossref_primary_10_1086_683039
crossref_primary_10_1016_j_cbpa_2008_09_011
crossref_primary_10_1016_j_ecoenv_2014_04_021
crossref_primary_10_1111_jzo_12820
crossref_primary_10_1038_s41467_017_02514_z
crossref_primary_10_1242_jeb_02625
crossref_primary_10_1007_s13364_017_0317_1
crossref_primary_10_1242_jeb_243393
crossref_primary_10_1111_1755_0998_12186
crossref_primary_10_1111_j_1420_9101_2010_02059_x
crossref_primary_10_1086_706206
crossref_primary_10_1111_mec_15244
crossref_primary_10_1111_j_1420_9101_2009_01734_x
crossref_primary_10_1007_s11692_019_09473_x
crossref_primary_10_1007_s10682_012_9590_2
crossref_primary_10_1086_590164
crossref_primary_10_1093_molbev_msv038
crossref_primary_10_1016_j_yhbeh_2017_12_015
crossref_primary_10_3389_fmicb_2016_00634
crossref_primary_10_1086_659006
crossref_primary_10_1242_jeb_111245
crossref_primary_10_1086_697963
crossref_primary_10_1242_jeb_242577
crossref_primary_10_1186_1471_2164_11_297
Cites_doi 10.2307/2640830
10.1086/425190
10.1126/science.283.5401.468
10.1554/03-376
10.1086/380922
10.1554/0014-3820(2000)054[1768:AETOTT]2.0.CO;2
10.1146/annurev.nutr.19.1.247
10.1554/03-499
10.1086/423741
10.1152/japplphysiol.00809.2001
10.1038/35131
10.1093/genetics/159.1.267
10.1086/physzool.69.4.30164238
10.1098/rspb.2003.2612
10.1146/annurev.physiol.56.1.579
10.2307/2410448
10.1098/rspb.2000.1025
10.1086/381471
10.2307/2408911
10.1146/annurev.ecolsys.31.1.315
10.1073/pnas.161281098
10.1046/j.1365-2656.2001.00518.x
10.1126/science.493968
10.1016/0300-9629(87)90447-6
10.4098/AT.arch.68-20
10.1163/156853904322981897
10.2307/2410407
10.1086/303323
10.1126/science.283.5401.514
10.1038/sj.hdy.6800404
10.2307/2410904
10.1086/380921
10.1242/jeb.90.1.17
10.1016/S0044-8486(01)00825-0
10.1146/annurev.ph.57.030195.000441
10.1554/02-576
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.0014-3820.2005.tb01025.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1558-5646
EndPage 681
ExternalDocumentID 10_1111_j_0014_3820_2005_tb01025_x
EVO672
ark_67375_WNG_FXRH5SSX_H
Genre article
GroupedDBID ---
--Z
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
2AX
31~
33P
3O-
3SF
4.4
41~
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AAONW
AAPSS
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDPE
ABEJV
ABEML
ABJNI
ABLJU
ABMNT
ABPLY
ABPPZ
ABPTD
ABPVW
ABTLG
ABWJO
ABXSQ
ABXVV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACFRR
ACGFO
ACGFS
ACGOD
ACIPB
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUFI
ACUTJ
ACXBN
ACXQS
ACZBC
ADACV
ADBBV
ADEOM
ADHSS
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADQBN
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUQT
AFAZZ
AFBPY
AFFDN
AFFIJ
AFGKR
AFGWE
AFNWH
AFPWT
AFRAH
AFYAG
AFZJQ
AGMDO
AGUYK
AHXOZ
AI.
AIAGR
AILXY
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
AQVQM
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
D0S
DC7
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FAC
FAL
FAS
FD6
FEDTE
FJD
FJW
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HQ2
HTVGU
HVGLF
HZ~
IAG
IAO
IEA
IEP
IOF
IPSME
ITC
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
NQS
O66
O9-
OBOKY
OIG
OJZSN
OK1
OVD
OWPYF
P-O
P2P
P2W
P2X
P4D
PQ0
PQQKQ
Q.N
Q11
Q5J
QB0
QN7
R.K
RBO
ROL
ROX
RWL
RX1
RXW
SA0
SJN
SUPJJ
TAE
TCN
TEORI
TN5
UB1
UBC
UHB
UQL
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
XOL
XSW
YXE
YYP
YZZ
ZCA
ZCG
ZZTAW
~02
~IA
~KM
~WT
G8K
AAYXX
CITATION
ID FETCH-LOGICAL-c2712-3afe24f0e9dac1b98788985a9a2be2a2573ec5c393b87b7eed92b9dfc83888af3
IEDL.DBID 33P
ISSN 0014-3820
IngestDate Thu Nov 21 23:38:24 EST 2024
Sat Aug 24 01:06:15 EDT 2024
Wed Oct 30 09:56:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2712-3afe24f0e9dac1b98788985a9a2be2a2573ec5c393b87b7eed92b9dfc83888af3
Notes ark:/67375/WNG-FXRH5SSX-H
istex:908B2E262C9510DA75AF891E6D46FB007FA66F7F
ArticleID:EVO672
E‐mail
koteja@eko.uj.edu.pl
PageCount 10
ParticipantIDs crossref_primary_10_1111_j_0014_3820_2005_tb01025_x
wiley_primary_10_1111_j_0014_3820_2005_tb01025_x_EVO672
istex_primary_ark_67375_WNG_FXRH5SSX_H
PublicationCentury 2000
PublicationDate March 2005
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: March 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Evolution
PublicationYear 2005
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Konarzewski, M., B. Sadowski, and I. Jóźwik 1997. Metabolic correlates of selection for swim stress-induced analgesia in laboratory mice. Am. J. Physiol. 273:R337-R343.
Rezende, E. L., F. Bozinovic, and T. Garland 2004. Climatic adaptation and the evolution of basal and maximum metabolic rates of metabolism in rodents. Evolution 58:1361-1374.
Endler, J. A.. 2001. The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics 159:267-277.
Hayes, J. P., and J. S. Shonkwiler 1996. Analyzing mass-independent data. Physiol. Zool. 69:974-980.
McNab, B. K. 2002. The physiological ecology of vertebrates. Cornell Univ. Press, Ithaca , NY .
Bennett, A. F., J. W. Hicks, and A. J. Cullum 2000. An experimental test of the thermoregulatory hypothesis for the evolution of endothermy. Evolution 54:1768-1773.
Hayes, J. P., and C. S. O'Connor 1999. Natural selection on thermogenic capacity of high-altitude deer mice. Evolution 53:1280-1287.
Nagy, K. A., I. A. Girard, and T. K. Brown 1999. Energetics of free-ranging mammal, reptiles, and birds. Annu. Rev. Nutr. 19:247-277.
Hayes, J. P., and T. Garland 1995. The evolution of endothermy: Testing the aerobic capacity model. Evolution 49:836-847.
Górecki, A. 1968. Metabolic rate and energy budget in the bank vole. Acta Theriol. 13:341-365.
Radwan, J., M. Kruczek, M. K. Labocha, K. Grabiec, and P. Koteja 2004. Contest winning and metabolic competence in male bank voles Clethrionomys glareolus. Behaviour 141:343-354.
Endler, J. A.. 1996. Measuring energy metabolism with open flow respirometric systems: Which design to choose? Funct. Ecol. 10:675-677.
Garland, T., P. A. Carter 1994. Evolutionary physiology. Annu. Rev. Physiol. 56:579-621.
Nespolo, R. F., L. D. Bacigalupe, and F. Bozinovic 2003. Heritability of energetics in a wild mammal, the leaf-eared mouse (Phylottis darwini). Evolution 57:1679-1688.
Dohm, M. R., J. P. Hayes, and T. Garland 1996. Quantitative genetics of sprint running speed and swimming endurance in laboratory house mice (Mus domesticus). Evolution 50:1688-1701.
Jackson, D. M., P. Trayhurn, and J. R. Speakman 2001. Association between energetics and over-winter survival in the short-tailed field vole Microtus agrestis. J. Anim. Ecol. 70:633-640.
Endler, J. A.. 2003. Reproduction: The adaptive significance of endothermy. Am. Nat. 162:826-840.
Henderson, K. K., H. Wagner, F. Favret, S. L. Britton, L. G. Koch, P. D. Wagner, N. C. Gonzalez 2002. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J. Appl. Physiol. 93:1265-1274.
Konarzewski, M., and J. Diamond 1995. Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49:1239-2148.
Bartholomew, G. A., D. Vleck, and C. M. Vleck 1981. Instantaneous measurements of oxygen consumption during pre-flight warmup and post-flight cooling in sphingid and saturnid moths. J. Exp. Biol. 90:17-32.
Gorman, M. L., M. G. Mills, J. P. Raath, and J. R. Speakman 1998. High hunting costs make African wild dogs vulnerable to kleptoparasitism by hyaenas. Nature 391:479-481.
Koteja, P. 1987. On the relation between basal and maximum metabolic rate in mammals. Comp. Biochem. Physiol. 87A:205-208.
Bacigalupe, L. D., R. F. Nespolo, D. M. Bustamante, and F. Bozinovic 2004. The quantitative genetics of sustained energy budget in a wild mouse. Evolution 58:421-429.
Cheverud, J. M. 1988. A comparison of genetic and phenotypic correlations. Evolution 42:958-968.
Endler, J. A.. 2000. Energy assimilation, parental care and the evolution of endothermy. Proc. R. Soc. Lond. B 267:479-484.
Jánský, L. 1959. Working oxygen consumption in two species of wild rodents (Microtus arvalis, Clethrionomys glareolus) Physiol. Behemoslov. 8:472-478.
Hoekstra, H. E., J. M. Hoekstra, D. Berrigan, S. N. Vignieri, A. Hoang, C. E. Hill, P. Beerli, and J. G. Kingsolver 2001. Strength and tempo of directional selection in the wild. Proc. Natl. Acad. Sci. USA 98:9157-9160.
Lynch, M., and J. B. Walsh 1998 Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland , MA .
Ksiαzek, A., M. Konarzewski, and I. B. Lapo 2004. Anatomic and energetic correlates of divergent selection for BMR in laboratory mice. Physiol. Biochem. Zool. 77:890-899.
Angilletta, M. J., and M. W. Sears 2003. Is parental care the key to understanding endothermy in birds and mammals? Am. Nat. 162:821-825.
Farmer, C. G. 2000. Parental care: The key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155:326-334.
Pante, M. J. R., B. Gjerde, I. McMillan, and I. Misztal 2002. Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture 204:383-392.
Bennett, A. F., and J. A. Ruben 1979. Endothermy and activity in vertebrates. Science 206:649-654.
Ruben, J. A. 1995. The evolution of endothermy in mammals and birds: From physiology to fossils. Annu. Rev. Physiol. 57:69-95.
Labocha, M., E. Sadowska, K. Baliga, A. Semer, and P. Koteja 2003. The relationship between basal and maximum metabolic rates in the bank vole, Clethrionomys glareolus. Comp. Biochem. Physiol. 134A(Suppl.1):S8.
Endler, J. A.. 2004. Individual variation and repeatability of basal metabolism in the bank vole, Clethrionomys glareolus. Proc. R. Soc. Lond. B 271:367-372.
Ruben, J. A., D. Dal Sasso, N. R. Geist, W. J. Hillenius, T. D. Jones, and M. Signore 1999. Pulmonary function and metabolic physiology of theropod dinosaurs. Science 283:514-516.
Endler, J. A.. 2004. The evolution of concepts on the evolution of endothermy in birds and mammals. Physiol. Biochem. Zool. 77:1043-1050.
Wuethrich, B. 1999. Stunning fossil shows breath of a dinosaur. Science 283:468.
Gomes, R. R., J. E. Chaui-Berlinck, J. E. P. W. Bicudo, and C. A. Navas 2004. Intraspecific relationships between resting and activity metabolism in anuran amphibians: Influence of ecology and behavior. Physiol. Biochem. Zool. 77:197-208.
Feder, M. E., A. F. Bennett, and R. B. Huey 2000. Evolutionary physiology. Annu. Rev. Ecol. Syst. 31:315-341.
Roff, D. A., T. Mousseau, A. P. Møller, F. de Lope, and N. Saino 2004. Geographic variation in the G matrices of wild populations of the barn swallow. Heredity 93:8-14.
2001; 70
1981; 90
1997; 273
1979; 206
2004; 141
1995; 57
1996; 50
1998
2003; 57
1999; 283
1994
2000; 155
2002
1959; 8
1996; 10
2004; 77
1998; 391
1968; 13
2004; 93
2000; 267
1995; 49
1999; 19
2004; 58
2000; 54
2004; 271
2000; 31
2003; 162
1994; 56
2002; 204
1999; 53
1987; 87A
2002; 93
1988; 42
1996; 69
2001; 159
2003; 134A
2001; 98
Endler J. A. (b11_438) 2003; 162
Labocha M. (b31_458) 2003; 134
b39_466
b7_434
Bartholomew G. A. (b4_431) 1981; 90
b24_451
b21_448
b10_437
b17_444
b13_440
Ruben J. A. (b42_469) 1999; 283
b8_435
b1_428
Hayes J. P. (b19_446) 1996; 69
b3_430
Ksialphazek A. (b30_457) 2004; 77
Endler J. A. (b32_459) 2004; 271
Endler J. A. (b28_455) 2000; 267
Jansky L. (b23_450) 1959; 8
Koteja P. (b26_453) 1987; 87
Arnold S. J. (b2_429) 1994
Lynch M. (b33_460) 1998
Endler J. A. (b27_454) 1996; 10
Gorecki A. (b16_443) 1968; 13
b37_464
Konarzewski M. (b25_452) 1997; 273
Wuethrich B. (b43_470) 1999; 283
b41_468
Henderson K. K. (b20_447) 2002; 93
Radwan J. (b38_465) 2004; 141
b15_442
b12_439
Endler J. A. (b29_456) 2004; 77
b35_462
b5_432
b6_433
b36_463
b40_467
Endler J. A. (b9_436) 2001; 159
b22_449
b18_445
McNab B. K. (b34_461) 2002
b14_441
References_xml – volume: 271
  start-page: 367
  year: 2004
  end-page: 372
  article-title: Individual variation and repeatability of basal metabolism in the bank vole, Clethrionomys glareolus
  publication-title: Proc. R. Soc. Lond. B
– volume: 10
  start-page: 675
  year: 1996
  end-page: 677
  article-title: Measuring energy metabolism with open flow respirometric systems: Which design to choose? Funct
  publication-title: Ecol
– volume: 49
  start-page: 1239
  year: 1995
  end-page: 2148
  article-title: Evolution of basal metabolic rate and organ masses in laboratory mice
  publication-title: Evolution
– volume: 159
  start-page: 267
  year: 2001
  end-page: 277
  article-title: The quantitative genetics of maximal and basal rates of oxygen consumption in mice
  publication-title: Genetics
– volume: 53
  start-page: 1280
  year: 1999
  end-page: 1287
  article-title: Natural selection on thermogenic capacity of high‐altitude deer mice
  publication-title: Evolution
– volume: 50
  start-page: 1688
  year: 1996
  end-page: 1701
  article-title: Quantitative genetics of sprint running speed and swimming endurance in laboratory house mice (Mus domesticus)
  publication-title: Evolution
– volume: 93
  start-page: 1265
  year: 2002
  end-page: 1274
  article-title: Determinants of maximal O uptake in rats selectively bred for endurance running capacity
  publication-title: J. Appl. Physiol
– volume: 57
  start-page: 1679
  year: 2003
  end-page: 1688
  article-title: Heritability of energetics in a wild mammal, the leaf‐eared mouse (Phylottis darwini)
  publication-title: Evolution
– volume: 54
  start-page: 1768
  year: 2000
  end-page: 1773
  article-title: An experimental test of the thermoregulatory hypothesis for the evolution of endothermy
  publication-title: Evolution
– volume: 8
  start-page: 472
  year: 1959
  end-page: 478
  article-title: Working oxygen consumption in two species of wild rodents (Microtus arvalis, Clethrionomys glareolus) Physiol
  publication-title: Behemoslov
– volume: 58
  start-page: 1361
  year: 2004
  end-page: 1374
  article-title: Climatic adaptation and the evolution of basal and maximum metabolic rates of metabolism in rodents
  publication-title: Evolution
– volume: 90
  start-page: 17
  year: 1981
  end-page: 32
  article-title: Instantaneous measurements of oxygen consumption during pre‐flight warmup and post‐flight cooling in sphingid and saturnid moths
  publication-title: J. Exp. Biol
– volume: 141
  start-page: 343
  year: 2004
  end-page: 354
  article-title: Contest winning and metabolic competence in male bank voles Clethrionomys glareolus
  publication-title: Behaviour
– volume: 283
  start-page: 468
  year: 1999
  article-title: Stunning fossil shows breath of a dinosaur
  publication-title: Science
– volume: 155
  start-page: 326
  year: 2000
  end-page: 334
  article-title: Parental care: The key to understanding endothermy and other convergent features in birds and mammals
  publication-title: Am. Nat
– volume: 77
  start-page: 1043
  year: 2004
  end-page: 1050
  article-title: The evolution of concepts on the evolution of endothermy in birds and mammals
  publication-title: Physiol. Biochem. Zool
– volume: 162
  start-page: 821
  year: 2003
  end-page: 825
  article-title: Is parental care the key to understanding endothermy in birds and mammals? Am
  publication-title: Nat
– volume: 13
  start-page: 341
  year: 1968
  end-page: 365
  article-title: Metabolic rate and energy budget in the bank vole
  publication-title: Acta Theriol
– volume: 134A
  start-page: S8
  issue: Suppl.1
  year: 2003
  article-title: The relationship between basal and maximum metabolic rates in the bank vole, Clethrionomys glareolus
  publication-title: Comp. Biochem. Physiol
– volume: 283
  start-page: 514
  year: 1999
  end-page: 516
  article-title: Pulmonary function and metabolic physiology of theropod dinosaurs
  publication-title: Science
– volume: 49
  start-page: 836
  year: 1995
  end-page: 847
  article-title: The evolution of endothermy: Testing the aerobic capacity model
  publication-title: Evolution
– year: 1998
– volume: 273
  start-page: R337
  year: 1997
  end-page: R343
  article-title: Metabolic correlates of selection for swim stress‐induced analgesia in laboratory mice
  publication-title: Am. J. Physiol
– volume: 77
  start-page: 890
  year: 2004
  end-page: 899
  article-title: Anatomic and energetic correlates of divergent selection for BMR in laboratory mice
  publication-title: Physiol. Biochem. Zool
– volume: 98
  start-page: 9157
  year: 2001
  end-page: 9160
  article-title: Strength and tempo of directional selection in the wild
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 93
  start-page: 8
  year: 2004
  end-page: 14
  article-title: Geographic variation in the G matrices of wild populations of the barn swallow
  publication-title: Heredity
– volume: 42
  start-page: 958
  year: 1988
  end-page: 968
  article-title: A comparison of genetic and phenotypic correlations
  publication-title: Evolution
– volume: 391
  start-page: 479
  year: 1998
  end-page: 481
  article-title: High hunting costs make African wild dogs vulnerable to kleptoparasitism by hyaenas
  publication-title: Nature
– volume: 204
  start-page: 383
  year: 2002
  end-page: 392
  article-title: Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss
  publication-title: Aquaculture
– start-page: 17
  year: 1994
  end-page: 48
– volume: 87A
  start-page: 205
  year: 1987
  end-page: 208
  article-title: On the relation between basal and maximum metabolic rate in mammals
  publication-title: Comp. Biochem. Physiol
– volume: 206
  start-page: 649
  year: 1979
  end-page: 654
  article-title: Endothermy and activity in vertebrates
  publication-title: Science
– volume: 162
  start-page: 826
  year: 2003
  end-page: 840
  article-title: Reproduction: The adaptive significance of endothermy
  publication-title: Am. Nat
– year: 2002
– volume: 267
  start-page: 479
  year: 2000
  end-page: 484
  article-title: Energy assimilation, parental care and the evolution of endothermy
  publication-title: Proc. R. Soc. Lond. B
– volume: 57
  start-page: 69
  year: 1995
  end-page: 95
  article-title: The evolution of endothermy in mammals and birds: From physiology to fossils
  publication-title: Annu. Rev. Physiol
– volume: 31
  start-page: 315
  year: 2000
  end-page: 341
  article-title: Evolutionary physiology
  publication-title: Annu. Rev. Ecol. Syst
– volume: 19
  start-page: 247
  year: 1999
  end-page: 277
  article-title: Energetics of free‐ranging mammal, reptiles, and birds
  publication-title: Annu. Rev. Nutr
– volume: 58
  start-page: 421
  year: 2004
  end-page: 429
  article-title: The quantitative genetics of sustained energy budget in a wild mouse
  publication-title: Evolution
– volume: 70
  start-page: 633
  year: 2001
  end-page: 640
  article-title: Association between energetics and over‐winter survival in the short‐tailed field vole Microtus agrestis
  publication-title: J. Anim. Ecol
– volume: 69
  start-page: 974
  year: 1996
  end-page: 980
  article-title: Analyzing mass‐independent data
  publication-title: Physiol. Zool
– volume: 56
  start-page: 579
  year: 1994
  end-page: 621
  article-title: Evolutionary physiology
  publication-title: Annu. Rev. Physiol
– volume: 77
  start-page: 197
  year: 2004
  end-page: 208
  article-title: Intraspecific relationships between resting and activity metabolism in anuran amphibians: Influence of ecology and behavior
  publication-title: Physiol. Biochem. Zool
– ident: b18_445
  doi: 10.2307/2640830
– volume: 77
  start-page: 890
  year: 2004
  ident: b30_457
  publication-title: Physiol. Biochem. Zool
  doi: 10.1086/425190
  contributor:
    fullname: Ksialphazek A.
– volume: 283
  start-page: 468
  year: 1999
  ident: b43_470
  publication-title: Science
  doi: 10.1126/science.283.5401.468
  contributor:
    fullname: Wuethrich B.
– volume: 273
  start-page: R337
  year: 1997
  ident: b25_452
  publication-title: Am. J. Physiol
  contributor:
    fullname: Konarzewski M.
– ident: b3_430
  doi: 10.1554/03-376
– start-page: 17
  volume-title: Quantitative genetic studies of behavioral evolution
  year: 1994
  ident: b2_429
  contributor:
    fullname: Arnold S. J.
– volume: 162
  start-page: 826
  year: 2003
  ident: b11_438
  publication-title: Am. Nat
  doi: 10.1086/380922
  contributor:
    fullname: Endler J. A.
– ident: b6_433
  doi: 10.1554/0014-3820(2000)054[1768:AETOTT]2.0.CO;2
– ident: b35_462
  doi: 10.1146/annurev.nutr.19.1.247
– ident: b39_466
  doi: 10.1554/03-499
– volume: 77
  start-page: 1043
  year: 2004
  ident: b29_456
  publication-title: Physiol. Biochem. Zool
  doi: 10.1086/423741
  contributor:
    fullname: Endler J. A.
– volume: 93
  start-page: 1265
  year: 2002
  ident: b20_447
  publication-title: J. Appl. Physiol
  doi: 10.1152/japplphysiol.00809.2001
  contributor:
    fullname: Henderson K. K.
– ident: b15_442
  doi: 10.1038/35131
– volume: 159
  start-page: 267
  year: 2001
  ident: b9_436
  publication-title: Genetics
  doi: 10.1093/genetics/159.1.267
  contributor:
    fullname: Endler J. A.
– volume: 69
  start-page: 974
  year: 1996
  ident: b19_446
  publication-title: Physiol. Zool
  doi: 10.1086/physzool.69.4.30164238
  contributor:
    fullname: Hayes J. P.
– volume: 271
  start-page: 367
  year: 2004
  ident: b32_459
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2003.2612
  contributor:
    fullname: Endler J. A.
– ident: b13_440
  doi: 10.1146/annurev.physiol.56.1.579
– ident: b24_451
  doi: 10.2307/2410448
– volume: 8
  start-page: 472
  year: 1959
  ident: b23_450
  publication-title: Behemoslov
  contributor:
    fullname: Jansky L.
– volume: 267
  start-page: 479
  year: 2000
  ident: b28_455
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2000.1025
  contributor:
    fullname: Endler J. A.
– ident: b14_441
  doi: 10.1086/381471
– ident: b7_434
  doi: 10.2307/2408911
– ident: b12_439
  doi: 10.1146/annurev.ecolsys.31.1.315
– ident: b21_448
  doi: 10.1073/pnas.161281098
– ident: b22_449
  doi: 10.1046/j.1365-2656.2001.00518.x
– ident: b5_432
  doi: 10.1126/science.493968
– volume: 87
  start-page: 205
  year: 1987
  ident: b26_453
  publication-title: Comp. Biochem. Physiol
  doi: 10.1016/0300-9629(87)90447-6
  contributor:
    fullname: Koteja P.
– volume: 13
  start-page: 341
  year: 1968
  ident: b16_443
  publication-title: Acta Theriol
  doi: 10.4098/AT.arch.68-20
  contributor:
    fullname: Gorecki A.
– volume: 10
  start-page: 675
  year: 1996
  ident: b27_454
  publication-title: Ecol
  contributor:
    fullname: Endler J. A.
– volume: 141
  start-page: 343
  year: 2004
  ident: b38_465
  publication-title: Behaviour
  doi: 10.1163/156853904322981897
  contributor:
    fullname: Radwan J.
– ident: b17_444
  doi: 10.2307/2410407
– volume-title: Genetics and analysis of quantitative traits
  year: 1998
  ident: b33_460
  contributor:
    fullname: Lynch M.
– volume: 134
  start-page: S8
  year: 2003
  ident: b31_458
  publication-title: Comp. Biochem. Physiol
  contributor:
    fullname: Labocha M.
– volume-title: The physiological ecology of vertebrates
  year: 2002
  ident: b34_461
  contributor:
    fullname: McNab B. K.
– ident: b10_437
  doi: 10.1086/303323
– volume: 283
  start-page: 514
  year: 1999
  ident: b42_469
  publication-title: Science
  doi: 10.1126/science.283.5401.514
  contributor:
    fullname: Ruben J. A.
– ident: b40_467
  doi: 10.1038/sj.hdy.6800404
– ident: b8_435
  doi: 10.2307/2410904
– ident: b1_428
  doi: 10.1086/380921
– volume: 90
  start-page: 17
  year: 1981
  ident: b4_431
  publication-title: J. Exp. Biol
  doi: 10.1242/jeb.90.1.17
  contributor:
    fullname: Bartholomew G. A.
– ident: b37_464
  doi: 10.1016/S0044-8486(01)00825-0
– ident: b41_468
  doi: 10.1146/annurev.ph.57.030195.000441
– ident: b36_463
  doi: 10.1554/02-576
SSID ssj0009519
Score 2.2377687
Snippet According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 672
SubjectTerms Aerobic capacity
Clethrionomys
evolutionary physiology
homeothermy
mammal
quantitative genetics
Title GENETIC CORRELATIONS BETWEEN BASAL AND MAXIMUM METABOLIC RATES IN A WILD RODENT: CONSEQUENCES FOR EVOLUTION OF ENDOTHERMY
URI https://api.istex.fr/ark:/67375/WNG-FXRH5SSX-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0014-3820.2005.tb01025.x
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF4VUCUuQGkR4aU9IG6uEj-yNrdNvMGp_Ghth4TTatePC1JAeUjw79lZm0cOHFr1B8xIO7Pz1Mw3CF0WfaE8Xtc1ZC1tw5a1bYiiJwwhVTgDZGu3C_vOQUbimeszgMkJX3dhGnyIt4YbWIb212DgQi43jBzSe8NSIaxpjawk4KM5PyGjVGWD3uewfn9A4O01uXBL1CKQNmM9n7HaiFY7IPinzSxWh6HR_v99wAHaa9NRTJv_8w19qeaH6GtzoPL5O3qGybZ8PMTDJIXjGnrnGA9YPmUsxgOa0RDT2McRnY2jSYQjltNBEiqClOYsw-MYUzwdhz5OE5_F-bViFGfszwQaWxlWFShmt0k4Ab44GWEW-0kesDS6-4EmI5YPA6M91mAUJgHgQ1FXpl13K69Uypaeq2prz3WEJ0xZmUJ5BqsqnMLyLOkSSVRo9kzplXXhWqoIF7V1hLbnD_PqGOG6rFXdpNx0ty9sYRNBAJfLrpRwStcu-x1kvSqFPzaYHPy9lgGhchAqXNh0eCtU_tRBV1p_byRicQ9TbcTh0_iGj2Zp4GTZjAcdRLTa_oI3V7LqE_PknylP0a7GhNXDbWdoe7VYV-doa1muL_QvvkA7dMB-3b4ABCbmdQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKKwQXKC-xPFofUG9B28SJE27ZjbeJSJySZNntybLzuCBtq9JK7b9nJkkLe-AA6g-YkTwznpdmviHkU-1p8HhT3zKdYRYzHbN0fawtbSCcIbK1P8V957jkcu1HAmFysrtdmAEf4r7hhj-j99f4wbEhvfXLMb-3HIhhQ2_kyiBAmvsZUso95oFl4kaHc_oHBu_xkA2PVCMG6TDY8zdeW_FqD0V_s53H9oFo8fyBn7BPno0ZKQ0HE3pBdtrNS_J4uFF5-4rc4nBblczpPC_wvka_dkxnoloJIeksLMOUhjKiWbhOsmVGM1GFszwFgiKsREkTSUO6StKIFnkkZPUFGMlSfFtib6ukUIRS8T1Pl8iX5gsqZJRXsSiys9dkuRDVPLbGew1WbXPEPtRda7Nu2gYN6NsEPpTXge_qQNumtTU4B6et3doJHONzwyE6B7YJmq72HajDdee8Ibub8037ltCu6aB0Ak899TTTjGuO0FysBeE0Pmu8CXHutKIuBlgO9bucQaEqFCoe2XTVKFR1MyFHvQLvSfTlDxxs465ayRO1WBexW5ZrFU8I7_X2D7wVyMrj9rv_pjwkT-IqS1WayK_vydMeIrafdftAdq8ur9uP5NHP5vqgN-lfl9DpEg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKqyIuQAuI5ekD4ha0jZ11wi27cZqIxClJlt2eLDuJL0hLVVqp_fd4krRlDxyo-gNmJM94npr5BqFPzUxZjzf1HW00dag21FHNkXKUtuEMkK39Kew7JxUTaz_iAJOT3ezCDPgQtw03sIzeX4OBn7Vmy8ghvXeIDWFDa-RCAz6a98VmlHvU5uWApE_IyV8QvEdDMjxSjRCkw1zPv3hthas9kPzVdhrbx6H42cO-4Dl6OuajOBw-0AHa6TaHaH-4UHn9Al3DaFudLvCiKOG6Rr90jOe8XnEu8DyswgyHIsJ5uE7zZY5zXofzIrMEZVjzCqcCh3iVZhEui4iL-qtlJCr-fQmdrQrbEhTzH0W2BL64iDEXUVEnvMxPX6JlzOtF4ozXGpzGZYB8qEznUjPtgtZqWwe-La4D31OBcnXnKusaSNd4DQmI9plmNjYHrg5a0_jEVuHKkFdod_Nr071G2LTGFk7WT09niirKFANgLtpZ4bQ-bWcTRG6UIs8GUA55V8yAUCUIFU5senIUqryaoM-9_m5J1PlPGGtjnlyJYxmvy8SrqrVMJoj1avsP3tLKasbcN_em_Igen0SxzFLx7S160uPD9oNu79Duxfll9x49-t1efug_9B-hlOe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENETIC+CORRELATIONS+BETWEEN+BASAL+AND+MAXIMUM+METABOLIC+RATES+IN+A+WILD+RODENT%3A+CONSEQUENCES+FOR+EVOLUTION+OF+ENDOTHERMY&rft.jtitle=Evolution&rft.au=Sadowska%2C+Edyta+T.&rft.au=Labocha%2C+Marta+K.&rft.au=Baliga%2C+Katarzyna&rft.au=Stanisz%2C+Anna&rft.date=2005-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=59&rft.issue=3&rft.spage=672&rft.epage=681&rft_id=info:doi/10.1111%2Fj.0014-3820.2005.tb01025.x&rft.externalDBID=10.1111%252Fj.0014-3820.2005.tb01025.x&rft.externalDocID=EVO672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon