Hasse–Schmidt modules versus integrable connections

We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently Hasse–Schmidt modules and modules endowed with an integrable connection coincide.

Saved in:
Bibliographic Details
Published in:Revista matemática complutense Vol. 34; no. 1; pp. 75 - 98
Main Author: Narváez Macarro, Luis
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently Hasse–Schmidt modules and modules endowed with an integrable connection coincide.
AbstractList We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently Hasse–Schmidt modules and modules endowed with an integrable connection coincide.
Author Narváez Macarro, Luis
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0003-4316-5019
  surname: Narváez Macarro
  fullname: Narváez Macarro, Luis
  email: narvaez@us.es
  organization: Departamento de Álgebra and Instituto de Matemáticas (IMUS), Facultad de Matemáticas, Universidad de Sevilla
BookMark eNp9kM1KAzEURoNUsFZfwNWA6-jN30yylKJWKLiw-5DJJHVKm9RkRrAr38E39EkcHcGdm3vv4nzfhXOKJiEGh9AFgSsCUF1nwkjJMBCFARgHfDhCU6KkxFRCNRluwhQehjxBpzlvAITikk-RWJic3ef7x5N93rVNV-xi029dLl5dyn0u2tC5dTL11hU2huBs18aQz9CxN9vszn_3DK3ublfzBV4-3j_Mb5bY0go6bJSxRjhaKWJkzWqmCG0UpUKA477xZaNAGA5SUa9EaaCsrQdb-ZJ74ymbocuxdp_iS-9ypzexT2H4qCmXFecVBTJQdKRsijkn5_U-tTuT3jQB_W1Hj3b0YEf_2NGHIcTGUB7gsHbpr_qf1BfL7mrl
Cites_doi 10.1017/S002776300002002X
10.1515/crll.1999.043
10.1080/00927870902828751
10.1090/S0002-9947-1963-0154906-3
10.5802/aif.2513
10.1515/9781400867318
10.1007/BFb0061194
10.1016/j.aim.2012.01.015
10.1007/BF02732123
ContentType Journal Article
Copyright Universidad Complutense de Madrid 2019
Universidad Complutense de Madrid 2019.
Copyright_xml – notice: Universidad Complutense de Madrid 2019
– notice: Universidad Complutense de Madrid 2019.
DBID AAYXX
CITATION
DOI 10.1007/s13163-019-00340-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1988-2807
EndPage 98
ExternalDocumentID 10_1007_s13163_019_00340_z
GrantInformation_xml – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: MTM2016-75027-P
  funderid: http://dx.doi.org/10.13039/501100010198
– fundername: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
  grantid: P12-FQM-2696
  funderid: http://dx.doi.org/10.13039/501100002878
GroupedDBID -EM
06D
0R~
0VY
123
1N0
203
2KG
2LR
2VQ
2WC
30V
4.4
406
408
40D
67Z
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FZZ
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
ITM
IWAJR
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PT4
R9I
RIG
RSV
S1Z
S27
S3B
SHX
SISQX
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7F
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CITATION
H13
ROL
SJYHP
ID FETCH-LOGICAL-c270t-a9aca5e2791a8b3b3912d922550e4fdf6d905a40892f956a06bcf0c7f64faf23
IEDL.DBID AEJHL
ISSN 1139-1138
IngestDate Tue Nov 19 06:52:05 EST 2024
Thu Nov 21 22:11:18 EST 2024
Sat Dec 16 12:09:37 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 13N10
HS-structure
Hasse–Schmidt derivation
Substitution map
Integrable connection
14F10
Differential operator
13N15
Integrable derivation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-a9aca5e2791a8b3b3912d922550e4fdf6d905a40892f956a06bcf0c7f64faf23
ORCID 0000-0003-4316-5019
PQID 2487447201
PQPubID 2044457
PageCount 24
ParticipantIDs proquest_journals_2487447201
crossref_primary_10_1007_s13163_019_00340_z
springer_journals_10_1007_s13163_019_00340_z
PublicationCentury 2000
PublicationDate 1-2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 1-2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Revista matemática complutense
PublicationTitleAbbrev Rev Mat Complut
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Narváez Macarro, L.: Rings of differential operators as enveloping algebras of Hasse–Schmidt derivations. J. Pure Appl. Algebra 224(1), 320–361 (2020)
BrownWCOn the embedding of derivations of finite rank into derivations of infinite rankOsaka J. Math.1978153813895042980422.13007
HuebschmannJDuality for Lie-Rinehart algebras and the modular classJ. Reine Angew. Math.1999510103159169609310.1515/crll.1999.043
Berthelot, P., Ogus, A.: Notes on Crystalline Cohomology. Mathematical Notes, vol. 21. Princeton University Press, Princeton (1978)
MatsumuraHIntegrable derivationsNagoya Math. J.19828722724567659310.1017/S002776300002002X
MirzavaziriMCharacterization of higher derivations on algebrasComm. Algebra2010383981987265038310.1080/00927870902828751
Narváez Macarro, L.: Hasse–Schmidt derivations versus classical derivations. In: “A panorama of Singularities”. Contemporary Mathematics, Amer. Math. Soc., Providence, RI, to appear. (arXiv:1810.08075)
Narváez MacarroLOn the modules of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-integrable derivations in non zero characteristicAdv. Math.2012229527122740288914310.1016/j.aim.2012.01.015
Deligne, P.: Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970)
Grothendieck, A.: Éléments de Géométrie Algébrique (Rédigés Avec la Collaboration de Jean Dieudonné): IV. Étude Locale des Schémas et de Morphismes de Schémas, Quatrième Partie. Publ. Math. Inst. Hautes Études Sci, vol. 32. Press University de France, Paris (1967)
HasseHSchmidtFKNoch eine Begründung der theorie der höheren differrentialquotienten in einem algebraischen Funktionenkörper einer UnbestimmtenJ. Reine Angew. Math.19371772232390017.10101
Narváez MacarroLHasse-Schmidt derivations, divided powers and differential smoothnessAnn. Inst. Fourier (Grenoble)200959729793014264934410.5802/aif.2513
Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)
Narváez Macarro, L.: On Hasse–Schmidt derivations: the action of substitution maps. In: “Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Festschrift for Antonio Campillo on the Occasion of his 65th Birthday”, 219–262. Springer International Publishing, Cham, 2018
RinehartGSDifferential forms on general commutative algebrasTrans. Am. Math. Soc.196310819522215490610.1090/S0002-9947-1963-0154906-3
340_CR14
340_CR12
L Narváez Macarro (340_CR11) 2012; 229
340_CR13
GS Rinehart (340_CR15) 1963; 108
L Narváez Macarro (340_CR10) 2009; 59
H Hasse (340_CR5) 1937; 177
H Matsumura (340_CR7) 1982; 87
340_CR8
J Huebschmann (340_CR6) 1999; 510
340_CR1
WC Brown (340_CR2) 1978; 15
M Mirzavaziri (340_CR9) 2010; 38
340_CR3
340_CR4
References_xml – volume: 15
  start-page: 381
  year: 1978
  ident: 340_CR2
  publication-title: Osaka J. Math.
  contributor:
    fullname: WC Brown
– volume: 87
  start-page: 227
  year: 1982
  ident: 340_CR7
  publication-title: Nagoya Math. J.
  doi: 10.1017/S002776300002002X
  contributor:
    fullname: H Matsumura
– volume: 510
  start-page: 103
  year: 1999
  ident: 340_CR6
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1999.043
  contributor:
    fullname: J Huebschmann
– volume: 38
  start-page: 981
  issue: 3
  year: 2010
  ident: 340_CR9
  publication-title: Comm. Algebra
  doi: 10.1080/00927870902828751
  contributor:
    fullname: M Mirzavaziri
– volume: 108
  start-page: 195
  year: 1963
  ident: 340_CR15
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1963-0154906-3
  contributor:
    fullname: GS Rinehart
– ident: 340_CR14
– volume: 59
  start-page: 2979
  issue: 7
  year: 2009
  ident: 340_CR10
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.2513
  contributor:
    fullname: L Narváez Macarro
– ident: 340_CR13
– ident: 340_CR1
  doi: 10.1515/9781400867318
– ident: 340_CR12
– ident: 340_CR3
  doi: 10.1007/BFb0061194
– volume: 229
  start-page: 2712
  issue: 5
  year: 2012
  ident: 340_CR11
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2012.01.015
  contributor:
    fullname: L Narváez Macarro
– volume: 177
  start-page: 223
  year: 1937
  ident: 340_CR5
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: H Hasse
– ident: 340_CR8
– ident: 340_CR4
  doi: 10.1007/BF02732123
SSID ssj0059484
Score 2.2155366
Snippet We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 75
SubjectTerms Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Modules
Topology
Title Hasse–Schmidt modules versus integrable connections
URI https://link.springer.com/article/10.1007/s13163-019-00340-z
https://www.proquest.com/docview/2487447201
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVou8DAG1EoKAMbGDl-JPFYQasIAUs7sEWOHwLRpog0Syf-gT_kS7DTpBEIBli82LKio3t9j33vPQHgzJcBktIwGGBkINVYwNS6FMSaIWkJSSRLsep4FN4_RNcDJ5NDVk8X2fNlnZEsD-qm1434LuXoem4QoQguWqBjYw-zxt3pD27i2_oAdgIkZTLZkhtoh6jqlfl5l6_xqCGZ3_KiZbgZbv3rQ7fBZsUuvf7SHHbAms52wcbdSpo13wMstnRZf7y9j-Tj9EnNvelMFROde64-o8i9Sj8inWhPuiKYsu8h3wfj4WB8FcPq3wlQ4hDNoeBCCqZxyH0RpSQl3MeKW-dlSFOjTKA4YoKiiGNjr0gCBak0SIYmoEYYTA5AO5tl-hB4jBGqsMRKS00DhkWYGl9wkuogUorrLjivAUxelgoZSaOF7LBILBZJiUWy6IJejXFSeUueYOpE-EPLRbrgoga1mf59t6O_LT8G69iVpJQvKD3Qnr8W-gS0clWcVjb0CbzuwbI
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CdgAG3ohCgQxsYMlx7CQeK2hpRdulHdgixw-B1Aci7dKJf-AP-RLsNKECwQBLlkRWdHSvfex7zzHApS9DLKVhKCTYIKqJQKlNKUQ0w9ISkljmZtXtQdR_iG-bziaHllqYvNu9LEnmM_VK7Bb4ruboRDc4oBgt1qFKeUhtLFcbneFdq5yBnQNJXk227AbZR1yIZX4e5euCtGKZ3wqj-XrT2vnfn-7CdsEvvcYyIPZgTU_2Yav3ac6aHQBrW8Ks31_fBvJx_KRm3niq5iOdea5DY555hYNEOtKedG0wufIhO4Rhqzm8aaPi9gQkSYRnSHAhBdMk4r6I0yANuE8Ut-nLsKZGmVBxzATFMSfGbpIEDlNpsIxMSI0wJDiCymQ60cfgMRZQRSRRWmoaMiKi1PiCB6kOY6W4rsFViWDyvPTISFZuyA6LxGKR5FgkixrUS5CTIl-yhFBnwx9ZNlKD6xLU1evfRzv52-cXsNEe9rpJt9O_P4VN4hpU8vOUOlRmL3N9BuuZmp8XAfUBcoPFog
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CVkIw8EYUCmRgA6uOY-cxVrRVgVIhtQNb5PghkPoSaZdO_AN_yJdgp0krEAyIJYsjKzq6Nz72vecY4NIVPhZCM-QTrBFVhKPEpBQiimFhCEkoMrPqdi_oPoWNprXJWar4s273oiS50DRYl6bRtDaRurYSvnmurT9aAQ72KEbzdShTs5MxkV6uN-_aneJvbN1IssqyYTrIPMJcOPPzLF8XpxXj_FYkzdae1s7_v3oXtnPe6dQXgbIHa2q0D1sPS9PW9ABY2xBp9fH23hPPwxc5dYZjORuo1LGdG7PUyZ0lkoFyhG2PyRQR6SH0W83-TRvltyogQQI8RTzigjNFgsjlYeIlXuQSGZm0ZlhRLbUvI8w4xWFEtNk8cewnQmMRaJ9qrol3BKXReKSOwWHMo5IIIpVQ1GeEB4l2eeQlyg-ljFQFrgo048nCOyNeuSRbLGKDRZxhEc8rUC0Aj_M8SmNCrT1_YFhKBa4LgFfDv8928rfXL2DjsdGKO7fd-1PYJLZvJTtmqUJp-jpTZ7Ceytl5Hlufp7rOZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hasse%E2%80%93Schmidt+modules+versus+integrable+connections&rft.jtitle=Revista+matem%C3%A1tica+complutense&rft.au=Narv%C3%A1ez%C2%A0Macarro%2C+Luis&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.issn=1139-1138&rft.eissn=1988-2807&rft.volume=34&rft.issue=1&rft.spage=75&rft.epage=98&rft_id=info:doi/10.1007%2Fs13163-019-00340-z&rft.externalDocID=10_1007_s13163_019_00340_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1139-1138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1139-1138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1139-1138&client=summon