Hasse–Schmidt modules versus integrable connections
We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently Hasse–Schmidt modules and modules endowed with an integrable connection coincide.
Saved in:
Published in: | Revista matemática complutense Vol. 34; no. 1; pp. 75 - 98 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently Hasse–Schmidt modules and modules endowed with an integrable connection coincide. |
---|---|
AbstractList | We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently Hasse–Schmidt modules and modules endowed with an integrable connection coincide. |
Author | Narváez Macarro, Luis |
Author_xml | – sequence: 1 givenname: Luis orcidid: 0000-0003-4316-5019 surname: Narváez Macarro fullname: Narváez Macarro, Luis email: narvaez@us.es organization: Departamento de Álgebra and Instituto de Matemáticas (IMUS), Facultad de Matemáticas, Universidad de Sevilla |
BookMark | eNp9kM1KAzEURoNUsFZfwNWA6-jN30yylKJWKLiw-5DJJHVKm9RkRrAr38E39EkcHcGdm3vv4nzfhXOKJiEGh9AFgSsCUF1nwkjJMBCFARgHfDhCU6KkxFRCNRluwhQehjxBpzlvAITikk-RWJic3ef7x5N93rVNV-xi029dLl5dyn0u2tC5dTL11hU2huBs18aQz9CxN9vszn_3DK3ublfzBV4-3j_Mb5bY0go6bJSxRjhaKWJkzWqmCG0UpUKA477xZaNAGA5SUa9EaaCsrQdb-ZJ74ymbocuxdp_iS-9ypzexT2H4qCmXFecVBTJQdKRsijkn5_U-tTuT3jQB_W1Hj3b0YEf_2NGHIcTGUB7gsHbpr_qf1BfL7mrl |
Cites_doi | 10.1017/S002776300002002X 10.1515/crll.1999.043 10.1080/00927870902828751 10.1090/S0002-9947-1963-0154906-3 10.5802/aif.2513 10.1515/9781400867318 10.1007/BFb0061194 10.1016/j.aim.2012.01.015 10.1007/BF02732123 |
ContentType | Journal Article |
Copyright | Universidad Complutense de Madrid 2019 Universidad Complutense de Madrid 2019. |
Copyright_xml | – notice: Universidad Complutense de Madrid 2019 – notice: Universidad Complutense de Madrid 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13163-019-00340-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1988-2807 |
EndPage | 98 |
ExternalDocumentID | 10_1007_s13163_019_00340_z |
GrantInformation_xml | – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: MTM2016-75027-P funderid: http://dx.doi.org/10.13039/501100010198 – fundername: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía grantid: P12-FQM-2696 funderid: http://dx.doi.org/10.13039/501100002878 |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 203 2KG 2LR 2VQ 2WC 30V 4.4 406 408 40D 67Z 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABHLI ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI FZZ GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HLICF HMJXF HRMNR HVGLF HZ~ IKXTQ ITM IWAJR I~X J-C J0Z JBSCW JZLTJ KOV LLZTM LO0 M4Y N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PT4 R9I RIG RSV S1Z S27 S3B SHX SISQX SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7F ZMTXR ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AGQEE AGRTI AIGIU CITATION H13 ROL SJYHP |
ID | FETCH-LOGICAL-c270t-a9aca5e2791a8b3b3912d922550e4fdf6d905a40892f956a06bcf0c7f64faf23 |
IEDL.DBID | AEJHL |
ISSN | 1139-1138 |
IngestDate | Tue Nov 19 06:52:05 EST 2024 Thu Nov 21 22:11:18 EST 2024 Sat Dec 16 12:09:37 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 13N10 HS-structure Hasse–Schmidt derivation Substitution map Integrable connection 14F10 Differential operator 13N15 Integrable derivation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-a9aca5e2791a8b3b3912d922550e4fdf6d905a40892f956a06bcf0c7f64faf23 |
ORCID | 0000-0003-4316-5019 |
PQID | 2487447201 |
PQPubID | 2044457 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2487447201 crossref_primary_10_1007_s13163_019_00340_z springer_journals_10_1007_s13163_019_00340_z |
PublicationCentury | 2000 |
PublicationDate | 1-2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 1-2021 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Revista matemática complutense |
PublicationTitleAbbrev | Rev Mat Complut |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Narváez Macarro, L.: Rings of differential operators as enveloping algebras of Hasse–Schmidt derivations. J. Pure Appl. Algebra 224(1), 320–361 (2020) BrownWCOn the embedding of derivations of finite rank into derivations of infinite rankOsaka J. Math.1978153813895042980422.13007 HuebschmannJDuality for Lie-Rinehart algebras and the modular classJ. Reine Angew. Math.1999510103159169609310.1515/crll.1999.043 Berthelot, P., Ogus, A.: Notes on Crystalline Cohomology. Mathematical Notes, vol. 21. Princeton University Press, Princeton (1978) MatsumuraHIntegrable derivationsNagoya Math. J.19828722724567659310.1017/S002776300002002X MirzavaziriMCharacterization of higher derivations on algebrasComm. Algebra2010383981987265038310.1080/00927870902828751 Narváez Macarro, L.: Hasse–Schmidt derivations versus classical derivations. In: “A panorama of Singularities”. Contemporary Mathematics, Amer. Math. Soc., Providence, RI, to appear. (arXiv:1810.08075) Narváez MacarroLOn the modules of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-integrable derivations in non zero characteristicAdv. Math.2012229527122740288914310.1016/j.aim.2012.01.015 Deligne, P.: Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970) Grothendieck, A.: Éléments de Géométrie Algébrique (Rédigés Avec la Collaboration de Jean Dieudonné): IV. Étude Locale des Schémas et de Morphismes de Schémas, Quatrième Partie. Publ. Math. Inst. Hautes Études Sci, vol. 32. Press University de France, Paris (1967) HasseHSchmidtFKNoch eine Begründung der theorie der höheren differrentialquotienten in einem algebraischen Funktionenkörper einer UnbestimmtenJ. Reine Angew. Math.19371772232390017.10101 Narváez MacarroLHasse-Schmidt derivations, divided powers and differential smoothnessAnn. Inst. Fourier (Grenoble)200959729793014264934410.5802/aif.2513 Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986) Narváez Macarro, L.: On Hasse–Schmidt derivations: the action of substitution maps. In: “Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Festschrift for Antonio Campillo on the Occasion of his 65th Birthday”, 219–262. Springer International Publishing, Cham, 2018 RinehartGSDifferential forms on general commutative algebrasTrans. Am. Math. Soc.196310819522215490610.1090/S0002-9947-1963-0154906-3 340_CR14 340_CR12 L Narváez Macarro (340_CR11) 2012; 229 340_CR13 GS Rinehart (340_CR15) 1963; 108 L Narváez Macarro (340_CR10) 2009; 59 H Hasse (340_CR5) 1937; 177 H Matsumura (340_CR7) 1982; 87 340_CR8 J Huebschmann (340_CR6) 1999; 510 340_CR1 WC Brown (340_CR2) 1978; 15 M Mirzavaziri (340_CR9) 2010; 38 340_CR3 340_CR4 |
References_xml | – volume: 15 start-page: 381 year: 1978 ident: 340_CR2 publication-title: Osaka J. Math. contributor: fullname: WC Brown – volume: 87 start-page: 227 year: 1982 ident: 340_CR7 publication-title: Nagoya Math. J. doi: 10.1017/S002776300002002X contributor: fullname: H Matsumura – volume: 510 start-page: 103 year: 1999 ident: 340_CR6 publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1999.043 contributor: fullname: J Huebschmann – volume: 38 start-page: 981 issue: 3 year: 2010 ident: 340_CR9 publication-title: Comm. Algebra doi: 10.1080/00927870902828751 contributor: fullname: M Mirzavaziri – volume: 108 start-page: 195 year: 1963 ident: 340_CR15 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1963-0154906-3 contributor: fullname: GS Rinehart – ident: 340_CR14 – volume: 59 start-page: 2979 issue: 7 year: 2009 ident: 340_CR10 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.2513 contributor: fullname: L Narváez Macarro – ident: 340_CR13 – ident: 340_CR1 doi: 10.1515/9781400867318 – ident: 340_CR12 – ident: 340_CR3 doi: 10.1007/BFb0061194 – volume: 229 start-page: 2712 issue: 5 year: 2012 ident: 340_CR11 publication-title: Adv. Math. doi: 10.1016/j.aim.2012.01.015 contributor: fullname: L Narváez Macarro – volume: 177 start-page: 223 year: 1937 ident: 340_CR5 publication-title: J. Reine Angew. Math. contributor: fullname: H Hasse – ident: 340_CR8 – ident: 340_CR4 doi: 10.1007/BF02732123 |
SSID | ssj0059484 |
Score | 2.2155366 |
Snippet | We prove that, in characteristic 0, any Hasse–Schmidt module structure can be recovered from its underlying integrable connection, and consequently... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 75 |
SubjectTerms | Algebra Analysis Applications of Mathematics Geometry Mathematics Mathematics and Statistics Modules Topology |
Title | Hasse–Schmidt modules versus integrable connections |
URI | https://link.springer.com/article/10.1007/s13163-019-00340-z https://www.proquest.com/docview/2487447201 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVou8DAG1EoKAMbGDl-JPFYQasIAUs7sEWOHwLRpog0Syf-gT_kS7DTpBEIBli82LKio3t9j33vPQHgzJcBktIwGGBkINVYwNS6FMSaIWkJSSRLsep4FN4_RNcDJ5NDVk8X2fNlnZEsD-qm1434LuXoem4QoQguWqBjYw-zxt3pD27i2_oAdgIkZTLZkhtoh6jqlfl5l6_xqCGZ3_KiZbgZbv3rQ7fBZsUuvf7SHHbAms52wcbdSpo13wMstnRZf7y9j-Tj9EnNvelMFROde64-o8i9Sj8inWhPuiKYsu8h3wfj4WB8FcPq3wlQ4hDNoeBCCqZxyH0RpSQl3MeKW-dlSFOjTKA4YoKiiGNjr0gCBak0SIYmoEYYTA5AO5tl-hB4jBGqsMRKS00DhkWYGl9wkuogUorrLjivAUxelgoZSaOF7LBILBZJiUWy6IJejXFSeUueYOpE-EPLRbrgoga1mf59t6O_LT8G69iVpJQvKD3Qnr8W-gS0clWcVjb0CbzuwbI |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CdgAG3ohCgQxsYMlx7CQeK2hpRdulHdgixw-B1Aci7dKJf-AP-RLsNKECwQBLlkRWdHSvfex7zzHApS9DLKVhKCTYIKqJQKlNKUQ0w9ISkljmZtXtQdR_iG-bziaHllqYvNu9LEnmM_VK7Bb4ruboRDc4oBgt1qFKeUhtLFcbneFdq5yBnQNJXk227AbZR1yIZX4e5euCtGKZ3wqj-XrT2vnfn-7CdsEvvcYyIPZgTU_2Yav3ac6aHQBrW8Ks31_fBvJx_KRm3niq5iOdea5DY555hYNEOtKedG0wufIhO4Rhqzm8aaPi9gQkSYRnSHAhBdMk4r6I0yANuE8Ut-nLsKZGmVBxzATFMSfGbpIEDlNpsIxMSI0wJDiCymQ60cfgMRZQRSRRWmoaMiKi1PiCB6kOY6W4rsFViWDyvPTISFZuyA6LxGKR5FgkixrUS5CTIl-yhFBnwx9ZNlKD6xLU1evfRzv52-cXsNEe9rpJt9O_P4VN4hpU8vOUOlRmL3N9BuuZmp8XAfUBcoPFog |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CVkIw8EYUCmRgA6uOY-cxVrRVgVIhtQNb5PghkPoSaZdO_AN_yJdgp0krEAyIJYsjKzq6Nz72vecY4NIVPhZCM-QTrBFVhKPEpBQiimFhCEkoMrPqdi_oPoWNprXJWar4s273oiS50DRYl6bRtDaRurYSvnmurT9aAQ72KEbzdShTs5MxkV6uN-_aneJvbN1IssqyYTrIPMJcOPPzLF8XpxXj_FYkzdae1s7_v3oXtnPe6dQXgbIHa2q0D1sPS9PW9ABY2xBp9fH23hPPwxc5dYZjORuo1LGdG7PUyZ0lkoFyhG2PyRQR6SH0W83-TRvltyogQQI8RTzigjNFgsjlYeIlXuQSGZm0ZlhRLbUvI8w4xWFEtNk8cewnQmMRaJ9qrol3BKXReKSOwWHMo5IIIpVQ1GeEB4l2eeQlyg-ljFQFrgo048nCOyNeuSRbLGKDRZxhEc8rUC0Aj_M8SmNCrT1_YFhKBa4LgFfDv8928rfXL2DjsdGKO7fd-1PYJLZvJTtmqUJp-jpTZ7Ceytl5Hlufp7rOZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hasse%E2%80%93Schmidt+modules+versus+integrable+connections&rft.jtitle=Revista+matem%C3%A1tica+complutense&rft.au=Narv%C3%A1ez%C2%A0Macarro%2C+Luis&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.issn=1139-1138&rft.eissn=1988-2807&rft.volume=34&rft.issue=1&rft.spage=75&rft.epage=98&rft_id=info:doi/10.1007%2Fs13163-019-00340-z&rft.externalDocID=10_1007_s13163_019_00340_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1139-1138&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1139-1138&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1139-1138&client=summon |