Tuning the band gap of manganese telluride quantum dots (MnTe QDs) for photocatalysis

Laser ablation synthesis in solution (LASiS) was used to synthesize quantum dots (QDs) of manganese telluride (MnTe). Size-tuneable QDs exhibit physicochemical property variation in the bandgap, optical, electrical, and magnetic properties. The size of QDs was fine-tuned with varying power and time...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Vol. 130; no. 5
Main Authors: Chowde Gowda, Chinmayee, Chandravanshi, Dharita, Tromer, Raphael M., Malya, Ambreesh, Chattopadhyay, Kamanio, Galvão, Douglas Soares, Tiwary, Chandra Sekhar
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-05-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Laser ablation synthesis in solution (LASiS) was used to synthesize quantum dots (QDs) of manganese telluride (MnTe). Size-tuneable QDs exhibit physicochemical property variation in the bandgap, optical, electrical, and magnetic properties. The size of QDs was fine-tuned with varying power and time duration of laser ablation. The characteristics of MnTe QDs were investigated using basic structural and morphological characterizations. The observed bandgap opening in the material is due to the quantum confinement effect, which led to increased energy band separation, as predicted from DFT simulations. The magnetic property of the synthesized MnTe QD catalysts influences the degradation process, with the process following pseudo-first-order kinetics. The photocatalytic dye degradation was studied using UV–visible spectroscopy. MnTe QDs were able to photodegrade methylene blue reagent up to 93.4% in 60 min under an external magnetic field. The magnetic field-induced MnTe QDs showed enhanced photocatalytic degradation efficiency with increased apparent rate kinetics up to ten times (0.0453 min −1 ) compared to just sunlight exposure (0.00456 min −1 ). Graphical Abstract (a) HAADF-STEM of the synthesized MnTe QD dispersed, (b) SEM image of the same, (c) relative concentration of the samples with and without magnetic fields, inset: photo degraded samples on exposure of magnetic fields and (d) schematic representation of the photocatalytic dye-degradation.
AbstractList Laser ablation synthesis in solution (LASiS) was used to synthesize quantum dots (QDs) of manganese telluride (MnTe). Size-tuneable QDs exhibit physicochemical property variation in the bandgap, optical, electrical, and magnetic properties. The size of QDs was fine-tuned with varying power and time duration of laser ablation. The characteristics of MnTe QDs were investigated using basic structural and morphological characterizations. The observed bandgap opening in the material is due to the quantum confinement effect, which led to increased energy band separation, as predicted from DFT simulations. The magnetic property of the synthesized MnTe QD catalysts influences the degradation process, with the process following pseudo-first-order kinetics. The photocatalytic dye degradation was studied using UV–visible spectroscopy. MnTe QDs were able to photodegrade methylene blue reagent up to 93.4% in 60 min under an external magnetic field. The magnetic field-induced MnTe QDs showed enhanced photocatalytic degradation efficiency with increased apparent rate kinetics up to ten times (0.0453 min −1 ) compared to just sunlight exposure (0.00456 min −1 ). Graphical Abstract (a) HAADF-STEM of the synthesized MnTe QD dispersed, (b) SEM image of the same, (c) relative concentration of the samples with and without magnetic fields, inset: photo degraded samples on exposure of magnetic fields and (d) schematic representation of the photocatalytic dye-degradation.
Laser ablation synthesis in solution (LASiS) was used to synthesize quantum dots (QDs) of manganese telluride (MnTe). Size-tuneable QDs exhibit physicochemical property variation in the bandgap, optical, electrical, and magnetic properties. The size of QDs was fine-tuned with varying power and time duration of laser ablation. The characteristics of MnTe QDs were investigated using basic structural and morphological characterizations. The observed bandgap opening in the material is due to the quantum confinement effect, which led to increased energy band separation, as predicted from DFT simulations. The magnetic property of the synthesized MnTe QD catalysts influences the degradation process, with the process following pseudo-first-order kinetics. The photocatalytic dye degradation was studied using UV–visible spectroscopy. MnTe QDs were able to photodegrade methylene blue reagent up to 93.4% in 60 min under an external magnetic field. The magnetic field-induced MnTe QDs showed enhanced photocatalytic degradation efficiency with increased apparent rate kinetics up to ten times (0.0453 min−1) compared to just sunlight exposure (0.00456 min−1).(a) HAADF-STEM of the synthesized MnTe QD dispersed, (b) SEM image of the same, (c) relative concentration of the samples with and without magnetic fields, inset: photo degraded samples on exposure of magnetic fields and (d) schematic representation of the photocatalytic dye-degradation.
ArticleNumber 299
Author Tromer, Raphael M.
Tiwary, Chandra Sekhar
Galvão, Douglas Soares
Chowde Gowda, Chinmayee
Malya, Ambreesh
Chandravanshi, Dharita
Chattopadhyay, Kamanio
Author_xml – sequence: 1
  givenname: Chinmayee
  surname: Chowde Gowda
  fullname: Chowde Gowda, Chinmayee
  organization: School of Nano Science and Technology, Indian Institute of Technology Kharagpur
– sequence: 2
  givenname: Dharita
  surname: Chandravanshi
  fullname: Chandravanshi, Dharita
  organization: Interdisciplinary Center for Energy Research, Indian Institute of Science
– sequence: 3
  givenname: Raphael M.
  surname: Tromer
  fullname: Tromer, Raphael M.
  organization: Applied Physics Department and Center for Computational Engineering and Sciences, State University of Campinas
– sequence: 4
  givenname: Ambreesh
  surname: Malya
  fullname: Malya, Ambreesh
  organization: Centre for Nano Science and Engineering, Indian Institute of Science
– sequence: 5
  givenname: Kamanio
  surname: Chattopadhyay
  fullname: Chattopadhyay, Kamanio
  email: kamanio@iisc.ac.in
  organization: Interdisciplinary Center for Energy Research, Indian Institute of Science, Department of Materials Engineering, Indian Institute of Science
– sequence: 6
  givenname: Douglas Soares
  surname: Galvão
  fullname: Galvão, Douglas Soares
  email: galvao@ifi.unicamp.br
  organization: Applied Physics Department and Center for Computational Engineering and Sciences, State University of Campinas
– sequence: 7
  givenname: Chandra Sekhar
  surname: Tiwary
  fullname: Tiwary, Chandra Sekhar
  email: chandra.tiwary@iitkgp.ac.in
  organization: School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur
BookMark eNp9kD1PwzAQhi0EEm3hDzBZYoEhcLbTOBlR-ZSKEFI7W05yTlOldmonUvvvCQSJjVtueZ_3dM-UnFpnkZArBncMQN4HACGyCHgcgRQyjQ4nZMJiwSNIBJySCWSxjFKRJedkGsIWhok5n5D1qre1rWi3QZprW9JKt9QZutO20hYD0g6bpvd1iXTfa9v1O1q6LtCbd7tC-vkYbqlxnrYb17lCd7o5hjpckDOjm4CXv3tG1s9Pq8VrtPx4eVs8LKOCS-gimYCGAvU8y4yOdV4meYmy4CKTeZpksojnRhgUAJiylEuTM5MiFsyIIhOoxYxcj72td_seQ6e2rvd2OKkEiLlkw9dySPExVXgXgkejWl_vtD8qBupbnxr1qUGf-tGnDgMkRigMYVuh_6v-h_oCwWV1pQ
Cites_doi 10.1007/s00339-005-3364-4
10.1021/acsanm.8b01642
10.1016/j.ccr.2022.214406
10.1021/jp074609z
10.1088/1361-6463/ac26f5
10.1016/j.jcis.2019.04.054
10.1038/s41598-018-37186-2
10.1007/s00339-022-05651-5
10.1186/s12951-015-0155-8
10.1016/j.colsurfa.2022.130296
10.1007/s00339-022-05425-z
10.1021/jp502327c
10.1016/j.msec.2019.01.010
10.1039/C2CP90132C
10.1016/j.nanoen.2023.108833
10.1039/C6TB01162D
10.1039/b821991e
10.1021/acs.jpcc.6b01465
10.1016/j.ssc.2011.04.002
10.1016/j.saa.2013.01.045
10.1021/acs.jpcc.6b05838
10.1016/j.bios.2023.115602
10.1021/acs.jpcc.5b02169
10.1021/acsami.2c14318
10.1039/C5CP00279F
10.1016/j.jece.2023.110025
10.1021/acs.chemmater.1c02514
10.1021/nn5007607
10.1364/OL.41.001486
10.1088/2053-1583/ace635
10.1007/s12274-015-0903-y
10.1016/j.jcis.2016.07.050
10.1021/acs.jpcc.6b00161
10.1007/s11671-008-9205-6
10.1016/j.cpletx.2019.100023
10.1021/ja00264a014
10.1038/s41563-023-01598-x
10.1039/C2CP42895D
10.1080/10667857.2021.1988040
10.1021/jp109240s
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00339-024-07378-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
ExternalDocumentID 10_1007_s00339_024_07378_x
GroupedDBID -54
-5F
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AACDK
AAEOY
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACDTI
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SGB
SHUTK
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
~8M
~EX
AAYXX
AAYZH
AMMEW
CITATION
H13
ID FETCH-LOGICAL-c270t-760a0cea599fa4abd6bde7c2397b8697c45f3fe300e81827fb1f8eec1f3c93ea3
IEDL.DBID AEJHL
ISSN 0947-8396
IngestDate Thu Nov 21 03:16:19 EST 2024
Fri Nov 22 03:05:23 EST 2024
Wed Jun 26 17:18:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Quantum dots (QDs)
Magnetic field induced degradation
Laser ablation in solution
Manganese telluride
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-760a0cea599fa4abd6bde7c2397b8697c45f3fe300e81827fb1f8eec1f3c93ea3
PQID 3035719477
PQPubID 2043608
ParticipantIDs proquest_journals_3035719477
crossref_primary_10_1007_s00339_024_07378_x
springer_journals_10_1007_s00339_024_07378_x
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Materials Science & Processing
PublicationTitle Applied physics. A, Materials science & processing
PublicationTitleAbbrev Appl. Phys. A
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MoradiAlvandZRajabiHRMirzaeiAMasoumiaslASadatfarajiHMater. Sci. Eng. C20199853510.1016/j.msec.2019.01.010
CrommieMFLutzCPEiglerDMMon. Not. R. Astron. Soc.19933511428
AlwaznyMSIsmailRASalimETAppl. Phys. A Mater. Sci. Process.2022128110.1007/s00339-022-05651-5
ParkMChoiJSYangLLeeHSci. Rep.20199110.1038/s41598-018-37186-2
ScaramuzzaSZerbettoMAmendolaVJ. Phys. Chem. C2016120945310.1021/acs.jpcc.6b00161
SimaoTChevrierDMJakobiJKorinekAGoupilGLauMGarbarinoSZhangPBarcikowskiSFortinMAGuayDJ. Phys. Chem. C20161202263510.1021/acs.jpcc.6b05838
RincónCQuinteroMMorenoEPowerCQuinteroEHenaoJAMacÍasMADelgadoGETovarRMorocoimaMSolid State Commun.20111519472011SSCom.151..947R10.1016/j.ssc.2011.04.002
AmendolaVMeneghettiMPhys. Chem. Chem. Phys.201315302710.1039/C2CP42895D
MiyasatoRFujiwaraMSatoHYanoTHashimotoHChem. Phys. Lett. X2019210.1016/j.cpletx.2019.100023
VenkatachalamVGanapathySPerumalIAnandhanMColloids Surf A Physicochem. Eng. Asp.202365610.1016/j.colsurfa.2022.130296
StreubelRBarcikowskiSGökceBOpt. Lett.Lett.20164114862016OptL...41.1486S10.1364/OL.41.001486
DasSPalSKumbhakarPTromerRMNegeduSDGalvaoDSDasSTiwaryCSRaySKApplACSMater. Interfaces2022145313910.1021/acsami.2c14318
XuJWangJChenZXiaXLiSLiZJ. Colloid Interface Sci.2019549632019JCIS..549...63X10.1016/j.jcis.2019.04.054
ZhangHChenGBahnemannDWJ. Mater. Chem.200919508910.1039/b821991e
AmendolaVScaramuzzaSAgnoliSGranozziGMeneghettiMCampoGBonanniVPineiderFSangregorioCGhignaPPolizziSRielloPFiameniSNodariLNano Res.20158400710.1007/s12274-015-0903-y
RajabiHRShamsipurMKhosraviAAKhaniOYousefiMHSpectrochim. Acta Part A Mol. Biomol. Spectrosc.20131072562013AcSpA.107..256R10.1016/j.saa.2013.01.045
ZhangJChakerMMaDJ. Colloid Interface Sci.20174891382017JCIS..489..138Z10.1016/j.jcis.2016.07.050
E. Soheyli, S. Zargoush, A.F. Yazici, R. Sahraei, E. Mutlugun, J. Phys. D: Appl. Phys. 54 505110 (2021)
MolaeiMFarahmandzadehFMousaviTSKarimipourMMater. Technol.20213718182022MaTec..37.1818M10.1080/10667857.2021.1988040
GowdaCCTromerRChandravanshiDPandeyPChattopadhyayKGalvaoDSTiwaryCSNano Energy202311710.1016/j.nanoen.2023.108833
TawilNSacherERiouxDMandevilleRMeunierMJ. Phys. Chem. C20151191437510.1021/acs.jpcc.5b02169
JinHLivacheCKimWDDirollBTSchallerRDKlimovVINat. Mater.20232210132023NatMa..22.1013J10.1038/s41563-023-01598-x
KrawinkelJRichterUTorres-MapaMLWestermannMGamradLRehbockCBarcikowskiSHeisterkampAJ. Nanobiotechnology201614110.1186/s12951-015-0155-8
BarcikowskiSCompagniniGPhys. Chem. Chem. Phys.201315302210.1039/C2CP90132C
SimãoTChevallierPLagueuxJCôtéMFRehbockCBarcikowskiSFortinMAGuayDJ. Mater. Chem. B20164641310.1039/C6TB01162D
YanagidaSMizumotoKPacCJ. Am. Chem. Soc.198610864710.1021/ja00264a014
YamamotoMWangSTNiMLinYFLiSLAikawaSBin JianWUenoKWakabayashiKTsukagoshiKACS Nano20148389510.1021/nn5007607
NegeduSDTromerRSiddiqueSWoellnerCFOluFEPalitMRoyAKPandeyPGalvaoDSKumbhakarPTiwaryCSAppl. Phys. A Mater. Sci. Process.2022128110.1007/s00339-022-05425-z
DengZZhangYYueJTangFWeiQJ. Phys. Chem. B20071111202410.1021/jp074609z
MessinaGCSinatraMGBonanniVBresciaRAlabastriAPineiderFCampoGSangregorioCLi-DestriGSfunciaGMarlettaGCondorelliMProiettiZaccariaRDe AngelisFCompagniniGJ. Phys. Chem. C20161201281010.1021/acs.jpcc.6b01465
HuPTangYZhuHXiaCLiuJLiuBNiuXBiosens. Bioelectron.202323810.1016/j.bios.2023.115602
AroraAOswalPDattaAKumarACoord. Chem. Rev.202245910.1016/j.ccr.2022.214406
YanZCompagniniGChriseyDBJ. Phys. Chem. C2011115505810.1021/jp109240s
VindigniARettoriAPiniMGCarboneCGambardellaPAppl. Phys. A Mater. Sci. Process.2006823852006ApPhA..82..385V10.1007/s00339-005-3364-4
ScaramuzzaSAgnoliSAmendolaVPhys. Chem. Chem. Phys.2015172807610.1039/C5CP00279F
C.C. Gowda, R. Tromer, P. Pandey, D. Chandravanshi, A. Chandra, K. Chattopadhyay, D. S. Galvao, C.S. Tiwary, 2D Mater. 10 045006 (2023)
PuthirathBalanARadhakrishnanSNeupaneRYazdiSDengLDe Los ReyesCAApteAPuthirathABRaoBMPauloseMVajtaiRChuCWMartíAAVargheseOKTiwaryCSAnantharamanMRAjayanPMACS Appl. Nano Mater.20181642710.1021/acsanm.8b01642
JiangDCaoLLiuWSuGQuHSunYDongBNanoscale Res. Lett.Lett.20094782009NRL.....4...78J10.1007/s11671-008-9205-6
E. Benavente, M. Alegría, P. Cortés, J. Aliaga, R. Villarroel, D. Guzmán, L. Ballesteros, G. González, J. Environ. Chem. Eng. 11 110025 (2023)
GhoshDIvanovSATretiakSChem. Mater.202133784810.1021/acs.chemmater.1c02514
MalviyaKDChattopadhyayKJ. Phys. Chem. C20141181322810.1021/jp502327c
S Yanagida (7378_CR16) 1986; 108
S Das (7378_CR38) 2022; 14
H Jin (7378_CR19) 2023; 22
T Simao (7378_CR13) 2016; 120
SD Negedu (7378_CR23) 2022; 128
7378_CR25
7378_CR26
C Rincón (7378_CR37) 2011; 151
M Yamamoto (7378_CR34) 2014; 8
T Simão (7378_CR15) 2016; 4
J Xu (7378_CR30) 2019; 549
D Ghosh (7378_CR41) 2021; 33
A Arora (7378_CR40) 2022; 459
N Tawil (7378_CR14) 2015; 119
HR Rajabi (7378_CR20) 2013; 107
KD Malviya (7378_CR4) 2014; 118
A Vindigni (7378_CR22) 2006; 82
V Amendola (7378_CR9) 2013; 15
P Hu (7378_CR18) 2023; 238
M Molaei (7378_CR29) 2021; 37
S Scaramuzza (7378_CR11) 2015; 17
R Miyasato (7378_CR21) 2019; 2
MS Alwazny (7378_CR5) 2022; 128
S Scaramuzza (7378_CR8) 2016; 120
M Park (7378_CR35) 2019; 9
7378_CR32
A PuthirathBalan (7378_CR36) 2018; 1
MF Crommie (7378_CR31) 1993; 351
Z Yan (7378_CR12) 2011; 115
H Zhang (7378_CR39) 2009; 19
Z MoradiAlvand (7378_CR27) 2019; 98
V Amendola (7378_CR3) 2015; 8
R Streubel (7378_CR7) 2016; 41
S Barcikowski (7378_CR10) 2013; 15
J Zhang (7378_CR2) 2017; 489
CC Gowda (7378_CR33) 2023; 117
GC Messina (7378_CR1) 2016; 120
J Krawinkel (7378_CR6) 2016; 14
V Venkatachalam (7378_CR28) 2023; 656
D Jiang (7378_CR17) 2009; 4
Z Deng (7378_CR24) 2007; 111
References_xml – volume: 82
  start-page: 385
  year: 2006
  ident: 7378_CR22
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-005-3364-4
  contributor:
    fullname: A Vindigni
– volume: 1
  start-page: 6427
  year: 2018
  ident: 7378_CR36
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01642
  contributor:
    fullname: A PuthirathBalan
– volume: 459
  year: 2022
  ident: 7378_CR40
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214406
  contributor:
    fullname: A Arora
– volume: 111
  start-page: 12024
  year: 2007
  ident: 7378_CR24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp074609z
  contributor:
    fullname: Z Deng
– ident: 7378_CR25
  doi: 10.1088/1361-6463/ac26f5
– volume: 549
  start-page: 63
  year: 2019
  ident: 7378_CR30
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.04.054
  contributor:
    fullname: J Xu
– volume: 9
  start-page: 1
  year: 2019
  ident: 7378_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
  contributor:
    fullname: M Park
– volume: 128
  start-page: 1
  year: 2022
  ident: 7378_CR5
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-022-05651-5
  contributor:
    fullname: MS Alwazny
– volume: 14
  start-page: 1
  year: 2016
  ident: 7378_CR6
  publication-title: J. Nanobiotechnology
  doi: 10.1186/s12951-015-0155-8
  contributor:
    fullname: J Krawinkel
– volume: 351
  start-page: 1428
  year: 1993
  ident: 7378_CR31
  publication-title: Mon. Not. R. Astron. Soc.
  contributor:
    fullname: MF Crommie
– volume: 656
  year: 2023
  ident: 7378_CR28
  publication-title: Colloids Surf A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2022.130296
  contributor:
    fullname: V Venkatachalam
– volume: 128
  start-page: 1
  year: 2022
  ident: 7378_CR23
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-022-05425-z
  contributor:
    fullname: SD Negedu
– volume: 118
  start-page: 13228
  year: 2014
  ident: 7378_CR4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp502327c
  contributor:
    fullname: KD Malviya
– volume: 98
  start-page: 535
  year: 2019
  ident: 7378_CR27
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.010
  contributor:
    fullname: Z MoradiAlvand
– volume: 15
  start-page: 3022
  year: 2013
  ident: 7378_CR10
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP90132C
  contributor:
    fullname: S Barcikowski
– volume: 117
  year: 2023
  ident: 7378_CR33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108833
  contributor:
    fullname: CC Gowda
– volume: 4
  start-page: 6413
  year: 2016
  ident: 7378_CR15
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB01162D
  contributor:
    fullname: T Simão
– volume: 19
  start-page: 5089
  year: 2009
  ident: 7378_CR39
  publication-title: J. Mater. Chem.
  doi: 10.1039/b821991e
  contributor:
    fullname: H Zhang
– volume: 120
  start-page: 12810
  year: 2016
  ident: 7378_CR1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01465
  contributor:
    fullname: GC Messina
– volume: 151
  start-page: 947
  year: 2011
  ident: 7378_CR37
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2011.04.002
  contributor:
    fullname: C Rincón
– volume: 107
  start-page: 256
  year: 2013
  ident: 7378_CR20
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2013.01.045
  contributor:
    fullname: HR Rajabi
– volume: 120
  start-page: 22635
  year: 2016
  ident: 7378_CR13
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05838
  contributor:
    fullname: T Simao
– volume: 238
  year: 2023
  ident: 7378_CR18
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2023.115602
  contributor:
    fullname: P Hu
– volume: 119
  start-page: 14375
  year: 2015
  ident: 7378_CR14
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b02169
  contributor:
    fullname: N Tawil
– volume: 14
  start-page: 53139
  year: 2022
  ident: 7378_CR38
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.2c14318
  contributor:
    fullname: S Das
– volume: 17
  start-page: 28076
  year: 2015
  ident: 7378_CR11
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00279F
  contributor:
    fullname: S Scaramuzza
– ident: 7378_CR26
  doi: 10.1016/j.jece.2023.110025
– volume: 33
  start-page: 7848
  year: 2021
  ident: 7378_CR41
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c02514
  contributor:
    fullname: D Ghosh
– volume: 8
  start-page: 3895
  year: 2014
  ident: 7378_CR34
  publication-title: ACS Nano
  doi: 10.1021/nn5007607
  contributor:
    fullname: M Yamamoto
– volume: 41
  start-page: 1486
  year: 2016
  ident: 7378_CR7
  publication-title: Opt. Lett.Lett.
  doi: 10.1364/OL.41.001486
  contributor:
    fullname: R Streubel
– ident: 7378_CR32
  doi: 10.1088/2053-1583/ace635
– volume: 8
  start-page: 4007
  year: 2015
  ident: 7378_CR3
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0903-y
  contributor:
    fullname: V Amendola
– volume: 489
  start-page: 138
  year: 2017
  ident: 7378_CR2
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.07.050
  contributor:
    fullname: J Zhang
– volume: 120
  start-page: 9453
  year: 2016
  ident: 7378_CR8
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00161
  contributor:
    fullname: S Scaramuzza
– volume: 4
  start-page: 78
  year: 2009
  ident: 7378_CR17
  publication-title: Nanoscale Res. Lett.Lett.
  doi: 10.1007/s11671-008-9205-6
  contributor:
    fullname: D Jiang
– volume: 2
  year: 2019
  ident: 7378_CR21
  publication-title: Chem. Phys. Lett. X
  doi: 10.1016/j.cpletx.2019.100023
  contributor:
    fullname: R Miyasato
– volume: 108
  start-page: 647
  year: 1986
  ident: 7378_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00264a014
  contributor:
    fullname: S Yanagida
– volume: 22
  start-page: 1013
  year: 2023
  ident: 7378_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01598-x
  contributor:
    fullname: H Jin
– volume: 15
  start-page: 3027
  year: 2013
  ident: 7378_CR9
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP42895D
  contributor:
    fullname: V Amendola
– volume: 37
  start-page: 1818
  year: 2021
  ident: 7378_CR29
  publication-title: Mater. Technol.
  doi: 10.1080/10667857.2021.1988040
  contributor:
    fullname: M Molaei
– volume: 115
  start-page: 5058
  year: 2011
  ident: 7378_CR12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109240s
  contributor:
    fullname: Z Yan
SSID ssj0000422
Score 2.4883
Snippet Laser ablation synthesis in solution (LASiS) was used to synthesize quantum dots (QDs) of manganese telluride (MnTe). Size-tuneable QDs exhibit physicochemical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Ablation
Characterization and Evaluation of Materials
Chemical synthesis
Condensed Matter Physics
Dyes
Energy bands
Energy gap
Intermetallic compounds
Kinetics
Laser ablation
Machines
Magnetic fields
Magnetic properties
Manganese
Manufacturing
Methylene blue
Nanotechnology
Optical and Electronic Materials
Optical properties
Photocatalysis
Photodegradation
Physics
Physics and Astronomy
Processes
Quantum confinement
Quantum dots
Reagents
Surfaces and Interfaces
Tellurides
Thin Films
Title Tuning the band gap of manganese telluride quantum dots (MnTe QDs) for photocatalysis
URI https://link.springer.com/article/10.1007/s00339-024-07378-x
https://www.proquest.com/docview/3035719477
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA7qEPTB3-J0Sh58UDTSNk3SPA7dnKKCuIFvJUkTFbGbdgX_fK9dt6nogz71oSWUu8t9X-5ydwjtU8qk1twSqT1BQmFCEvkmISYCsPWdCF1Z9d65Ezf30VmraJNDJ6GL9PlknJEsHfWk1q2YOiYJQAoBq4SjDxDHGmAPA-OuNVuXnaupAw5HyQMZggOmkle1Mj-v8hWPpiTzW160hJv28r9-dAUtVewSN0fmsIpmbLqGFj_1HFxD8-WdT5Oto143L4IiGCgg1ipN8IMa4L7DLyp9UMVgSlxUmORvT4nFrzloIH_BcIbN8MF12rX49iw7xEB58eCxP-yXYaCiu8kG6rVb3dMOqaYsEBMIb0gE95RnrGJSOhUqnXCdWGECICo64hK0xxx1lnqeBXAPhNO-i6w1vqNGUqvoJppL-6ndQphyxxjloe-MCCPOI6YENQw4RORskOg6OhrLOh6MmmnEk7bJpdhiEFtcii1-r6PGWB1xtbGyGBCXCR80K-roeCz_6evfV9v-2-c7aCEoVVhcbWygueFbbnfRbJbke5W5Fc-L7nn7Azsq0BU
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BIkQ50PJRdYG2PnBoVSwlsWPHR8SCFhWQKhYJTpHt2MCB7JZsJH4-E2_CFlQO7TmRFc1M5j3bM28A9hhLlTHCUWUiSbm0nGaxLajNEGxjL7kPXe_DC3l-lQ2OGpkc3vXChGr37koyZOrnZrdm7JiiiCkUwxL3Psgclxq186QHSwdX19eDeQbms9sDxTEDMyXaZpm_r_ISkOYs89XFaMCb4_f_96UfYK3ll-RgFhDrsODKDVj9Q3VwA5ZD1aetNuFyVDfHIgRJIDG6LMiNnpCxJ_e6vNHNaErS9JjUD3eFI79r9EF9T3AXW5FvZ-XIkV-D6jtB0ksmt-PpOBwENfomW3B5fDQ6HNJ2zgK1iYymVIpIR9bpVCmvuTaFMIWTNkGqYjKh0H-pZ96xKHII74n0JvaZczb2zCrmNPsIvXJcuk9AmPBpygSPvZU8EyJLtWQ2RRaReZcUpg8_OmPnk5mcRv4snBzMlqPZ8mC2_LEPu50_8vbXqnLE3FTG6FrZh_3O_vPHb6-2_W-vf4WV4ejsND89Of-5A--S4M6m0HEXetOH2n2Gxaqov7Sx9wSGedK5
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VRaD2QCml6pYvH3ooAoskduz4uOqyXcSHqLpI3CLbsYED2S3ZSP35HWezu21VDlXPiaxo3sTzPJ43A_CRsVQZIxxVJpKUS8tpFtuC2gyDbewl943qffhNXt1m_dPQJmeh4m-q3edXkjNNQ-jSVE5PJoU_WQjfwggyRTG-UHRRPAchi1wNaTHegdXe2ejLYLkb89lNguK4GzMlWuHM31f5PTgtGecfl6RN7Bm8_v-v3oSNlneS3sxR3sALV27Bq1-6EW7BWlMNaqu3cDOqQ7qEIDkkRpcFudMTMvbkUZd3OoysJEF7Uj89FI58rxGb-pHg6bYiny7LkSNf-9UhQTJMJvfj6bhJEIW-J9twMzgdfR7Sdv4CtYmMplSKSEfW6VQpr7k2hTCFkzZBCmMyoRDX1DPvWBQ5DPuJ9Cb2mXM29swq5jR7B51yXLr3QJjwacoEj72VPBMiS7VkNkV2kXmXFKYLR3PD55NZm4180VC5MVuOZssbs-U_urA7xyZvf7kqx1icyhhhll04nmOxfPz8ah_-7fUDWL_uD_KLs6vzHXiZNGiG-sdd6EyfarcHK1VR77du-BMStttQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+band+gap+of+manganese+telluride+quantum+dots+%28MnTe+QDs%29+for+photocatalysis&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Chowde+Gowda%2C+Chinmayee&rft.au=Chandravanshi%2C+Dharita&rft.au=Tromer%2C+Raphael+M.&rft.au=Malya%2C+Ambreesh&rft.date=2024-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=130&rft.issue=5&rft_id=info:doi/10.1007%2Fs00339-024-07378-x&rft.externalDocID=10_1007_s00339_024_07378_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon