Epileptic seizure detection using scalogram-based hybrid CNN model on EEG signals

Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 millio...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing Vol. 18; no. 2; pp. 1577 - 1588
Main Authors: Sadam, Sesha Sai Priya, Nalini, N. J.
Format: Journal Article
Language:English
Published: London Springer London 01-03-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 million people globally, with about 80% of sufferers living in low- and middle-income countries. Electroencephalography (EEG) signals are largely used in epilepsy research to examine brain activity during seizures. The extraction of features and selection from EEG signals plays a major role in epileptic seizure detection. In traditional machine learning techniques, the hard-core feature extraction needs domain expertise, and this can be eliminated by deep learning. The benefits of deep learning techniques are they try to learn high-level features from the input signals in an incremental method. To meet the requirements of complicated feature engineering, deep learning techniques have received greater attention than conventional methods. A hybrid seizure detection-convolutional neural network and vector machine (SD-CNN and SVM) model is proposed for epileptic seizure detection with EEG signals. Transformation of signal to image is performed using continuous wavelet transform technique to generate scaleogram images and also SD-CNN works as a learnable feature extractor from the generated images and SVM works as a binary classifier. The experimental results extracted 94% with high quality of scaleogram images using hybrid SD-CNN and SVM model and removed the noise levels and time–frequency data from EEG signals.
AbstractList Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 million people globally, with about 80% of sufferers living in low- and middle-income countries. Electroencephalography (EEG) signals are largely used in epilepsy research to examine brain activity during seizures. The extraction of features and selection from EEG signals plays a major role in epileptic seizure detection. In traditional machine learning techniques, the hard-core feature extraction needs domain expertise, and this can be eliminated by deep learning. The benefits of deep learning techniques are they try to learn high-level features from the input signals in an incremental method. To meet the requirements of complicated feature engineering, deep learning techniques have received greater attention than conventional methods. A hybrid seizure detection-convolutional neural network and vector machine (SD-CNN and SVM) model is proposed for epileptic seizure detection with EEG signals. Transformation of signal to image is performed using continuous wavelet transform technique to generate scaleogram images and also SD-CNN works as a learnable feature extractor from the generated images and SVM works as a binary classifier. The experimental results extracted 94% with high quality of scaleogram images using hybrid SD-CNN and SVM model and removed the noise levels and time–frequency data from EEG signals.
Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 million people globally, with about 80% of sufferers living in low- and middle-income countries. Electroencephalography (EEG) signals are largely used in epilepsy research to examine brain activity during seizures. The extraction of features and selection from EEG signals plays a major role in epileptic seizure detection. In traditional machine learning techniques, the hard-core feature extraction needs domain expertise, and this can be eliminated by deep learning. The benefits of deep learning techniques are they try to learn high-level features from the input signals in an incremental method. To meet the requirements of complicated feature engineering, deep learning techniques have received greater attention than conventional methods. A hybrid seizure detection-convolutional neural network and vector machine (SD-CNN and SVM) model is proposed for epileptic seizure detection with EEG signals. Transformation of signal to image is performed using continuous wavelet transform technique to generate scaleogram images and also SD-CNN works as a learnable feature extractor from the generated images and SVM works as a binary classifier. The experimental results extracted 94% with high quality of scaleogram images using hybrid SD-CNN and SVM model and removed the noise levels and time–frequency data from EEG signals.
Author Sadam, Sesha Sai Priya
Nalini, N. J.
Author_xml – sequence: 1
  givenname: Sesha Sai Priya
  surname: Sadam
  fullname: Sadam, Sesha Sai Priya
  email: saipriya.509@gmail.com
  organization: Department of Computer Science and Engineering, Annamalai University
– sequence: 2
  givenname: N. J.
  surname: Nalini
  fullname: Nalini, N. J.
  organization: Department of Computer Science and Engineering, Annamalai University
BookMark eNp9kN1LwzAUxYMoOOf-AZ8CPlfzUZP0UUadwpgI-hzy1ZrRtTVpYfOvN7Oibx643PtwzuHyuwCnbdc6AK4wusEI8duIMWcoQ4SmERxn-xMww4LRDHOMT39vRM_BIsYtSqKECyZm4KXsfeP6wRsYnf8cg4PWDc4MvmvhGH1bw2hU09VB7TKtorPw_aCDt3C52cBdZ10Dk7MsVzD6ulVNvARnVVpu8bPn4O2hfF0-Zuvn1dPyfp0ZwtGQMSOoYFzb3CmkKmyc1iRXlmGb44rnVFd3TBdGF9xYLpxhQqNckMIghI1AdA6up94-dB-ji4PcdmM4fiBJQUQS4yK5yOQyoYsxuEr2we9UOEiM5JGenOjJRE9-05P7FKJTKCZzW7vwV_1P6gul-3Rw
Cites_doi 10.1007/S12652-019-01220-6
10.1016/j.irbm.2020.10.007
10.1016/j.irbm.2019.04.005
10.1007/s12652-023-04582-0
10.1007/s12652-022-04361-3
10.1111/j.0013-9580.2005.66104.x
10.1109/j.neunet.2018.04.018
10.1007/s12652-022-03737-9
10.3390/brainsci9050115
10.1155/2022/1618498
10.1016/j.bspc.2017.01.005
10.1016/j.compbiomed.2017.09.017
10.1109/JBHI.2018.2871678
10.1109/TITB.2011.2181403
10.1016/j.proeng.2012.06.298
10.1109/TBME.2017.2785401
10.1007/s13534-013-0084-0
10.1088/1741-2552/ab0ab5
10.1007/s11277-023-10326-2
10.1016/j.bspc.2017.07.022
10.1142/S0129065713500093
10.1016/j.irbm.2021.04.003
10.1016/j.irbm.2022.05.002
10.1051/matecconf/201821003016
10.1088/1741-2552/ab260c
10.3389/fneur.2020.00375
10.1016/j.neucom.2016.10.024
10.1155/2022/8070428
10.1016/j.eplepsyres.2011.04.013
10.1016/j.rbmret.2008.03.007
10.1007/978-981-16-8987-1-53
10.1049/ji-3-2.1946.0076
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11760-023-02871-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 1588
ExternalDocumentID 10_1007_s11760_023_02871_x
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c270t-6c83867bd4ea0af1cebb24ad61d41f743bf56b9cb97cd78ec68b04829c001c803
IEDL.DBID AEJHL
ISSN 1863-1703
IngestDate Tue Nov 26 00:24:42 EST 2024
Thu Nov 21 21:13:17 EST 2024
Wed Feb 21 01:30:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CWT
SD-CNN
Scaleogram
SVM
Epilepsy
EEG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-6c83867bd4ea0af1cebb24ad61d41f743bf56b9cb97cd78ec68b04829c001c803
PQID 2928888678
PQPubID 2044169
PageCount 12
ParticipantIDs proquest_journals_2928888678
crossref_primary_10_1007_s11760_023_02871_x
springer_journals_10_1007_s11760_023_02871_x
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zhang, Duan, Sa, Guo (CR29) 2022; 43
Thakur, Dhanalakshmi, Kuresan (CR33) 2023; 14
Bajaj, Pachori (CR9) 2013; 3
Domathoti, Ch, Madala, Berhanu, Rao (CR25) 2022
Sadam, Nalini (CR4) 2021; 12
Gupta (CR32) 2023; 14
CR35
CR34
CR11
Anuradha, Lakshmi Surekha, Nuthakki, Domathoti, Ghorai, Shami (CR16) 2022
Acharya (CR19) 2013; 23
Angulakshmi, Lakshmi Priya (CR24) 2019; 40
Singh (CR30) 2008; 29
Türk, Özerdem (CR21) 2019
Jaiswal, Banka (CR28) 2017; 34
Fisher (CR1) 2005; 46
Hu, Cao, Lai, Liu (CR13) 2019
Yuan, Zhou, Li, Cai (CR6) 2011; 96
Truong (CR14) 2018; 105
Craik, He, Contreras-Vidal (CR17) 2019
Ramadan, Vasilakos (CR3) 2017; 223
Acharya, Oh, Hagiwara, Tan, Adeli (CR7) 2018; 100
Agarwal, Wang, Srinivasan (CR8) 2018; 210
Bajaj, Pachori (CR10) 2012; 16
Gupta, Kanungo, Saxena (CR31) 2023; 130
Gao (CR12) 2020; 11
Alickovic, Kevric, Subasi (CR27) 2018; 39
Fasil, Rajesh (CR20) 2023; 14
Kumar, Bhuvaneswari (CR2) 2012; 38
Yuan, Xun, Jia, Zhang (CR5) 2019; 23
Balwant (CR22) 2022; 43
Dequidt, Bourdon, Tremblais, Guillevin, Gianelli, Boutet, Cottier, Vallée, Fernandez-Maloigne, Guillevin (CR23) 2021; 42
Carmona, Hwang, Torresani (CR26) 1998
Roy, Banville, Albuquerque, Gramfort, Falk, Faubert (CR18) 2019
Khan (CR15) 2017; 65
2871_CR11
2871_CR34
SSP Sadam (2871_CR4) 2021; 12
H Khan (2871_CR15) 2017; 65
W Hu (2871_CR13) 2019
ND Truong (2871_CR14) 2018; 105
M Angulakshmi (2871_CR24) 2019; 40
E Alickovic (2871_CR27) 2018; 39
P Agarwal (2871_CR8) 2018; 210
RA Carmona (2871_CR26) 1998
Y Yuan (2871_CR5) 2019; 23
UR Acharya (2871_CR7) 2018; 100
OK Fasil (2871_CR20) 2023; 14
AK Jaiswal (2871_CR28) 2017; 34
Y Zhang (2871_CR29) 2022; 43
2871_CR35
V Bajaj (2871_CR10) 2012; 16
Q Yuan (2871_CR6) 2011; 96
V Bajaj (2871_CR9) 2013; 3
V Gupta (2871_CR32) 2023; 14
J Kumar (2871_CR2) 2012; 38
Y Gao (2871_CR12) 2020; 11
Ö Türk (2871_CR21) 2019
RS Fisher (2871_CR1) 2005; 46
R Ramadan (2871_CR3) 2017; 223
P Dequidt (2871_CR23) 2021; 42
A Craik (2871_CR17) 2019
M Thakur (2871_CR33) 2023; 14
Y Roy (2871_CR18) 2019
UR Acharya (2871_CR19) 2013; 23
T Anuradha (2871_CR16) 2022
MK Balwant (2871_CR22) 2022; 43
V Gupta (2871_CR31) 2023; 130
B Domathoti (2871_CR25) 2022
VR Singh (2871_CR30) 2008; 29
References_xml – year: 2019
  ident: CR13
  article-title: Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/S12652-019-01220-6
  contributor:
    fullname: Liu
– volume: 43
  start-page: 161
  issue: 3
  year: 2022
  end-page: 168
  ident: CR29
  article-title: Multi-atlas based adaptive active contour model with application to organs at risk segmentation in brain MR images
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.10.007
  contributor:
    fullname: Guo
– volume: 40
  start-page: 253
  issue: 5
  year: 2019
  end-page: 262
  ident: CR24
  article-title: Walsh Hadamard transform for simple linear iterative clustering (SLIC) superpixel based spectral clustering of multimodal MRI brain tumor segmentation
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.04.005
  contributor:
    fullname: Lakshmi Priya
– volume: 14
  start-page: 4595
  year: 2023
  end-page: 4605
  ident: CR32
  article-title: Wavelet transform and vector machines as emerging tools for computational medicine
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-023-04582-0
  contributor:
    fullname: Gupta
– volume: 14
  start-page: 175
  year: 2023
  end-page: 189
  ident: CR33
  article-title: Automated restricted Boltzmann machine classifier for early diagnosis of Parkinson’s disease using digitized spiral drawings
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-04361-3
  contributor:
    fullname: Kuresan
– volume: 46
  start-page: 470
  issue: 4
  year: 2005
  end-page: 472
  ident: CR1
  article-title: Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE)
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.66104.x
  contributor:
    fullname: Fisher
– volume: 105
  start-page: 104
  year: 2018
  end-page: 111
  ident: CR14
  article-title: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
  publication-title: Neural Netw.
  doi: 10.1109/j.neunet.2018.04.018
  contributor:
    fullname: Truong
– volume: 14
  start-page: 11809
  year: 2023
  end-page: 11822
  ident: CR20
  article-title: Epileptic seizure classification using shifting sample difference of EEG signals
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-03737-9
  contributor:
    fullname: Rajesh
– ident: CR35
– year: 2019
  ident: CR21
  article-title: Epilepsy detection by using scalogram based convolutional neural network from EEG signals
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9050115
  contributor:
    fullname: Özerdem
– year: 2022
  ident: CR16
  article-title: Graph theory algorithms of Hamiltonian cycle from quasi-spanning tree and domination based on vizing conjecture
  publication-title: J. Math.
  doi: 10.1155/2022/1618498
  contributor:
    fullname: Shami
– volume: 34
  start-page: 81
  year: 2017
  end-page: 92
  ident: CR28
  article-title: Local pattern transformation-based feature extraction techniques for classification of epileptic EEG signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.01.005
  contributor:
    fullname: Banka
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  ident: CR7
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
  contributor:
    fullname: Adeli
– volume: 12
  start-page: 0976
  issue: 03
  year: 2021
  end-page: 2833
  ident: CR4
  article-title: Epileptic seizure detection using EEG signals: a review
  publication-title: J. Cardiovasc. Dis. Res.
  contributor:
    fullname: Nalini
– volume: 23
  start-page: 83
  issue: 1
  year: 2019
  end-page: 94
  ident: CR5
  article-title: A multi-view deep learning framework for EEG seizure detection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2871678
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 1135
  issue: 6
  year: 2012
  end-page: 1142
  ident: CR10
  article-title: Classification of Seizure and nonseizure EEG signals using empirical mode decomposition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2181403
  contributor:
    fullname: Pachori
– volume: 38
  start-page: 2525
  year: 2012
  end-page: 2536
  ident: CR2
  article-title: Analysis of electroencephalography (EEG) signals and its categorization-a study
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.06.298
  contributor:
    fullname: Bhuvaneswari
– volume: 65
  start-page: 2019
  year: 2017
  end-page: 2118
  ident: CR15
  article-title: Focal onset seizure prediction using convolutional networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2785401
  contributor:
    fullname: Khan
– volume: 3
  start-page: 17
  year: 2013
  end-page: 21
  ident: CR9
  article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-013-0084-0
  contributor:
    fullname: Pachori
– year: 2019
  ident: CR17
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
  contributor:
    fullname: Contreras-Vidal
– volume: 130
  start-page: 1191
  year: 2023
  end-page: 1213
  ident: CR31
  article-title: An adaptive optimized schizophrenia electroencephalogram disease prediction framework
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-023-10326-2
  contributor:
    fullname: Saxena
– volume: 39
  start-page: 94
  year: 2018
  end-page: 102
  ident: CR27
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.022
  contributor:
    fullname: Subasi
– year: 1998
  ident: CR26
  publication-title: Wavelet analysis and applications: practical time frequency analysis
  contributor:
    fullname: Torresani
– volume: 23
  start-page: 1350009
  issue: 3
  year: 2013
  ident: CR19
  article-title: Automated diagnosis of epilepsy using CWT, HOS and texture parameters
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500093
  contributor:
    fullname: Acharya
– volume: 42
  start-page: 407
  year: 2021
  end-page: 414
  ident: CR23
  article-title: Exploring radiologic criteria for glioma grade classification on the BraTS dataset
  publication-title: IRBM
  doi: 10.1016/j.irbm.2021.04.003
  contributor:
    fullname: Guillevin
– ident: CR11
– volume: 43
  start-page: 521
  year: 2022
  end-page: 537
  ident: CR22
  article-title: A review on convolutional neural networks for brain tumor segmentation: methods, datasets, libraries, and future directions
  publication-title: IRBM
  doi: 10.1016/j.irbm.2022.05.002
  contributor:
    fullname: Balwant
– volume: 210
  start-page: 03016
  year: 2018
  ident: CR8
  article-title: Epileptic Seizure prediction over EEG data using hybrid CNN-SVM Model with edge computing services
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201821003016
  contributor:
    fullname: Srinivasan
– ident: CR34
– year: 2019
  ident: CR18
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
  contributor:
    fullname: Faubert
– volume: 11
  start-page: 375
  year: 2020
  ident: CR12
  article-title: Deep Convolutional neural network-based epileptic electroencephalogrm (EEG) signal classification
  publication-title: Front. Neuro.
  doi: 10.3389/fneur.2020.00375
  contributor:
    fullname: Gao
– volume: 223
  start-page: 26
  year: 2017
  end-page: 44
  ident: CR3
  article-title: Brain computer interface: control signals review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
  contributor:
    fullname: Vasilakos
– year: 2022
  ident: CR25
  article-title: Simulation analysis of 4G/5G OFDM systems by optimal wavelets with BPSK modulator
  publication-title: J. Sens.
  doi: 10.1155/2022/8070428
  contributor:
    fullname: Rao
– volume: 96
  start-page: 29
  issue: 1
  year: 2011
  end-page: 38
  ident: CR6
  article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2011.04.013
  contributor:
    fullname: Cai
– volume: 29
  start-page: 326
  issue: 5
  year: 2008
  end-page: 336
  ident: CR30
  article-title: Ultrasound hyperthermia control system for deep-seated tumours: ex vivo study of excised tumours, modeling of thermal profile and future nanoengineering aspects
  publication-title: IRBM
  doi: 10.1016/j.rbmret.2008.03.007
  contributor:
    fullname: Singh
– volume: 3
  start-page: 17
  year: 2013
  ident: 2871_CR9
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-013-0084-0
  contributor:
    fullname: V Bajaj
– year: 2019
  ident: 2871_CR13
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/S12652-019-01220-6
  contributor:
    fullname: W Hu
– volume: 23
  start-page: 1350009
  issue: 3
  year: 2013
  ident: 2871_CR19
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500093
  contributor:
    fullname: UR Acharya
– volume: 14
  start-page: 175
  year: 2023
  ident: 2871_CR33
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-04361-3
  contributor:
    fullname: M Thakur
– volume: 130
  start-page: 1191
  year: 2023
  ident: 2871_CR31
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-023-10326-2
  contributor:
    fullname: V Gupta
– ident: 2871_CR34
– volume: 16
  start-page: 1135
  issue: 6
  year: 2012
  ident: 2871_CR10
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2181403
  contributor:
    fullname: V Bajaj
– ident: 2871_CR11
  doi: 10.1007/978-981-16-8987-1-53
– volume: 42
  start-page: 407
  year: 2021
  ident: 2871_CR23
  publication-title: IRBM
  doi: 10.1016/j.irbm.2021.04.003
  contributor:
    fullname: P Dequidt
– volume: 100
  start-page: 270
  year: 2018
  ident: 2871_CR7
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
  contributor:
    fullname: UR Acharya
– volume: 223
  start-page: 26
  year: 2017
  ident: 2871_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
  contributor:
    fullname: R Ramadan
– volume: 39
  start-page: 94
  year: 2018
  ident: 2871_CR27
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.022
  contributor:
    fullname: E Alickovic
– volume: 96
  start-page: 29
  issue: 1
  year: 2011
  ident: 2871_CR6
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2011.04.013
  contributor:
    fullname: Q Yuan
– year: 2019
  ident: 2871_CR21
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9050115
  contributor:
    fullname: Ö Türk
– volume: 65
  start-page: 2019
  year: 2017
  ident: 2871_CR15
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2785401
  contributor:
    fullname: H Khan
– year: 2022
  ident: 2871_CR25
  publication-title: J. Sens.
  doi: 10.1155/2022/8070428
  contributor:
    fullname: B Domathoti
– volume: 43
  start-page: 521
  year: 2022
  ident: 2871_CR22
  publication-title: IRBM
  doi: 10.1016/j.irbm.2022.05.002
  contributor:
    fullname: MK Balwant
– volume: 210
  start-page: 03016
  year: 2018
  ident: 2871_CR8
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201821003016
  contributor:
    fullname: P Agarwal
– volume: 14
  start-page: 11809
  year: 2023
  ident: 2871_CR20
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-03737-9
  contributor:
    fullname: OK Fasil
– year: 2019
  ident: 2871_CR17
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
  contributor:
    fullname: A Craik
– volume: 40
  start-page: 253
  issue: 5
  year: 2019
  ident: 2871_CR24
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.04.005
  contributor:
    fullname: M Angulakshmi
– volume-title: Wavelet analysis and applications: practical time frequency analysis
  year: 1998
  ident: 2871_CR26
  contributor:
    fullname: RA Carmona
– volume: 38
  start-page: 2525
  year: 2012
  ident: 2871_CR2
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.06.298
  contributor:
    fullname: J Kumar
– volume: 12
  start-page: 0976
  issue: 03
  year: 2021
  ident: 2871_CR4
  publication-title: J. Cardiovasc. Dis. Res.
  contributor:
    fullname: SSP Sadam
– year: 2022
  ident: 2871_CR16
  publication-title: J. Math.
  doi: 10.1155/2022/1618498
  contributor:
    fullname: T Anuradha
– ident: 2871_CR35
  doi: 10.1049/ji-3-2.1946.0076
– volume: 29
  start-page: 326
  issue: 5
  year: 2008
  ident: 2871_CR30
  publication-title: IRBM
  doi: 10.1016/j.rbmret.2008.03.007
  contributor:
    fullname: VR Singh
– volume: 23
  start-page: 83
  issue: 1
  year: 2019
  ident: 2871_CR5
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2871678
  contributor:
    fullname: Y Yuan
– volume: 43
  start-page: 161
  issue: 3
  year: 2022
  ident: 2871_CR29
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.10.007
  contributor:
    fullname: Y Zhang
– year: 2019
  ident: 2871_CR18
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
  contributor:
    fullname: Y Roy
– volume: 34
  start-page: 81
  year: 2017
  ident: 2871_CR28
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.01.005
  contributor:
    fullname: AK Jaiswal
– volume: 46
  start-page: 470
  issue: 4
  year: 2005
  ident: 2871_CR1
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.66104.x
  contributor:
    fullname: RS Fisher
– volume: 105
  start-page: 104
  year: 2018
  ident: 2871_CR14
  publication-title: Neural Netw.
  doi: 10.1109/j.neunet.2018.04.018
  contributor:
    fullname: ND Truong
– volume: 14
  start-page: 4595
  year: 2023
  ident: 2871_CR32
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-023-04582-0
  contributor:
    fullname: V Gupta
– volume: 11
  start-page: 375
  year: 2020
  ident: 2871_CR12
  publication-title: Front. Neuro.
  doi: 10.3389/fneur.2020.00375
  contributor:
    fullname: Y Gao
SSID ssj0000327868
Score 2.3504467
Snippet Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1577
SubjectTerms Artificial neural networks
Brain
Computer Imaging
Computer Science
Continuous wavelet transform
Convulsions & seizures
Deep learning
Electroencephalography
Epilepsy
Feature extraction
Image Processing and Computer Vision
Image quality
Machine learning
Medical imaging
Multimedia Information Systems
Neurological diseases
Noise levels
Original Paper
Pattern Recognition and Graphics
Seizures
Signal,Image and Speech Processing
Support vector machines
Vision
Wavelet transforms
Title Epileptic seizure detection using scalogram-based hybrid CNN model on EEG signals
URI https://link.springer.com/article/10.1007/s11760-023-02871-x
https://www.proquest.com/docview/2928888678
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-6veiD06k4nZIH3zTSJm2TPo5ZHSIDUcG30nxURaxj3UD96730Y1XRB6X0qSGEy939rsnd7xA6pDS0Xk4RJo0gnkc1kb50SOpLz9caEKjodTi65uM7cRpZmhy2OLrInk7qG8nCUTe1bi4PHAIQAy9E-QQCxzZgjw_K3R5EF6PLxdGKwygXZRGcCCwBp8OqcpmfJ_oKSU2c-e1qtECcs86_1rqO1qoAEw9KjdhASybrok7dvAFXttxFq5-YCDfRVTQB9wDuQ-HcPL7PpwZrMyvStDJsc-Pvca6Sgt_6mVjk0_jhzRZ74eF4jIt2OhhGRtE5thkhoNNb6PYsuhmOSNVtgSjKnRkJlGAi4FJ7JnGS1FVGSuolOnC156YQaMjUD2SoZMiV5sKoQEgwfxoqQDolHLaNWtlLZnYQ5lxJToXPtWEeYwrm8RMuQ8nhcajpoaNa4PGkJNWIG_pkK7sYZBcXsotfe6hf70lcGVge05DCvzusV_TQcb0JzeffZ9v92_A9tEIhjCmzzvqoNZvOzT5azvX8oFK7DyWg0Ok
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHBgPEYEAO3CBSl6ZNepxG9xBjEmJI3KrmMeDAmNZNAn49btcyQHAAVTk1siLH8ec29meAU8aC1Mtp6iorKefMUOUph448xT1jEIGyXofdGzG4kxdhSpPDi1qYLNu9uJLMPPWy2K0hfIcixuDAMJ9i5Fjmgc_RlsvN3rDT_vi34rhMyEUVnPRTBk7Hzetlfhb0FZOWgea3u9EMctqV_y12CzbzEJM0FzaxDSt2XIVK0b6B5Ke5ChufuAh34DqcoINAB6JJYh_f5lNLjJ1liVpjkmbH35NExxnD9RNNsc-Qh9e03Iu0BgOSNdQhODMMOyTNCUGr3oXbdjhsdWneb4FqJpwZ9bV0pS-U4TZ24lFDW6UYj43fMLwxwlBDjTxfBVoFQhshrfalQgfAAo1Yp6Xj7kFp_Dy2-0CE0Eow6QljXe66GuV4sVCBEvg4zNbgrNB4NFnQakRLAuVUdxHqLsp0F73UoF5sSpQfsSRiAcOvd1yvrMF5sQnL179LO_jb9BNY6w6v-lG_N7g8hHWGQc0iB60Opdl0bo9gNTHz49wG3wHDS9TZ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4SAgOjKcYDMiBG0R06SPpcdo6xkMTCJC4Vc2jwIEysU0Cfj1OHxsgOCBU9dTIihzH_tLYnwEOGAutl1PUlUZQz2OaSl86NPWl52uNESjvddi75v070YksTc6kij_Pdq-uJIuaBsvSlI2OBzo9nha-NXngUIw3-CLkp4gi5z08yaClz7eis97F5D-L4zIuioo4EVg2Tscta2d-FvQ1Pk1B57d70jz8dGv_n_gKLJfQk7QKW1mFGZOtQa1q60DKXb4GS584CtfhKhqg40DHosjQPL6PXwzRZpQncGXEZs3fk6FKcubrJ2pjoiYPb7YMjLT7fZI32iE4MopOiM0VQWvfgNtudNPu0bIPA1WMOyMaKOGKgEvtmcRJ0qYyUjIv0UFTe80UIYhM_UCGSoZcaS6MCoREx8BChTFQCcfdhLnsOTNbQDhXkjPhc21cz3UVyvETLkPJ8XGYqcNhpf14UNBtxFNiZau7GHUX57qLX-vQqBYoLrfeMGYhw1M9zlfU4ahakOnn36Vt_234PixcdrrxxWn_fAcWGWKdIjWtAXOjl7HZhdmhHu-V5vgBsb_dnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+detection+using+scalogram-based+hybrid+CNN+model+on+EEG+signals&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Sadam%2C+Sesha+Sai+Priya&rft.au=Nalini%2C+N.+J.&rft.date=2024-03-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=2&rft.spage=1577&rft.epage=1588&rft_id=info:doi/10.1007%2Fs11760-023-02871-x&rft.externalDocID=10_1007_s11760_023_02871_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon