Epileptic seizure detection using scalogram-based hybrid CNN model on EEG signals
Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 millio...
Saved in:
Published in: | Signal, image and video processing Vol. 18; no. 2; pp. 1577 - 1588 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
London
Springer London
01-03-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 million people globally, with about 80% of sufferers living in low- and middle-income countries. Electroencephalography (EEG) signals are largely used in epilepsy research to examine brain activity during seizures. The extraction of features and selection from EEG signals plays a major role in epileptic seizure detection. In traditional machine learning techniques, the hard-core feature extraction needs domain expertise, and this can be eliminated by deep learning. The benefits of deep learning techniques are they try to learn high-level features from the input signals in an incremental method. To meet the requirements of complicated feature engineering, deep learning techniques have received greater attention than conventional methods. A hybrid seizure detection-convolutional neural network and vector machine (SD-CNN and SVM) model is proposed for epileptic seizure detection with EEG signals. Transformation of signal to image is performed using continuous wavelet transform technique to generate scaleogram images and also SD-CNN works as a learnable feature extractor from the generated images and SVM works as a binary classifier. The experimental results extracted 94% with high quality of scaleogram images using hybrid SD-CNN and SVM model and removed the noise levels and time–frequency data from EEG signals. |
---|---|
AbstractList | Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 million people globally, with about 80% of sufferers living in low- and middle-income countries. Electroencephalography (EEG) signals are largely used in epilepsy research to examine brain activity during seizures. The extraction of features and selection from EEG signals plays a major role in epileptic seizure detection. In traditional machine learning techniques, the hard-core feature extraction needs domain expertise, and this can be eliminated by deep learning. The benefits of deep learning techniques are they try to learn high-level features from the input signals in an incremental method. To meet the requirements of complicated feature engineering, deep learning techniques have received greater attention than conventional methods. A hybrid seizure detection-convolutional neural network and vector machine (SD-CNN and SVM) model is proposed for epileptic seizure detection with EEG signals. Transformation of signal to image is performed using continuous wavelet transform technique to generate scaleogram images and also SD-CNN works as a learnable feature extractor from the generated images and SVM works as a binary classifier. The experimental results extracted 94% with high quality of scaleogram images using hybrid SD-CNN and SVM model and removed the noise levels and time–frequency data from EEG signals. Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and, in some cases, loss of consciousness. It is a persistent, non-communicable brain condition that can affect anyone at any age, nearly 50 million people globally, with about 80% of sufferers living in low- and middle-income countries. Electroencephalography (EEG) signals are largely used in epilepsy research to examine brain activity during seizures. The extraction of features and selection from EEG signals plays a major role in epileptic seizure detection. In traditional machine learning techniques, the hard-core feature extraction needs domain expertise, and this can be eliminated by deep learning. The benefits of deep learning techniques are they try to learn high-level features from the input signals in an incremental method. To meet the requirements of complicated feature engineering, deep learning techniques have received greater attention than conventional methods. A hybrid seizure detection-convolutional neural network and vector machine (SD-CNN and SVM) model is proposed for epileptic seizure detection with EEG signals. Transformation of signal to image is performed using continuous wavelet transform technique to generate scaleogram images and also SD-CNN works as a learnable feature extractor from the generated images and SVM works as a binary classifier. The experimental results extracted 94% with high quality of scaleogram images using hybrid SD-CNN and SVM model and removed the noise levels and time–frequency data from EEG signals. |
Author | Sadam, Sesha Sai Priya Nalini, N. J. |
Author_xml | – sequence: 1 givenname: Sesha Sai Priya surname: Sadam fullname: Sadam, Sesha Sai Priya email: saipriya.509@gmail.com organization: Department of Computer Science and Engineering, Annamalai University – sequence: 2 givenname: N. J. surname: Nalini fullname: Nalini, N. J. organization: Department of Computer Science and Engineering, Annamalai University |
BookMark | eNp9kN1LwzAUxYMoOOf-AZ8CPlfzUZP0UUadwpgI-hzy1ZrRtTVpYfOvN7Oibx643PtwzuHyuwCnbdc6AK4wusEI8duIMWcoQ4SmERxn-xMww4LRDHOMT39vRM_BIsYtSqKECyZm4KXsfeP6wRsYnf8cg4PWDc4MvmvhGH1bw2hU09VB7TKtorPw_aCDt3C52cBdZ10Dk7MsVzD6ulVNvARnVVpu8bPn4O2hfF0-Zuvn1dPyfp0ZwtGQMSOoYFzb3CmkKmyc1iRXlmGb44rnVFd3TBdGF9xYLpxhQqNckMIghI1AdA6up94-dB-ji4PcdmM4fiBJQUQS4yK5yOQyoYsxuEr2we9UOEiM5JGenOjJRE9-05P7FKJTKCZzW7vwV_1P6gul-3Rw |
Cites_doi | 10.1007/S12652-019-01220-6 10.1016/j.irbm.2020.10.007 10.1016/j.irbm.2019.04.005 10.1007/s12652-023-04582-0 10.1007/s12652-022-04361-3 10.1111/j.0013-9580.2005.66104.x 10.1109/j.neunet.2018.04.018 10.1007/s12652-022-03737-9 10.3390/brainsci9050115 10.1155/2022/1618498 10.1016/j.bspc.2017.01.005 10.1016/j.compbiomed.2017.09.017 10.1109/JBHI.2018.2871678 10.1109/TITB.2011.2181403 10.1016/j.proeng.2012.06.298 10.1109/TBME.2017.2785401 10.1007/s13534-013-0084-0 10.1088/1741-2552/ab0ab5 10.1007/s11277-023-10326-2 10.1016/j.bspc.2017.07.022 10.1142/S0129065713500093 10.1016/j.irbm.2021.04.003 10.1016/j.irbm.2022.05.002 10.1051/matecconf/201821003016 10.1088/1741-2552/ab260c 10.3389/fneur.2020.00375 10.1016/j.neucom.2016.10.024 10.1155/2022/8070428 10.1016/j.eplepsyres.2011.04.013 10.1016/j.rbmret.2008.03.007 10.1007/978-981-16-8987-1-53 10.1049/ji-3-2.1946.0076 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11760-023-02871-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 1588 |
ExternalDocumentID | 10_1007_s11760_023_02871_x |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7S Z7X Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c270t-6c83867bd4ea0af1cebb24ad61d41f743bf56b9cb97cd78ec68b04829c001c803 |
IEDL.DBID | AEJHL |
ISSN | 1863-1703 |
IngestDate | Tue Nov 26 00:24:42 EST 2024 Thu Nov 21 21:13:17 EST 2024 Wed Feb 21 01:30:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CWT SD-CNN Scaleogram SVM Epilepsy EEG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-6c83867bd4ea0af1cebb24ad61d41f743bf56b9cb97cd78ec68b04829c001c803 |
PQID | 2928888678 |
PQPubID | 2044169 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2928888678 crossref_primary_10_1007_s11760_023_02871_x springer_journals_10_1007_s11760_023_02871_x |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Zhang, Duan, Sa, Guo (CR29) 2022; 43 Thakur, Dhanalakshmi, Kuresan (CR33) 2023; 14 Bajaj, Pachori (CR9) 2013; 3 Domathoti, Ch, Madala, Berhanu, Rao (CR25) 2022 Sadam, Nalini (CR4) 2021; 12 Gupta (CR32) 2023; 14 CR35 CR34 CR11 Anuradha, Lakshmi Surekha, Nuthakki, Domathoti, Ghorai, Shami (CR16) 2022 Acharya (CR19) 2013; 23 Angulakshmi, Lakshmi Priya (CR24) 2019; 40 Singh (CR30) 2008; 29 Türk, Özerdem (CR21) 2019 Jaiswal, Banka (CR28) 2017; 34 Fisher (CR1) 2005; 46 Hu, Cao, Lai, Liu (CR13) 2019 Yuan, Zhou, Li, Cai (CR6) 2011; 96 Truong (CR14) 2018; 105 Craik, He, Contreras-Vidal (CR17) 2019 Ramadan, Vasilakos (CR3) 2017; 223 Acharya, Oh, Hagiwara, Tan, Adeli (CR7) 2018; 100 Agarwal, Wang, Srinivasan (CR8) 2018; 210 Bajaj, Pachori (CR10) 2012; 16 Gupta, Kanungo, Saxena (CR31) 2023; 130 Gao (CR12) 2020; 11 Alickovic, Kevric, Subasi (CR27) 2018; 39 Fasil, Rajesh (CR20) 2023; 14 Kumar, Bhuvaneswari (CR2) 2012; 38 Yuan, Xun, Jia, Zhang (CR5) 2019; 23 Balwant (CR22) 2022; 43 Dequidt, Bourdon, Tremblais, Guillevin, Gianelli, Boutet, Cottier, Vallée, Fernandez-Maloigne, Guillevin (CR23) 2021; 42 Carmona, Hwang, Torresani (CR26) 1998 Roy, Banville, Albuquerque, Gramfort, Falk, Faubert (CR18) 2019 Khan (CR15) 2017; 65 2871_CR11 2871_CR34 SSP Sadam (2871_CR4) 2021; 12 H Khan (2871_CR15) 2017; 65 W Hu (2871_CR13) 2019 ND Truong (2871_CR14) 2018; 105 M Angulakshmi (2871_CR24) 2019; 40 E Alickovic (2871_CR27) 2018; 39 P Agarwal (2871_CR8) 2018; 210 RA Carmona (2871_CR26) 1998 Y Yuan (2871_CR5) 2019; 23 UR Acharya (2871_CR7) 2018; 100 OK Fasil (2871_CR20) 2023; 14 AK Jaiswal (2871_CR28) 2017; 34 Y Zhang (2871_CR29) 2022; 43 2871_CR35 V Bajaj (2871_CR10) 2012; 16 Q Yuan (2871_CR6) 2011; 96 V Bajaj (2871_CR9) 2013; 3 V Gupta (2871_CR32) 2023; 14 J Kumar (2871_CR2) 2012; 38 Y Gao (2871_CR12) 2020; 11 Ö Türk (2871_CR21) 2019 RS Fisher (2871_CR1) 2005; 46 R Ramadan (2871_CR3) 2017; 223 P Dequidt (2871_CR23) 2021; 42 A Craik (2871_CR17) 2019 M Thakur (2871_CR33) 2023; 14 Y Roy (2871_CR18) 2019 UR Acharya (2871_CR19) 2013; 23 T Anuradha (2871_CR16) 2022 MK Balwant (2871_CR22) 2022; 43 V Gupta (2871_CR31) 2023; 130 B Domathoti (2871_CR25) 2022 VR Singh (2871_CR30) 2008; 29 |
References_xml | – year: 2019 ident: CR13 article-title: Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/S12652-019-01220-6 contributor: fullname: Liu – volume: 43 start-page: 161 issue: 3 year: 2022 end-page: 168 ident: CR29 article-title: Multi-atlas based adaptive active contour model with application to organs at risk segmentation in brain MR images publication-title: IRBM doi: 10.1016/j.irbm.2020.10.007 contributor: fullname: Guo – volume: 40 start-page: 253 issue: 5 year: 2019 end-page: 262 ident: CR24 article-title: Walsh Hadamard transform for simple linear iterative clustering (SLIC) superpixel based spectral clustering of multimodal MRI brain tumor segmentation publication-title: IRBM doi: 10.1016/j.irbm.2019.04.005 contributor: fullname: Lakshmi Priya – volume: 14 start-page: 4595 year: 2023 end-page: 4605 ident: CR32 article-title: Wavelet transform and vector machines as emerging tools for computational medicine publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-023-04582-0 contributor: fullname: Gupta – volume: 14 start-page: 175 year: 2023 end-page: 189 ident: CR33 article-title: Automated restricted Boltzmann machine classifier for early diagnosis of Parkinson’s disease using digitized spiral drawings publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-022-04361-3 contributor: fullname: Kuresan – volume: 46 start-page: 470 issue: 4 year: 2005 end-page: 472 ident: CR1 article-title: Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE) publication-title: Epilepsia doi: 10.1111/j.0013-9580.2005.66104.x contributor: fullname: Fisher – volume: 105 start-page: 104 year: 2018 end-page: 111 ident: CR14 article-title: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram publication-title: Neural Netw. doi: 10.1109/j.neunet.2018.04.018 contributor: fullname: Truong – volume: 14 start-page: 11809 year: 2023 end-page: 11822 ident: CR20 article-title: Epileptic seizure classification using shifting sample difference of EEG signals publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-022-03737-9 contributor: fullname: Rajesh – ident: CR35 – year: 2019 ident: CR21 article-title: Epilepsy detection by using scalogram based convolutional neural network from EEG signals publication-title: Brain Sci. doi: 10.3390/brainsci9050115 contributor: fullname: Özerdem – year: 2022 ident: CR16 article-title: Graph theory algorithms of Hamiltonian cycle from quasi-spanning tree and domination based on vizing conjecture publication-title: J. Math. doi: 10.1155/2022/1618498 contributor: fullname: Shami – volume: 34 start-page: 81 year: 2017 end-page: 92 ident: CR28 article-title: Local pattern transformation-based feature extraction techniques for classification of epileptic EEG signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.01.005 contributor: fullname: Banka – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: CR7 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 contributor: fullname: Adeli – volume: 12 start-page: 0976 issue: 03 year: 2021 end-page: 2833 ident: CR4 article-title: Epileptic seizure detection using EEG signals: a review publication-title: J. Cardiovasc. Dis. Res. contributor: fullname: Nalini – volume: 23 start-page: 83 issue: 1 year: 2019 end-page: 94 ident: CR5 article-title: A multi-view deep learning framework for EEG seizure detection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2871678 contributor: fullname: Zhang – volume: 16 start-page: 1135 issue: 6 year: 2012 end-page: 1142 ident: CR10 article-title: Classification of Seizure and nonseizure EEG signals using empirical mode decomposition publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2181403 contributor: fullname: Pachori – volume: 38 start-page: 2525 year: 2012 end-page: 2536 ident: CR2 article-title: Analysis of electroencephalography (EEG) signals and its categorization-a study publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.06.298 contributor: fullname: Bhuvaneswari – volume: 65 start-page: 2019 year: 2017 end-page: 2118 ident: CR15 article-title: Focal onset seizure prediction using convolutional networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2785401 contributor: fullname: Khan – volume: 3 start-page: 17 year: 2013 end-page: 21 ident: CR9 article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-013-0084-0 contributor: fullname: Pachori – year: 2019 ident: CR17 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 contributor: fullname: Contreras-Vidal – volume: 130 start-page: 1191 year: 2023 end-page: 1213 ident: CR31 article-title: An adaptive optimized schizophrenia electroencephalogram disease prediction framework publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-023-10326-2 contributor: fullname: Saxena – volume: 39 start-page: 94 year: 2018 end-page: 102 ident: CR27 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 contributor: fullname: Subasi – year: 1998 ident: CR26 publication-title: Wavelet analysis and applications: practical time frequency analysis contributor: fullname: Torresani – volume: 23 start-page: 1350009 issue: 3 year: 2013 ident: CR19 article-title: Automated diagnosis of epilepsy using CWT, HOS and texture parameters publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065713500093 contributor: fullname: Acharya – volume: 42 start-page: 407 year: 2021 end-page: 414 ident: CR23 article-title: Exploring radiologic criteria for glioma grade classification on the BraTS dataset publication-title: IRBM doi: 10.1016/j.irbm.2021.04.003 contributor: fullname: Guillevin – ident: CR11 – volume: 43 start-page: 521 year: 2022 end-page: 537 ident: CR22 article-title: A review on convolutional neural networks for brain tumor segmentation: methods, datasets, libraries, and future directions publication-title: IRBM doi: 10.1016/j.irbm.2022.05.002 contributor: fullname: Balwant – volume: 210 start-page: 03016 year: 2018 ident: CR8 article-title: Epileptic Seizure prediction over EEG data using hybrid CNN-SVM Model with edge computing services publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201821003016 contributor: fullname: Srinivasan – ident: CR34 – year: 2019 ident: CR18 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c contributor: fullname: Faubert – volume: 11 start-page: 375 year: 2020 ident: CR12 article-title: Deep Convolutional neural network-based epileptic electroencephalogrm (EEG) signal classification publication-title: Front. Neuro. doi: 10.3389/fneur.2020.00375 contributor: fullname: Gao – volume: 223 start-page: 26 year: 2017 end-page: 44 ident: CR3 article-title: Brain computer interface: control signals review publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.024 contributor: fullname: Vasilakos – year: 2022 ident: CR25 article-title: Simulation analysis of 4G/5G OFDM systems by optimal wavelets with BPSK modulator publication-title: J. Sens. doi: 10.1155/2022/8070428 contributor: fullname: Rao – volume: 96 start-page: 29 issue: 1 year: 2011 end-page: 38 ident: CR6 article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2011.04.013 contributor: fullname: Cai – volume: 29 start-page: 326 issue: 5 year: 2008 end-page: 336 ident: CR30 article-title: Ultrasound hyperthermia control system for deep-seated tumours: ex vivo study of excised tumours, modeling of thermal profile and future nanoengineering aspects publication-title: IRBM doi: 10.1016/j.rbmret.2008.03.007 contributor: fullname: Singh – volume: 3 start-page: 17 year: 2013 ident: 2871_CR9 publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-013-0084-0 contributor: fullname: V Bajaj – year: 2019 ident: 2871_CR13 publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/S12652-019-01220-6 contributor: fullname: W Hu – volume: 23 start-page: 1350009 issue: 3 year: 2013 ident: 2871_CR19 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065713500093 contributor: fullname: UR Acharya – volume: 14 start-page: 175 year: 2023 ident: 2871_CR33 publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-022-04361-3 contributor: fullname: M Thakur – volume: 130 start-page: 1191 year: 2023 ident: 2871_CR31 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-023-10326-2 contributor: fullname: V Gupta – ident: 2871_CR34 – volume: 16 start-page: 1135 issue: 6 year: 2012 ident: 2871_CR10 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2181403 contributor: fullname: V Bajaj – ident: 2871_CR11 doi: 10.1007/978-981-16-8987-1-53 – volume: 42 start-page: 407 year: 2021 ident: 2871_CR23 publication-title: IRBM doi: 10.1016/j.irbm.2021.04.003 contributor: fullname: P Dequidt – volume: 100 start-page: 270 year: 2018 ident: 2871_CR7 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 contributor: fullname: UR Acharya – volume: 223 start-page: 26 year: 2017 ident: 2871_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.024 contributor: fullname: R Ramadan – volume: 39 start-page: 94 year: 2018 ident: 2871_CR27 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 contributor: fullname: E Alickovic – volume: 96 start-page: 29 issue: 1 year: 2011 ident: 2871_CR6 publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2011.04.013 contributor: fullname: Q Yuan – year: 2019 ident: 2871_CR21 publication-title: Brain Sci. doi: 10.3390/brainsci9050115 contributor: fullname: Ö Türk – volume: 65 start-page: 2019 year: 2017 ident: 2871_CR15 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2785401 contributor: fullname: H Khan – year: 2022 ident: 2871_CR25 publication-title: J. Sens. doi: 10.1155/2022/8070428 contributor: fullname: B Domathoti – volume: 43 start-page: 521 year: 2022 ident: 2871_CR22 publication-title: IRBM doi: 10.1016/j.irbm.2022.05.002 contributor: fullname: MK Balwant – volume: 210 start-page: 03016 year: 2018 ident: 2871_CR8 publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201821003016 contributor: fullname: P Agarwal – volume: 14 start-page: 11809 year: 2023 ident: 2871_CR20 publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-022-03737-9 contributor: fullname: OK Fasil – year: 2019 ident: 2871_CR17 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 contributor: fullname: A Craik – volume: 40 start-page: 253 issue: 5 year: 2019 ident: 2871_CR24 publication-title: IRBM doi: 10.1016/j.irbm.2019.04.005 contributor: fullname: M Angulakshmi – volume-title: Wavelet analysis and applications: practical time frequency analysis year: 1998 ident: 2871_CR26 contributor: fullname: RA Carmona – volume: 38 start-page: 2525 year: 2012 ident: 2871_CR2 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.06.298 contributor: fullname: J Kumar – volume: 12 start-page: 0976 issue: 03 year: 2021 ident: 2871_CR4 publication-title: J. Cardiovasc. Dis. Res. contributor: fullname: SSP Sadam – year: 2022 ident: 2871_CR16 publication-title: J. Math. doi: 10.1155/2022/1618498 contributor: fullname: T Anuradha – ident: 2871_CR35 doi: 10.1049/ji-3-2.1946.0076 – volume: 29 start-page: 326 issue: 5 year: 2008 ident: 2871_CR30 publication-title: IRBM doi: 10.1016/j.rbmret.2008.03.007 contributor: fullname: VR Singh – volume: 23 start-page: 83 issue: 1 year: 2019 ident: 2871_CR5 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2871678 contributor: fullname: Y Yuan – volume: 43 start-page: 161 issue: 3 year: 2022 ident: 2871_CR29 publication-title: IRBM doi: 10.1016/j.irbm.2020.10.007 contributor: fullname: Y Zhang – year: 2019 ident: 2871_CR18 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c contributor: fullname: Y Roy – volume: 34 start-page: 81 year: 2017 ident: 2871_CR28 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.01.005 contributor: fullname: AK Jaiswal – volume: 46 start-page: 470 issue: 4 year: 2005 ident: 2871_CR1 publication-title: Epilepsia doi: 10.1111/j.0013-9580.2005.66104.x contributor: fullname: RS Fisher – volume: 105 start-page: 104 year: 2018 ident: 2871_CR14 publication-title: Neural Netw. doi: 10.1109/j.neunet.2018.04.018 contributor: fullname: ND Truong – volume: 14 start-page: 4595 year: 2023 ident: 2871_CR32 publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-023-04582-0 contributor: fullname: V Gupta – volume: 11 start-page: 375 year: 2020 ident: 2871_CR12 publication-title: Front. Neuro. doi: 10.3389/fneur.2020.00375 contributor: fullname: Y Gao |
SSID | ssj0000327868 |
Score | 2.3504467 |
Snippet | Epilepsy is one of the most usual neurological diseases characterized by abnormal brain activity, resulting in seizures or strange behavior, sensations, and,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1577 |
SubjectTerms | Artificial neural networks Brain Computer Imaging Computer Science Continuous wavelet transform Convulsions & seizures Deep learning Electroencephalography Epilepsy Feature extraction Image Processing and Computer Vision Image quality Machine learning Medical imaging Multimedia Information Systems Neurological diseases Noise levels Original Paper Pattern Recognition and Graphics Seizures Signal,Image and Speech Processing Support vector machines Vision Wavelet transforms |
Title | Epileptic seizure detection using scalogram-based hybrid CNN model on EEG signals |
URI | https://link.springer.com/article/10.1007/s11760-023-02871-x https://www.proquest.com/docview/2928888678 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-6veiD06k4nZIH3zTSJm2TPo5ZHSIDUcG30nxURaxj3UD96730Y1XRB6X0qSGEy939rsnd7xA6pDS0Xk4RJo0gnkc1kb50SOpLz9caEKjodTi65uM7cRpZmhy2OLrInk7qG8nCUTe1bi4PHAIQAy9E-QQCxzZgjw_K3R5EF6PLxdGKwygXZRGcCCwBp8OqcpmfJ_oKSU2c-e1qtECcs86_1rqO1qoAEw9KjdhASybrok7dvAFXttxFq5-YCDfRVTQB9wDuQ-HcPL7PpwZrMyvStDJsc-Pvca6Sgt_6mVjk0_jhzRZ74eF4jIt2OhhGRtE5thkhoNNb6PYsuhmOSNVtgSjKnRkJlGAi4FJ7JnGS1FVGSuolOnC156YQaMjUD2SoZMiV5sKoQEgwfxoqQDolHLaNWtlLZnYQ5lxJToXPtWEeYwrm8RMuQ8nhcajpoaNa4PGkJNWIG_pkK7sYZBcXsotfe6hf70lcGVge05DCvzusV_TQcb0JzeffZ9v92_A9tEIhjCmzzvqoNZvOzT5azvX8oFK7DyWg0Ok |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHBgPEYEAO3CBSl6ZNepxG9xBjEmJI3KrmMeDAmNZNAn49btcyQHAAVTk1siLH8ec29meAU8aC1Mtp6iorKefMUOUph448xT1jEIGyXofdGzG4kxdhSpPDi1qYLNu9uJLMPPWy2K0hfIcixuDAMJ9i5Fjmgc_RlsvN3rDT_vi34rhMyEUVnPRTBk7Hzetlfhb0FZOWgea3u9EMctqV_y12CzbzEJM0FzaxDSt2XIVK0b6B5Ke5ChufuAh34DqcoINAB6JJYh_f5lNLjJ1liVpjkmbH35NExxnD9RNNsc-Qh9e03Iu0BgOSNdQhODMMOyTNCUGr3oXbdjhsdWneb4FqJpwZ9bV0pS-U4TZ24lFDW6UYj43fMLwxwlBDjTxfBVoFQhshrfalQgfAAo1Yp6Xj7kFp_Dy2-0CE0Eow6QljXe66GuV4sVCBEvg4zNbgrNB4NFnQakRLAuVUdxHqLsp0F73UoF5sSpQfsSRiAcOvd1yvrMF5sQnL179LO_jb9BNY6w6v-lG_N7g8hHWGQc0iB60Opdl0bo9gNTHz49wG3wHDS9TZ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4SAgOjKcYDMiBG0R06SPpcdo6xkMTCJC4Vc2jwIEysU0Cfj1OHxsgOCBU9dTIihzH_tLYnwEOGAutl1PUlUZQz2OaSl86NPWl52uNESjvddi75v070YksTc6kij_Pdq-uJIuaBsvSlI2OBzo9nha-NXngUIw3-CLkp4gi5z08yaClz7eis97F5D-L4zIuioo4EVg2Tscta2d-FvQ1Pk1B57d70jz8dGv_n_gKLJfQk7QKW1mFGZOtQa1q60DKXb4GS584CtfhKhqg40DHosjQPL6PXwzRZpQncGXEZs3fk6FKcubrJ2pjoiYPb7YMjLT7fZI32iE4MopOiM0VQWvfgNtudNPu0bIPA1WMOyMaKOGKgEvtmcRJ0qYyUjIv0UFTe80UIYhM_UCGSoZcaS6MCoREx8BChTFQCcfdhLnsOTNbQDhXkjPhc21cz3UVyvETLkPJ8XGYqcNhpf14UNBtxFNiZau7GHUX57qLX-vQqBYoLrfeMGYhw1M9zlfU4ahakOnn36Vt_234PixcdrrxxWn_fAcWGWKdIjWtAXOjl7HZhdmhHu-V5vgBsb_dnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+detection+using+scalogram-based+hybrid+CNN+model+on+EEG+signals&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Sadam%2C+Sesha+Sai+Priya&rft.au=Nalini%2C+N.+J.&rft.date=2024-03-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=2&rft.spage=1577&rft.epage=1588&rft_id=info:doi/10.1007%2Fs11760-023-02871-x&rft.externalDocID=10_1007_s11760_023_02871_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |