Adaptive thresholding pattern for fingerprint forgery detection

Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerpri...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 83; no. 34; pp. 81665 - 81683
Main Authors: Farzadpour, Zahra, Azghani, Masoumeh
Format: Journal Article
Language:English
Published: New York Springer US 08-03-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size 70 × 70 , respectively. This highlights the novelty approach in addressing such challenges.
AbstractList Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size 70 × 70 , respectively. This highlights the novelty approach in addressing such challenges.
Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size 70×70, respectively. This highlights the novelty approach in addressing such challenges.
Author Farzadpour, Zahra
Azghani, Masoumeh
Author_xml – sequence: 1
  givenname: Zahra
  surname: Farzadpour
  fullname: Farzadpour, Zahra
  organization: Laboratory of Wireless Communication and Signal Processing (WCSP), Faculty of Electrical Engineering, Sahand University of Technology
– sequence: 2
  givenname: Masoumeh
  surname: Azghani
  fullname: Azghani, Masoumeh
  email: mazghani@sut.ac.ir
  organization: Laboratory of Wireless Communication and Signal Processing (WCSP), Faculty of Electrical Engineering, Sahand University of Technology
BookMark eNp9UE1LAzEUDFLBtvoHPC14juYl2U33JKX4BQUveg67mxe7pSZrkgr996auoCdP74OZeW9mRibOOyTkEtg1MKZuIgCTnDIuKSwqWVNxQqZQKkGV4jD505-RWYxbxqAquZyS26VphtR_YpE2AePG70zv3oqhSQmDK6wPhc0LDEPoXTrOuT8UBhN2qffunJzaZhfx4qfOyev93cvqka6fH55WyzXtuGKJctNZWbaARqjGQCuFqVnJOANVK4NY1wtrq7YEsKLuqqoUi5LbGqxEBR02Yk6uRt0h-I89xqS3fh9cPqkFgKyYBAEZxUdUF3yMAa3Ob7834aCB6WNQegxK56D0d1BaZJIYSfHoMdv7lf6H9QXqZG06
Cites_doi 10.1007/s11042-021-11254-8
10.1109/NUICONE.2012.6493244
10.1007/s11554-020-01060-0
10.1109/ITCA52113.2020.00090
10.1016/j.neucom.2008.11.003
10.1016/j.future.2010.11.024
10.1088/1757-899X/1042/1/012017
10.1049/iet-bmt.2016.0007
10.1007/s11235-010-9316-0
10.1007/11608288_30
10.1007/978-3-540-74549-5_33
10.1109/BTAS.2017.8272724
10.1007/s11063-020-10407-4
10.1007/s11042-023-15300-5
10.1109/34.56205
10.1007/978-981-19-6142-7_25
10.1109/ICCSP.2017.8286604
10.1109/IPRECON52453.2021.9640976
10.1016/j.patcog.2008.06.012
10.1109/BTAS.2017.8272745
10.1109/LSP.2016.2636158
10.1155/2022/1070405
10.1109/ICEEOT.2016.7755337
10.1109/TIP.2015.2422574
10.32604/cmc.2023.031622
10.1109/TIFS.2023.3251862
10.1007/978-3-540-74549-5_78
10.1109/TSMCC.2005.848192
10.1155/2022/6335201
10.1109/TIFS.2016.2535899
10.1109/CVPR52729.2023.01974
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18649-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 81683
ExternalDocumentID 10_1007_s11042_024_18649_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEOY
AAGNY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAYXX
AAYZH
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-2dcf45b1ed37ad1b43d9050201797dee998ff6b511f39c6653852f91f4e71cea3
IEDL.DBID AEJHL
ISSN 1573-7721
1380-7501
IngestDate Fri Oct 11 04:14:05 EDT 2024
Fri Nov 22 02:11:47 EST 2024
Fri Oct 11 20:53:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords Haar wavelet transform
Local binary pattern
Fingerprint forgery detection
Support vector machine
Anisotropic diffusion
Adaptive thresholding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-2dcf45b1ed37ad1b43d9050201797dee998ff6b511f39c6653852f91f4e71cea3
PQID 3114604131
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_3114604131
crossref_primary_10_1007_s11042_024_18649_3
springer_journals_10_1007_s11042_024_18649_3
PublicationCentury 2000
PublicationDate 2024-03-08
PublicationDateYYYYMMDD 2024-03-08
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-08
  day: 08
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Antonelli A, Cappelli R, Maio D, Maltoni D (2006) A new approach to fake finger detection based on skin distortion. In: International conference on biometrics. Springer, pp 221–228
Ahamed BB, Yuvaraj D, Shitharth S, Mirza OM, Alsobhi A, Yafoz A et al (2022) An efficient mechanism for deep web data extraction based on tree-structured web pattern matching. Wireless Commun Mobile Comput 2022
YuanCSunXFingerprint liveness detection using histogram of oriented gradient based texture featureJ Internet Technol201819514991507
Ogunlana OS (2023) Impact of noisy singular point detection on performance of fingerprint matching. Covenant J Inf Commun Technol
Sara A, Shitharth S, Sangeetha K, Reddy CVS et al (2022) Circuit manufacturing defect detection using VGG16 convolutional neural networks. Wireless Commun Mobile Comput
Hameed SS, Ahmed IT, Al Okashi OM (2023) Real and altered fingerprint classification based on various features and classifiers. Comput Mater Continua 74(1)
Singh P, Shankar A (2021) A novel optical image denoising technique using convolutional neural network and anisotropic diffusion for real-time surveillance applications. J Real-Time Image Process 1–18
OlisaOIloanusiOChijinduVAhanekuMEdge detection in images using Haar wavelets, Sobel, Gabor an d Laplacian filtersInt J Sci Res201874649
GalballyJFierrezJAlonso-FernandezFMartinez-DiazMEvaluation of direct attacks to fingerprint verification systemsTelecommun Syst2011473–424325410.1007/s11235-010-9316-0
GhianiLHadidAMarcialisGLRoliFFingerprint liveness detection using local texture featuresIET Biom20166322423110.1049/iet-bmt.2016.0007
Ghiani L, Marcialis GL, Roli F (2012) Fingerprint liveness detection by local phase quantization. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE, pp 537–540
SharmaDSelwalAAn intelligent approach for fingerprint presentation attack detection using ensemble learning with improved local image featuresMultimedia Tools Appl2022811622 12922 16110.1007/s11042-021-11254-8
AgrawalRJalalASAryaKVFake fingerprint liveness detection based on micro and macro featuresInt J Biom2019112177206
Chaudhari A, Deore P (2012) Prevention of spoof attacks in fingerprinting using histogram features. In: 2012 Nirma University international conference on engineering (NUiCONE). IEEE, pp 1–4
KimWFingerprint liveness detection using local coherence patternsIEEE Signal Process Lett20162415155346045210.1109/LSP.2016.2636158
NikamSBAgarwalSRidgelet-based fake fingerprint detectionNeurocomput20097210–122491250610.1016/j.neucom.2008.11.003
ParthasaradhiSTDerakhshaniRHornakLASchuckersSATime-series detection of perspiration as a liveness test in fingerprint devicesIEEE Trans Syst Man Cybernet Part C (Appl Rev)200535333534310.1109/TSMCC.2005.848192
FengYKumarADetecting locally, patching globally: an end-to-end framework for high speed and accurate detection of fingerprint minutiaeIEEE Trans Inf Forensic Secur2023181720173310.1109/TIFS.2023.3251862
Hamadouche M, Khalil Z, Tebbi H, Guerroumi M, Zafoune Y (2023) A replay attack detection scheme based on perceptual image hashing. Multimedia Tools Appl 1–33
Zhang Y, Tian J, Chen X, Yang X, Shi P (2007) Fake finger detection based on thin-plate spline distortion model. In: International conference on biometrics. Springer, pp 742–749
AbhyankarASchuckersSIntegrating a wavelet based perspiration liveness check with fingerprint recognitionPattern Recognit200942345246410.1016/j.patcog.2008.06.012
Shaju S, Davis D (2017) Haar wavelet transform based histogram concatenation model for finger print spoofing detection. In: 2017 International conference on communication and signal processing (ICCSP). IEEE, pp 1352–1356
Sabeena M, Abraham L, Varghese A (2021) Digital image forgery detection using local binary pattern (LBP) and Harlick transform with classification. In: 2021 IEEE international power and renewable energy conference (IPRECON). IEEE, pp 1–6
GalballyJAlonso-FernandezFFierrezJOrtega-GarciaJA high performance fingerprint liveness detection method based on quality related featuresFuture Gener Comput Syst201228131132110.1016/j.future.2010.11.024
Thirumaleshwari Devi B, Shitharth S (2021) Multiple face detection using Haar-AdaBoosting, Lbp-AdaBoosting and neural networks. In: IOP conference series: materials science and engineering, vol 1042. pp 012017
PeronaPMalikJScale-space and edge detection using anisotropic diffusionIEEE Trans Pattern Anal Mach Intell199012762963910.1109/34.56205
Jia J, Cai L, Zhang K, Chen D (2007) A new approach to fake finger detection based on skin elasticity analysis. In: International conference on biometrics. Springer, pp 309–318
Chugh T, Cao K, Jain AK (2017) Fingerprint spoof detection using minutiae-based local patches. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE, pp 581–589
Zaghetto C, Mendelson M, Zaghetto A, Vidal FdB (2017) Liveness detection on touchless fingerprint devices using texture descriptors and artificial neural networks. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE, pp 406–412
Liu Z, Cao H, Zhang H, Lai J (2020) A fingerprint image enhancement method based on anisotropic diffusion and shock filtering. In: 2020 2nd international conference on information technology and computer application (ITCA). IEEE, pp 401–404
Kulkarni SS, Patil HY (2016) A fingerprint spoofing detection system using LBP. In: 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 3413–3419
Chen M, Yuan C, Li X, Zhou Z (2022) Broad learning with uniform local binary pattern for fingerprint liveness detection. In: Neural computing for advanced applications: third international conference, NCAA 2022, Jinan, China, July 8–10, 2022, Proceedings, Part I. Springer, pp 327–340
DubeyRKGohJThingVLFingerprint liveness detection from single image using low-level features and shape analysisIEEE Trans Inf Forensic Secur20161171461147510.1109/TIFS.2016.2535899
BaskarMRenuka DeviRRamkumarJKalyanasundaramPSuchithraMAmuthaBRegion centric minutiae propagation measure orient forgery detection with finger print analysis in health care systemsNeural Process Lett2023551193110.1007/s11063-020-10407-4
KimWSuhSHanJ-JFace liveness detection from a single image via diffusion speed modelIEEE Trans Image Process201524824562465334582110.1109/TIP.2015.2422574
Guillaro F, Cozzolino D, Sud A, Dufour N, Verdoliva L (2023) TruFor: leveraging all-round clues for trustworthy image forgery detection and localization. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. pp 20 606–20 615
C Yuan (18649_CR19) 2018; 19
18649_CR29
O Olisa (18649_CR33) 2018; 7
A Abhyankar (18649_CR10) 2009; 42
18649_CR28
ST Parthasaradhi (18649_CR9) 2005; 35
18649_CR32
18649_CR31
J Galbally (18649_CR36) 2011; 47
18649_CR12
18649_CR34
18649_CR13
W Kim (18649_CR14) 2015; 24
18649_CR16
Y Feng (18649_CR27) 2023; 18
R Agrawal (18649_CR25) 2019; 11
M Baskar (18649_CR30) 2023; 55
W Kim (18649_CR15) 2016; 24
18649_CR1
P Perona (18649_CR2) 1990; 12
L Ghiani (18649_CR17) 2016; 6
18649_CR18
18649_CR8
18649_CR7
18649_CR6
18649_CR4
18649_CR3
SB Nikam (18649_CR11) 2009; 72
18649_CR21
18649_CR20
18649_CR23
18649_CR22
D Sharma (18649_CR24) 2022; 81
RK Dubey (18649_CR5) 2016; 11
18649_CR26
J Galbally (18649_CR35) 2012; 28
References_xml – volume: 81
  start-page: 22 129
  issue: 16
  year: 2022
  ident: 18649_CR24
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-021-11254-8
  contributor:
    fullname: D Sharma
– ident: 18649_CR26
– ident: 18649_CR16
  doi: 10.1109/NUICONE.2012.6493244
– volume: 7
  start-page: 46
  year: 2018
  ident: 18649_CR33
  publication-title: Int J Sci Res
  contributor:
    fullname: O Olisa
– ident: 18649_CR13
– ident: 18649_CR32
  doi: 10.1007/s11554-020-01060-0
– ident: 18649_CR21
  doi: 10.1109/ITCA52113.2020.00090
– volume: 72
  start-page: 2491
  issue: 10–12
  year: 2009
  ident: 18649_CR11
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2008.11.003
  contributor:
    fullname: SB Nikam
– volume: 28
  start-page: 311
  issue: 1
  year: 2012
  ident: 18649_CR35
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2010.11.024
  contributor:
    fullname: J Galbally
– ident: 18649_CR34
  doi: 10.1088/1757-899X/1042/1/012017
– volume: 6
  start-page: 224
  issue: 3
  year: 2016
  ident: 18649_CR17
  publication-title: IET Biom
  doi: 10.1049/iet-bmt.2016.0007
  contributor:
    fullname: L Ghiani
– volume: 47
  start-page: 243
  issue: 3–4
  year: 2011
  ident: 18649_CR36
  publication-title: Telecommun Syst
  doi: 10.1007/s11235-010-9316-0
  contributor:
    fullname: J Galbally
– ident: 18649_CR7
  doi: 10.1007/11608288_30
– ident: 18649_CR6
  doi: 10.1007/978-3-540-74549-5_33
– ident: 18649_CR20
  doi: 10.1109/BTAS.2017.8272724
– volume: 55
  start-page: 19
  issue: 1
  year: 2023
  ident: 18649_CR30
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10407-4
  contributor:
    fullname: M Baskar
– ident: 18649_CR29
  doi: 10.1007/s11042-023-15300-5
– volume: 12
  start-page: 629
  issue: 7
  year: 1990
  ident: 18649_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.56205
  contributor:
    fullname: P Perona
– ident: 18649_CR23
  doi: 10.1007/978-981-19-6142-7_25
– volume: 11
  start-page: 177
  issue: 2
  year: 2019
  ident: 18649_CR25
  publication-title: Int J Biom
  contributor:
    fullname: R Agrawal
– ident: 18649_CR18
  doi: 10.1109/ICCSP.2017.8286604
– volume: 19
  start-page: 1499
  issue: 5
  year: 2018
  ident: 18649_CR19
  publication-title: J Internet Technol
  contributor:
    fullname: C Yuan
– ident: 18649_CR22
  doi: 10.1109/IPRECON52453.2021.9640976
– volume: 42
  start-page: 452
  issue: 3
  year: 2009
  ident: 18649_CR10
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2008.06.012
  contributor:
    fullname: A Abhyankar
– ident: 18649_CR1
  doi: 10.1109/BTAS.2017.8272745
– volume: 24
  start-page: 51
  issue: 1
  year: 2016
  ident: 18649_CR15
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2636158
  contributor:
    fullname: W Kim
– ident: 18649_CR4
  doi: 10.1155/2022/1070405
– ident: 18649_CR12
  doi: 10.1109/ICEEOT.2016.7755337
– volume: 24
  start-page: 2456
  issue: 8
  year: 2015
  ident: 18649_CR14
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2422574
  contributor:
    fullname: W Kim
– ident: 18649_CR31
  doi: 10.32604/cmc.2023.031622
– volume: 18
  start-page: 1720
  year: 2023
  ident: 18649_CR27
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2023.3251862
  contributor:
    fullname: Y Feng
– ident: 18649_CR8
  doi: 10.1007/978-3-540-74549-5_78
– volume: 35
  start-page: 335
  issue: 3
  year: 2005
  ident: 18649_CR9
  publication-title: IEEE Trans Syst Man Cybernet Part C (Appl Rev)
  doi: 10.1109/TSMCC.2005.848192
  contributor:
    fullname: ST Parthasaradhi
– ident: 18649_CR3
  doi: 10.1155/2022/6335201
– volume: 11
  start-page: 1461
  issue: 7
  year: 2016
  ident: 18649_CR5
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2016.2535899
  contributor:
    fullname: RK Dubey
– ident: 18649_CR28
  doi: 10.1109/CVPR52729.2023.01974
SSID ssj0016524
Score 2.3930306
Snippet Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 81665
SubjectTerms Adaptive algorithms
Adaptive systems
Computer Communication Networks
Computer Science
Contamination
Data Structures and Information Theory
Diffusion barriers
Diffusion layers
Fingerprints
Forgery
Multimedia Information Systems
Pixels
Special Purpose and Application-Based Systems
Spoofing
Support vector machines
Track 3: Biometrics and HCI
Wavelet transforms
Title Adaptive thresholding pattern for fingerprint forgery detection
URI https://link.springer.com/article/10.1007/s11042-024-18649-3
https://www.proquest.com/docview/3114604131
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdoGBQgFRKCgDGxjFsWMnE6qgVYUQCyC1U-TY5wUpVDT9_9hp0gKCAaYoykOnO999X3IPA1ygQJv4Aoc8FYbwJGREIUWSolQOURRV3Pc7T57k4zS5G_kxOWz966J4vW4yklWg3vS6Ud9J4iCF0ETwlLAWdBz2xG5xd4aj-8nDOnkg4ojX_TE_P_kVgzbE8lsutIKYcfdfwu3Bbs0og-FqCezDFhY96Da7NQS18_Zg59PowQO4GRo196EuKJ01F3USKphX4zaLwFHZwFYSeEFKf-67pwODZVW7VRzCy3j0fDsh9WYKREcyLElktOVxTtEwqQzNOTNpGDuy6DxSGkT32WWtyB3_sizVQrhAGEc2pZajpBoVO4J28VbgMQSco8gxtVKGmudaKMOjSGuRaEdnaCz7cNmoN5uvZmZkm-nIXlOZ01RWaSpjfRg0Fshq_1lkzDdLhw5gaR-uGpVvLv_-tpO_3X4K25G3mi8qSwbQLt-XeAathVme16vKH6ez2d0HMCbJXw
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADhQKiUMADG0SKY8dOJlTRVkWULhSpnSzHjzFUNP3_2GlCAcEAYxInOt35HtHd9xng2jBjEz_gkKVMBzQJSSANNkFquHQZRWJJPd559Mwns6Q_8DQ5tMbClNPudUuyjNQbsBv2UBKXUwKcMJoGZBuanu08akCzN5vP-x_dA3ePVgCZn9_8moQ2leW3ZmiZY4at_0l3APtVTYl6601wCFsmb0OrPq8BVe7bhr1P5INHcNfTcuGDHSqcPZdVGwotSsLNHLliFtlSAi9I4a89fhppU5TTW_kxvAwH0_tRUB2nEKiIh0UQaWVpnGGjCZcaZ5ToNIxdueh8kmtj3I-XtSxzFZglqWLMhcI4sim21HCsjCQn0Mhfc3MKiFLDMpNazkNFM8WkplGkFEuUK2hwzDtwU-tXLNasGWLDj-w1JZymRKkpQTrQrU0gKg9aCuLh0qFLsbgDt7XKN49__9rZ35Zfwc5o-jQW44fJ4znsRt6CfsQs6UKjeFuZC9he6tVltcXeAUeDy98
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFH5xW2L04HRqnE7twZuSUSgtnMzihls0i4kz8dZAfxyROPb_2zIYavRgPBIoeXmv7fvgve8rwJWiSoe2wSGNqHRI6PpOorByIsUSk1ESnBDLd54-s_lrOJ5YmZwNi7_sdq9LkmtOg1VpyophLvWwIb5hSysx-cXBISWR47egY3-LkTZ0RrPFfbypJNDAIxVZ5ueRXxNSgzK_FUbLfBN3_2_pPuxVWBON1pPjALZU1oNufY4DqpZ1D3Y_iRIewu1IJrndBFFh4rysylMoL4U4M2RALtKlNdaowl5bXjWSqii7urIjeIkni7upUx2z4AiPuYXjSaFJkGIlfZZInBJfRm5gYKRZq0wqZT7ItKapQWbajwSlZosMPB1hTRTDQiX-MbSzt0ydACJE0VRFmjFXkFTQRBLPE4KGwgAdHLA-XNe-5vlaTYM3usnWU9x4ipee4n4fBnU4eLWylty3NGrXpF7ch5va_c3t3992-rfHL2H7aRzzx9n84Qx2PBtA23kWDqBdvK_UObSWcnVRzbYPHPXUdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+thresholding+pattern+for+fingerprint+forgery+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Farzadpour%2C+Zahra&rft.au=Azghani%2C+Masoumeh&rft.date=2024-03-08&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=34&rft.spage=81665&rft.epage=81683&rft_id=info:doi/10.1007%2Fs11042-024-18649-3&rft.externalDocID=10_1007_s11042_024_18649_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon