Adaptive thresholding pattern for fingerprint forgery detection
Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerpri...
Saved in:
Published in: | Multimedia tools and applications Vol. 83; no. 34; pp. 81665 - 81683 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
08-03-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size
70
×
70
, respectively. This highlights the novelty approach in addressing such challenges. |
---|---|
AbstractList | Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size
70
×
70
, respectively. This highlights the novelty approach in addressing such challenges. Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size 70×70, respectively. This highlights the novelty approach in addressing such challenges. |
Author | Farzadpour, Zahra Azghani, Masoumeh |
Author_xml | – sequence: 1 givenname: Zahra surname: Farzadpour fullname: Farzadpour, Zahra organization: Laboratory of Wireless Communication and Signal Processing (WCSP), Faculty of Electrical Engineering, Sahand University of Technology – sequence: 2 givenname: Masoumeh surname: Azghani fullname: Azghani, Masoumeh email: mazghani@sut.ac.ir organization: Laboratory of Wireless Communication and Signal Processing (WCSP), Faculty of Electrical Engineering, Sahand University of Technology |
BookMark | eNp9UE1LAzEUDFLBtvoHPC14juYl2U33JKX4BQUveg67mxe7pSZrkgr996auoCdP74OZeW9mRibOOyTkEtg1MKZuIgCTnDIuKSwqWVNxQqZQKkGV4jD505-RWYxbxqAquZyS26VphtR_YpE2AePG70zv3oqhSQmDK6wPhc0LDEPoXTrOuT8UBhN2qffunJzaZhfx4qfOyev93cvqka6fH55WyzXtuGKJctNZWbaARqjGQCuFqVnJOANVK4NY1wtrq7YEsKLuqqoUi5LbGqxEBR02Yk6uRt0h-I89xqS3fh9cPqkFgKyYBAEZxUdUF3yMAa3Ob7834aCB6WNQegxK56D0d1BaZJIYSfHoMdv7lf6H9QXqZG06 |
Cites_doi | 10.1007/s11042-021-11254-8 10.1109/NUICONE.2012.6493244 10.1007/s11554-020-01060-0 10.1109/ITCA52113.2020.00090 10.1016/j.neucom.2008.11.003 10.1016/j.future.2010.11.024 10.1088/1757-899X/1042/1/012017 10.1049/iet-bmt.2016.0007 10.1007/s11235-010-9316-0 10.1007/11608288_30 10.1007/978-3-540-74549-5_33 10.1109/BTAS.2017.8272724 10.1007/s11063-020-10407-4 10.1007/s11042-023-15300-5 10.1109/34.56205 10.1007/978-981-19-6142-7_25 10.1109/ICCSP.2017.8286604 10.1109/IPRECON52453.2021.9640976 10.1016/j.patcog.2008.06.012 10.1109/BTAS.2017.8272745 10.1109/LSP.2016.2636158 10.1155/2022/1070405 10.1109/ICEEOT.2016.7755337 10.1109/TIP.2015.2422574 10.32604/cmc.2023.031622 10.1109/TIFS.2023.3251862 10.1007/978-3-540-74549-5_78 10.1109/TSMCC.2005.848192 10.1155/2022/6335201 10.1109/TIFS.2016.2535899 10.1109/CVPR52729.2023.01974 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-18649-3 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 81683 |
ExternalDocumentID | 10_1007_s11042_024_18649_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEOY AAGNY AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAYXX AAYZH CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-2dcf45b1ed37ad1b43d9050201797dee998ff6b511f39c6653852f91f4e71cea3 |
IEDL.DBID | AEJHL |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Oct 11 04:14:05 EDT 2024 Fri Nov 22 02:11:47 EST 2024 Fri Oct 11 20:53:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | Haar wavelet transform Local binary pattern Fingerprint forgery detection Support vector machine Anisotropic diffusion Adaptive thresholding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-2dcf45b1ed37ad1b43d9050201797dee998ff6b511f39c6653852f91f4e71cea3 |
PQID | 3114604131 |
PQPubID | 54626 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3114604131 crossref_primary_10_1007_s11042_024_18649_3 springer_journals_10_1007_s11042_024_18649_3 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-08 |
PublicationDateYYYYMMDD | 2024-03-08 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Antonelli A, Cappelli R, Maio D, Maltoni D (2006) A new approach to fake finger detection based on skin distortion. In: International conference on biometrics. Springer, pp 221–228 Ahamed BB, Yuvaraj D, Shitharth S, Mirza OM, Alsobhi A, Yafoz A et al (2022) An efficient mechanism for deep web data extraction based on tree-structured web pattern matching. Wireless Commun Mobile Comput 2022 YuanCSunXFingerprint liveness detection using histogram of oriented gradient based texture featureJ Internet Technol201819514991507 Ogunlana OS (2023) Impact of noisy singular point detection on performance of fingerprint matching. Covenant J Inf Commun Technol Sara A, Shitharth S, Sangeetha K, Reddy CVS et al (2022) Circuit manufacturing defect detection using VGG16 convolutional neural networks. Wireless Commun Mobile Comput Hameed SS, Ahmed IT, Al Okashi OM (2023) Real and altered fingerprint classification based on various features and classifiers. Comput Mater Continua 74(1) Singh P, Shankar A (2021) A novel optical image denoising technique using convolutional neural network and anisotropic diffusion for real-time surveillance applications. J Real-Time Image Process 1–18 OlisaOIloanusiOChijinduVAhanekuMEdge detection in images using Haar wavelets, Sobel, Gabor an d Laplacian filtersInt J Sci Res201874649 GalballyJFierrezJAlonso-FernandezFMartinez-DiazMEvaluation of direct attacks to fingerprint verification systemsTelecommun Syst2011473–424325410.1007/s11235-010-9316-0 GhianiLHadidAMarcialisGLRoliFFingerprint liveness detection using local texture featuresIET Biom20166322423110.1049/iet-bmt.2016.0007 Ghiani L, Marcialis GL, Roli F (2012) Fingerprint liveness detection by local phase quantization. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE, pp 537–540 SharmaDSelwalAAn intelligent approach for fingerprint presentation attack detection using ensemble learning with improved local image featuresMultimedia Tools Appl2022811622 12922 16110.1007/s11042-021-11254-8 AgrawalRJalalASAryaKVFake fingerprint liveness detection based on micro and macro featuresInt J Biom2019112177206 Chaudhari A, Deore P (2012) Prevention of spoof attacks in fingerprinting using histogram features. In: 2012 Nirma University international conference on engineering (NUiCONE). IEEE, pp 1–4 KimWFingerprint liveness detection using local coherence patternsIEEE Signal Process Lett20162415155346045210.1109/LSP.2016.2636158 NikamSBAgarwalSRidgelet-based fake fingerprint detectionNeurocomput20097210–122491250610.1016/j.neucom.2008.11.003 ParthasaradhiSTDerakhshaniRHornakLASchuckersSATime-series detection of perspiration as a liveness test in fingerprint devicesIEEE Trans Syst Man Cybernet Part C (Appl Rev)200535333534310.1109/TSMCC.2005.848192 FengYKumarADetecting locally, patching globally: an end-to-end framework for high speed and accurate detection of fingerprint minutiaeIEEE Trans Inf Forensic Secur2023181720173310.1109/TIFS.2023.3251862 Hamadouche M, Khalil Z, Tebbi H, Guerroumi M, Zafoune Y (2023) A replay attack detection scheme based on perceptual image hashing. Multimedia Tools Appl 1–33 Zhang Y, Tian J, Chen X, Yang X, Shi P (2007) Fake finger detection based on thin-plate spline distortion model. In: International conference on biometrics. Springer, pp 742–749 AbhyankarASchuckersSIntegrating a wavelet based perspiration liveness check with fingerprint recognitionPattern Recognit200942345246410.1016/j.patcog.2008.06.012 Shaju S, Davis D (2017) Haar wavelet transform based histogram concatenation model for finger print spoofing detection. In: 2017 International conference on communication and signal processing (ICCSP). IEEE, pp 1352–1356 Sabeena M, Abraham L, Varghese A (2021) Digital image forgery detection using local binary pattern (LBP) and Harlick transform with classification. In: 2021 IEEE international power and renewable energy conference (IPRECON). IEEE, pp 1–6 GalballyJAlonso-FernandezFFierrezJOrtega-GarciaJA high performance fingerprint liveness detection method based on quality related featuresFuture Gener Comput Syst201228131132110.1016/j.future.2010.11.024 Thirumaleshwari Devi B, Shitharth S (2021) Multiple face detection using Haar-AdaBoosting, Lbp-AdaBoosting and neural networks. In: IOP conference series: materials science and engineering, vol 1042. pp 012017 PeronaPMalikJScale-space and edge detection using anisotropic diffusionIEEE Trans Pattern Anal Mach Intell199012762963910.1109/34.56205 Jia J, Cai L, Zhang K, Chen D (2007) A new approach to fake finger detection based on skin elasticity analysis. In: International conference on biometrics. Springer, pp 309–318 Chugh T, Cao K, Jain AK (2017) Fingerprint spoof detection using minutiae-based local patches. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE, pp 581–589 Zaghetto C, Mendelson M, Zaghetto A, Vidal FdB (2017) Liveness detection on touchless fingerprint devices using texture descriptors and artificial neural networks. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE, pp 406–412 Liu Z, Cao H, Zhang H, Lai J (2020) A fingerprint image enhancement method based on anisotropic diffusion and shock filtering. In: 2020 2nd international conference on information technology and computer application (ITCA). IEEE, pp 401–404 Kulkarni SS, Patil HY (2016) A fingerprint spoofing detection system using LBP. In: 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 3413–3419 Chen M, Yuan C, Li X, Zhou Z (2022) Broad learning with uniform local binary pattern for fingerprint liveness detection. In: Neural computing for advanced applications: third international conference, NCAA 2022, Jinan, China, July 8–10, 2022, Proceedings, Part I. Springer, pp 327–340 DubeyRKGohJThingVLFingerprint liveness detection from single image using low-level features and shape analysisIEEE Trans Inf Forensic Secur20161171461147510.1109/TIFS.2016.2535899 BaskarMRenuka DeviRRamkumarJKalyanasundaramPSuchithraMAmuthaBRegion centric minutiae propagation measure orient forgery detection with finger print analysis in health care systemsNeural Process Lett2023551193110.1007/s11063-020-10407-4 KimWSuhSHanJ-JFace liveness detection from a single image via diffusion speed modelIEEE Trans Image Process201524824562465334582110.1109/TIP.2015.2422574 Guillaro F, Cozzolino D, Sud A, Dufour N, Verdoliva L (2023) TruFor: leveraging all-round clues for trustworthy image forgery detection and localization. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. pp 20 606–20 615 C Yuan (18649_CR19) 2018; 19 18649_CR29 O Olisa (18649_CR33) 2018; 7 A Abhyankar (18649_CR10) 2009; 42 18649_CR28 ST Parthasaradhi (18649_CR9) 2005; 35 18649_CR32 18649_CR31 J Galbally (18649_CR36) 2011; 47 18649_CR12 18649_CR34 18649_CR13 W Kim (18649_CR14) 2015; 24 18649_CR16 Y Feng (18649_CR27) 2023; 18 R Agrawal (18649_CR25) 2019; 11 M Baskar (18649_CR30) 2023; 55 W Kim (18649_CR15) 2016; 24 18649_CR1 P Perona (18649_CR2) 1990; 12 L Ghiani (18649_CR17) 2016; 6 18649_CR18 18649_CR8 18649_CR7 18649_CR6 18649_CR4 18649_CR3 SB Nikam (18649_CR11) 2009; 72 18649_CR21 18649_CR20 18649_CR23 18649_CR22 D Sharma (18649_CR24) 2022; 81 RK Dubey (18649_CR5) 2016; 11 18649_CR26 J Galbally (18649_CR35) 2012; 28 |
References_xml | – volume: 81 start-page: 22 129 issue: 16 year: 2022 ident: 18649_CR24 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-021-11254-8 contributor: fullname: D Sharma – ident: 18649_CR26 – ident: 18649_CR16 doi: 10.1109/NUICONE.2012.6493244 – volume: 7 start-page: 46 year: 2018 ident: 18649_CR33 publication-title: Int J Sci Res contributor: fullname: O Olisa – ident: 18649_CR13 – ident: 18649_CR32 doi: 10.1007/s11554-020-01060-0 – ident: 18649_CR21 doi: 10.1109/ITCA52113.2020.00090 – volume: 72 start-page: 2491 issue: 10–12 year: 2009 ident: 18649_CR11 publication-title: Neurocomput doi: 10.1016/j.neucom.2008.11.003 contributor: fullname: SB Nikam – volume: 28 start-page: 311 issue: 1 year: 2012 ident: 18649_CR35 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2010.11.024 contributor: fullname: J Galbally – ident: 18649_CR34 doi: 10.1088/1757-899X/1042/1/012017 – volume: 6 start-page: 224 issue: 3 year: 2016 ident: 18649_CR17 publication-title: IET Biom doi: 10.1049/iet-bmt.2016.0007 contributor: fullname: L Ghiani – volume: 47 start-page: 243 issue: 3–4 year: 2011 ident: 18649_CR36 publication-title: Telecommun Syst doi: 10.1007/s11235-010-9316-0 contributor: fullname: J Galbally – ident: 18649_CR7 doi: 10.1007/11608288_30 – ident: 18649_CR6 doi: 10.1007/978-3-540-74549-5_33 – ident: 18649_CR20 doi: 10.1109/BTAS.2017.8272724 – volume: 55 start-page: 19 issue: 1 year: 2023 ident: 18649_CR30 publication-title: Neural Process Lett doi: 10.1007/s11063-020-10407-4 contributor: fullname: M Baskar – ident: 18649_CR29 doi: 10.1007/s11042-023-15300-5 – volume: 12 start-page: 629 issue: 7 year: 1990 ident: 18649_CR2 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.56205 contributor: fullname: P Perona – ident: 18649_CR23 doi: 10.1007/978-981-19-6142-7_25 – volume: 11 start-page: 177 issue: 2 year: 2019 ident: 18649_CR25 publication-title: Int J Biom contributor: fullname: R Agrawal – ident: 18649_CR18 doi: 10.1109/ICCSP.2017.8286604 – volume: 19 start-page: 1499 issue: 5 year: 2018 ident: 18649_CR19 publication-title: J Internet Technol contributor: fullname: C Yuan – ident: 18649_CR22 doi: 10.1109/IPRECON52453.2021.9640976 – volume: 42 start-page: 452 issue: 3 year: 2009 ident: 18649_CR10 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2008.06.012 contributor: fullname: A Abhyankar – ident: 18649_CR1 doi: 10.1109/BTAS.2017.8272745 – volume: 24 start-page: 51 issue: 1 year: 2016 ident: 18649_CR15 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2636158 contributor: fullname: W Kim – ident: 18649_CR4 doi: 10.1155/2022/1070405 – ident: 18649_CR12 doi: 10.1109/ICEEOT.2016.7755337 – volume: 24 start-page: 2456 issue: 8 year: 2015 ident: 18649_CR14 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2422574 contributor: fullname: W Kim – ident: 18649_CR31 doi: 10.32604/cmc.2023.031622 – volume: 18 start-page: 1720 year: 2023 ident: 18649_CR27 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2023.3251862 contributor: fullname: Y Feng – ident: 18649_CR8 doi: 10.1007/978-3-540-74549-5_78 – volume: 35 start-page: 335 issue: 3 year: 2005 ident: 18649_CR9 publication-title: IEEE Trans Syst Man Cybernet Part C (Appl Rev) doi: 10.1109/TSMCC.2005.848192 contributor: fullname: ST Parthasaradhi – ident: 18649_CR3 doi: 10.1155/2022/6335201 – volume: 11 start-page: 1461 issue: 7 year: 2016 ident: 18649_CR5 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2016.2535899 contributor: fullname: RK Dubey – ident: 18649_CR28 doi: 10.1109/CVPR52729.2023.01974 |
SSID | ssj0016524 |
Score | 2.3930306 |
Snippet | Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 81665 |
SubjectTerms | Adaptive algorithms Adaptive systems Computer Communication Networks Computer Science Contamination Data Structures and Information Theory Diffusion barriers Diffusion layers Fingerprints Forgery Multimedia Information Systems Pixels Special Purpose and Application-Based Systems Spoofing Support vector machines Track 3: Biometrics and HCI Wavelet transforms |
Title | Adaptive thresholding pattern for fingerprint forgery detection |
URI | https://link.springer.com/article/10.1007/s11042-024-18649-3 https://www.proquest.com/docview/3114604131 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdoGBQgFRKCgDGxjFsWMnE6qgVYUQCyC1U-TY5wUpVDT9_9hp0gKCAaYoykOnO999X3IPA1ygQJv4Aoc8FYbwJGREIUWSolQOURRV3Pc7T57k4zS5G_kxOWz966J4vW4yklWg3vS6Ud9J4iCF0ETwlLAWdBz2xG5xd4aj-8nDOnkg4ojX_TE_P_kVgzbE8lsutIKYcfdfwu3Bbs0og-FqCezDFhY96Da7NQS18_Zg59PowQO4GRo196EuKJ01F3USKphX4zaLwFHZwFYSeEFKf-67pwODZVW7VRzCy3j0fDsh9WYKREcyLElktOVxTtEwqQzNOTNpGDuy6DxSGkT32WWtyB3_sizVQrhAGEc2pZajpBoVO4J28VbgMQSco8gxtVKGmudaKMOjSGuRaEdnaCz7cNmoN5uvZmZkm-nIXlOZ01RWaSpjfRg0Fshq_1lkzDdLhw5gaR-uGpVvLv_-tpO_3X4K25G3mi8qSwbQLt-XeAathVme16vKH6ez2d0HMCbJXw |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADhQKiUMADG0SKY8dOJlTRVkWULhSpnSzHjzFUNP3_2GlCAcEAYxInOt35HtHd9xng2jBjEz_gkKVMBzQJSSANNkFquHQZRWJJPd559Mwns6Q_8DQ5tMbClNPudUuyjNQbsBv2UBKXUwKcMJoGZBuanu08akCzN5vP-x_dA3ePVgCZn9_8moQ2leW3ZmiZY4at_0l3APtVTYl6601wCFsmb0OrPq8BVe7bhr1P5INHcNfTcuGDHSqcPZdVGwotSsLNHLliFtlSAi9I4a89fhppU5TTW_kxvAwH0_tRUB2nEKiIh0UQaWVpnGGjCZcaZ5ToNIxdueh8kmtj3I-XtSxzFZglqWLMhcI4sim21HCsjCQn0Mhfc3MKiFLDMpNazkNFM8WkplGkFEuUK2hwzDtwU-tXLNasGWLDj-w1JZymRKkpQTrQrU0gKg9aCuLh0qFLsbgDt7XKN49__9rZ35Zfwc5o-jQW44fJ4znsRt6CfsQs6UKjeFuZC9he6tVltcXeAUeDy98 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFH5xW2L04HRqnE7twZuSUSgtnMzihls0i4kz8dZAfxyROPb_2zIYavRgPBIoeXmv7fvgve8rwJWiSoe2wSGNqHRI6PpOorByIsUSk1ESnBDLd54-s_lrOJ5YmZwNi7_sdq9LkmtOg1VpyophLvWwIb5hSysx-cXBISWR47egY3-LkTZ0RrPFfbypJNDAIxVZ5ueRXxNSgzK_FUbLfBN3_2_pPuxVWBON1pPjALZU1oNufY4DqpZ1D3Y_iRIewu1IJrndBFFh4rysylMoL4U4M2RALtKlNdaowl5bXjWSqii7urIjeIkni7upUx2z4AiPuYXjSaFJkGIlfZZInBJfRm5gYKRZq0wqZT7ItKapQWbajwSlZosMPB1hTRTDQiX-MbSzt0ydACJE0VRFmjFXkFTQRBLPE4KGwgAdHLA-XNe-5vlaTYM3usnWU9x4ipee4n4fBnU4eLWylty3NGrXpF7ch5va_c3t3992-rfHL2H7aRzzx9n84Qx2PBtA23kWDqBdvK_UObSWcnVRzbYPHPXUdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+thresholding+pattern+for+fingerprint+forgery+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Farzadpour%2C+Zahra&rft.au=Azghani%2C+Masoumeh&rft.date=2024-03-08&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=34&rft.spage=81665&rft.epage=81683&rft_id=info:doi/10.1007%2Fs11042-024-18649-3&rft.externalDocID=10_1007_s11042_024_18649_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |