Blowing-up Solutions for 2nd-Order Critical Elliptic Equations: The Impact of the Scalar Curvature

Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \textrm{in }M\end{align*}$$is that $h_0\in C^1(M...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices Vol. 2023; no. 2; pp. 901 - 931
Main Authors: Robert, Frédéric, Vétois, Jérôme
Format: Journal Article
Language:English
Published: Oxford University Press (OUP) 19-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \textrm{in }M\end{align*}$$is that $h_0\in C^1(M)$ touches the Yamabe potential somewhere when $n\geq 4$ (the condition is different for $n=6$). In this paper, we prove that Druet’s condition is also sufficient provided we add its natural differentiable version. For $n\geq 6$, our arguments are local. For the low dimensions $n\in \{4,5\}$, our proof requires to introduce a suitable mass that is defined only where Druet’s condition holds. This mass carries global information both on $h_0$ and $(M,g)$.
AbstractList Given a closed manifold $(M^n,g)$, $n\geq 3$, Olivier Druet proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation$$\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0\hbox{ in }M$$is that $h_0\in C^1(M)$ touches the Scalar curvature somewhere when $n\geq 4$ (the condition is different for $n=6$). In this paper, we prove that Druet's condition is also sufficient provided we add its natural differentiable version. For $n\geq 6$, our arguments are local. For the low dimensions $n\in\{4,5\}$, our proof requires the introduction of a suitable mass that is defined only where Druet's condition holds. This mass carries global information both on $h_0$ and $(M,g)$.
Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \textrm{in }M\end{align*}$$is that $h_0\in C^1(M)$ touches the Yamabe potential somewhere when $n\geq 4$ (the condition is different for $n=6$). In this paper, we prove that Druet’s condition is also sufficient provided we add its natural differentiable version. For $n\geq 6$, our arguments are local. For the low dimensions $n\in \{4,5\}$, our proof requires to introduce a suitable mass that is defined only where Druet’s condition holds. This mass carries global information both on $h_0$ and $(M,g)$.
Author Vétois, Jérôme
Robert, Frédéric
Author_xml – sequence: 1
  givenname: Frédéric
  surname: Robert
  fullname: Robert, Frédéric
– sequence: 2
  givenname: Jérôme
  surname: Vétois
  fullname: Vétois, Jérôme
BackLink https://hal.science/hal-02420321$$DView record in HAL
BookMark eNo9kE1PAjEQhhuDiYDe_AG9mrjSj2W79YYEhYSEA3huZrddqVnatbuL8d9bhHiadybPTCbPCA2cdwahe0qeKJF8Yg_BTYKDguXZFRrSLBcJYakYxEwET4Rk-Q0ate0nIYzQnA9R8VL7b-s-kr7BW1_3nfWuxZUPmDmdbII2Ac-D7WwJNV7UtW1ixIuvHv7IZ7zbG7w6NFB22Fe4i902ohC3-nCErg_mFl1XULfm7lLH6P11sZsvk_XmbTWfrZOSZbJL4m80hbLUAJSKqWZTKYlgciqYyQuioeS80lLSPJOVzojUFc_SgmUCIGc65WP0cL67h1o1wR4g_CgPVi1na3WaRRWMcEaPLLKPZ7YMvm2Dqf4XKFEnl-rkUl1c8l8BeGpy
CitedBy_id crossref_primary_10_2140_pjm_2022_316_249
Cites_doi 10.1155/S1073792804133278
10.4171/134
10.1090/S0273-0979-1987-15514-5
10.1007/978-3-0348-0373-1_6
10.1007/s00208-013-0971-9
10.4310/jdg/1090426771
10.4310/jdg/1231856261
10.1007/s00526-018-1433-8
10.1007/s11854-019-0008-8
10.1080/03605302.2012.745552
10.1007/s11118-016-9608-4
10.1007/s00526-014-0802-1
10.1016/j.jde.2011.09.032
10.1142/S021919979900002X
10.4310/jdg/1406552253
10.21711/217504322010/em191
10.1090/S0002-9947-04-03681-5
10.1090/S0894-0347-07-00575-9
10.4310/MRL.2012.v19.n4.a18
10.4310/jdg/1228400630
10.4310/jdg/1143651772
10.1016/j.jfa.2006.11.010
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1093/imrn/rnab286
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1687-0247
EndPage 931
ExternalDocumentID oai_HAL_hal_02420321v2
10_1093_imrn_rnab286
GroupedDBID -E4
.2P
.I3
0R~
4.4
48X
5GY
5VS
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAYXX
ABDBF
ABDTM
ABEJV
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H5~
HAR
HW0
HZ~
IOX
J21
JAVBF
KAQDR
KOP
KSI
KSN
M-Z
M49
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
OXVGQ
P2P
PAFKI
PEELM
Q1.
Q5Y
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCN
TJP
X7H
YAYTL
YKOAZ
YXANX
~91
1TH
1XC
6.Y
AAJQQ
AAUQX
AAWDT
ABQTQ
ABSAR
ABSMQ
ACFRR
ACMRT
ACPQN
ACZBC
AEKPW
AFSHK
AFYAG
AGKRT
AGMDO
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
AVWKF
AZFZN
CXTWN
DFGAJ
EJD
ELUNK
FEDTE
H13
HVGLF
KBUDW
MBTAY
NVLIB
O0~
O~Y
PB-
QBD
VOOES
ID FETCH-LOGICAL-c269t-92814accdaa1175d25990729572e8b0dac33fd991869fd609df364b267aa82d43
ISSN 1073-7928
IngestDate Tue Oct 15 15:43:39 EDT 2024
Thu Nov 21 21:32:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-92814accdaa1175d25990729572e8b0dac33fd991869fd609df364b267aa82d43
ORCID 0000-0001-5610-6988
OpenAccessLink https://hal.science/hal-02420321
PageCount 31
ParticipantIDs hal_primary_oai_HAL_hal_02420321v2
crossref_primary_10_1093_imrn_rnab286
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationTitle International mathematics research notices
PublicationYear 2023
Publisher Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press (OUP)
References Schoen (2023012014102883600_ref27) 1988
Marques (2023012014102883600_ref18) 2005; 71
Brendle (2023012014102883600_ref2) 2009; 81
Druet (2023012014102883600_ref8) 2005; 357
Premoselli (2023012014102883600_ref20) 2018; 57
Chen (2023012014102883600_ref3) 2012; 252
Druet (2023012014102883600_ref6) 2004; 23
Li (2023012014102883600_ref17) 1999; 1
Robert (2023012014102883600_ref23) 2013
Druet (2023012014102883600_ref5) 2003; 63
Robert (2023012014102883600_ref26) 2019
Lee (2023012014102883600_ref14) 1987; 17
Khuri (2023012014102883600_ref13) 2009; 81
Druet (2023012014102883600_ref9) 2004
Hebey (2023012014102883600_ref11) 2014
Vétois (2023012014102883600_ref29) 2019; 1
Pistoia (2023012014102883600_ref21) 2019
Robert (2023012014102883600_ref24) 2014; 98
Brendle (2023012014102883600_ref1) 2008; 21
Schoen (2023012014102883600_ref28) 1991
Morabito (2023012014102883600_ref19) 2017; 47
Druet (2023012014102883600_ref7) 2010
Esposito (2023012014102883600_ref10) 2014; 358
Robert (2023012014102883600_ref25) 2015; 54
Robert (2023012014102883600_ref22) 2013; 38
del Pino (2023012014102883600_ref4) 2019; 137
Li (2023012014102883600_ref15) 2005; 24
Hebey (2023012014102883600_ref12) 2012; 19
Li (2023012014102883600_ref16) 2007; 245
References_xml – volume: 23
  start-page: 1143
  year: 2004
  ident: 2023012014102883600_ref6
  article-title: Compactness for Yamabe metrics in low dimensions
  publication-title: Internat. Math. Res. Notices
  doi: 10.1155/S1073792804133278
  contributor:
    fullname: Druet
– start-page: 311
  volume-title: Differential Geometry
  year: 1991
  ident: 2023012014102883600_ref28
  article-title: On the Number of Constant Scalar Curvature Metrics in a Conformal Class
  contributor:
    fullname: Schoen
– volume-title: Compactness and Stability for Nonlinear Elliptic Equations
  year: 2014
  ident: 2023012014102883600_ref11
  doi: 10.4171/134
  contributor:
    fullname: Hebey
– volume: 17
  start-page: 37
  issue: 1
  year: 1987
  ident: 2023012014102883600_ref14
  article-title: The Yamabe problem
  publication-title: Bull. Amer. Math. Soc. (N.S.)
  doi: 10.1090/S0273-0979-1987-15514-5
  contributor:
    fullname: Lee
– start-page: 85
  volume-title: Concentration Analysis and Applications to PDE (ICTS Workshop, Bangalore, 2012)
  year: 2013
  ident: 2023012014102883600_ref23
  article-title: A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations via Lyapunov-Schmidt’s Reduction
  doi: 10.1007/978-3-0348-0373-1_6
  contributor:
    fullname: Robert
– volume: 358
  start-page: 511
  issue: 1–2
  year: 2014
  ident: 2023012014102883600_ref10
  article-title: The effect of linear perturbations on the Yamabe problem
  publication-title: Math. Ann.
  doi: 10.1007/s00208-013-0971-9
  contributor:
    fullname: Esposito
– year: 1988
  ident: 2023012014102883600_ref27
  article-title: Notes from Graduate Lectures in Stanford University
  contributor:
    fullname: Schoen
– volume: 63
  start-page: 399
  issue: 3
  year: 2003
  ident: 2023012014102883600_ref5
  article-title: From one bubble to several bubbles: the low-dimensional case
  publication-title: J. Differential Geom.
  doi: 10.4310/jdg/1090426771
  contributor:
    fullname: Druet
– volume: 81
  start-page: 225
  issue: 2
  year: 2009
  ident: 2023012014102883600_ref2
  article-title: Blow-up phenomena for the Yamabe equation. II
  publication-title: J. Differential Geom.
  doi: 10.4310/jdg/1231856261
  contributor:
    fullname: Brendle
– volume-title: Blow-up Theory for Elliptic PDEs in Riemannian Geometry
  year: 2004
  ident: 2023012014102883600_ref9
  article-title: Mathematical Notes
  contributor:
    fullname: Druet
– volume: 57
  start-page: 57
  issue: 6
  year: 2018
  ident: 2023012014102883600_ref20
  article-title: Bubbling above the threshold of the scalar curvature in dimensions four and five
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-018-1433-8
  contributor:
    fullname: Premoselli
– volume: 137
  start-page: 813
  issue: 2
  year: 2019
  ident: 2023012014102883600_ref4
  article-title: Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3
  publication-title: JAMA
  doi: 10.1007/s11854-019-0008-8
  contributor:
    fullname: del Pino
– volume: 38
  start-page: 1437
  issue: 8
  year: 2013
  ident: 2023012014102883600_ref22
  article-title: Sign-changing blow-up for scalar curvature type equations
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2012.745552
  contributor:
    fullname: Robert
– start-page: 311
  volume-title: Partial Differential Equations Arising from Physics and Geometry
  year: 2019
  ident: 2023012014102883600_ref21
  article-title: Clustering Phenomena for Linear Perturbation of the Yamabe Equation
  contributor:
    fullname: Pistoia
– volume: 1
  start-page: 715
  year: 2019
  ident: 2023012014102883600_ref29
  article-title: Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
  publication-title: Adv. Nonlinear Anal.
  contributor:
    fullname: Vétois
– volume: 47
  start-page: 53
  issue: 1
  year: 2017
  ident: 2023012014102883600_ref19
  article-title: Towering phenomena for the Yamabe equation on symmetric manifolds
  publication-title: Potential Anal.
  doi: 10.1007/s11118-016-9608-4
  contributor:
    fullname: Morabito
– volume: 54
  start-page: 693
  issue: 1
  year: 2015
  ident: 2023012014102883600_ref25
  article-title: Sign-changing solutions to elliptic second order equations: glueing a peak to a degenerate critical manifold
  publication-title: Calc. Var.
  doi: 10.1007/s00526-014-0802-1
  contributor:
    fullname: Robert
– volume: 252
  start-page: 2425
  issue: 3
  year: 2012
  ident: 2023012014102883600_ref3
  article-title: Infinitely many solutions for the Schrödinger equations in ${\mathbb {R}}^n$ with critical growth
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.09.032
  contributor:
    fullname: Chen
– volume: 1
  start-page: 1
  issue: 1
  year: 1999
  ident: 2023012014102883600_ref17
  article-title: Yamabe type equations on three-dimensional Riemannian manifolds
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S021919979900002X
  contributor:
    fullname: Li
– volume: 98
  start-page: 349
  issue: 2
  year: 2014
  ident: 2023012014102883600_ref24
  article-title: Examples of non-isolated blow-up for perturbations of the scalar curvature equation
  publication-title: J. Differential Geom.
  doi: 10.4310/jdg/1406552253
  contributor:
    fullname: Robert
– volume-title: La Notion de Stabilité pour des Équations aux Dérivées Partielles Elliptiques
  year: 2010
  ident: 2023012014102883600_ref7
  doi: 10.21711/217504322010/em191
  contributor:
    fullname: Druet
– volume: 24
  start-page: 185
  issue: 2
  year: 2005
  ident: 2023012014102883600_ref15
  publication-title: Compactness of solutions to the Yamabe problem. II.
  contributor:
    fullname: Li
– volume: 357
  start-page: 1915
  issue: 5
  year: 2005
  ident: 2023012014102883600_ref8
  article-title: Blow-up examples for second order elliptic PDEs of critical Sobolev growth
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-04-03681-5
  contributor:
    fullname: Druet
– volume: 21
  start-page: 951
  issue: 4
  year: 2008
  ident: 2023012014102883600_ref1
  article-title: Blow-up phenomena for the Yamabe equation
  publication-title: J. Amer. Math. Soc.
  doi: 10.1090/S0894-0347-07-00575-9
  contributor:
    fullname: Brendle
– volume: 19
  start-page: 953
  issue: 4
  year: 2012
  ident: 2023012014102883600_ref12
  article-title: Resonant states for the static Klein-Gordon-Maxwell-Proca system
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.2012.v19.n4.a18
  contributor:
    fullname: Hebey
– volume: 81
  start-page: 143
  year: 2009
  ident: 2023012014102883600_ref13
  article-title: A compactness theorem for the Yamabe problem
  publication-title: J. Differential Geom.
  doi: 10.4310/jdg/1228400630
  contributor:
    fullname: Khuri
– start-page: 693
  year: 2019
  ident: 2023012014102883600_ref26
  article-title: Blowing-up solutions for second-order critical elliptic equations: the impact of the scalar curvature, extended
  contributor:
    fullname: Robert
– volume: 71
  start-page: 315
  issue: 2
  year: 2005
  ident: 2023012014102883600_ref18
  article-title: A priori estimates for the Yamabe problem in the non-locally conformally flat case
  publication-title: J. Differential Geom.
  doi: 10.4310/jdg/1143651772
  contributor:
    fullname: Marques
– volume: 245
  start-page: 438
  issue: 2
  year: 2007
  ident: 2023012014102883600_ref16
  article-title: Compactness of solutions to the Yamabe problem. III
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2006.11.010
  contributor:
    fullname: Li
SSID ssj0020183
Score 2.3751423
Snippet Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to...
Given a closed manifold $(M^n,g)$, $n\geq 3$, Olivier Druet proved that a necessary condition for the existence of energy-bounded blowing-up solutions to...
SourceID hal
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 901
SubjectTerms Analysis of PDEs
Mathematics
Title Blowing-up Solutions for 2nd-Order Critical Elliptic Equations: The Impact of the Scalar Curvature
URI https://hal.science/hal-02420321
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcKvGwP0z419iULbU_IwnHSJN5bO1qVjSEkoOItcuxYII2mo-327-8uthMqdRI88JI0rps6vp_Od-e7Xwj5LLmN-7kGtyTlmiXaWJZrWTKT2L6VwsZJifGOyVl2cpkfjpJRrxdeTNK1PaqkoQ1kjZWzD5B2e1NogM8gcziC1OF4L7kPf9V_YTliq_l--0dNLuECXV_DGq7NfR3ecIB8nHMkba1-O9LvRcj06Oon8WoBnRX8boUxXM9CEoza9ajiTUsEizsSPqoyqzHJrsurb_K5neHstuqNO91e69Bn6lqWtWNB-O474GmYeIoFH64QmKzF7ijF_5RBNtyqF6ch-uF0MWgflklfO165thR0IpgV2Ubt75ixrm8wDXoMz12KTTTbk8FZcXo4Lo6PTn6sf9vybU8Gx8UViB4NGB6L6A8s8jsCVBlo0p3B8HI6bZ16HuWuiMMP1hdXwFAOcCAHfhhrZs_WVYjaN1bM-XPyzLsfdOBw84L0qtlL8vRnJ7JXpOoQRFsEUZhPehdBNCCIBgTRFkFfKdyOOvzQ2jZXDj-0xc9rcjEenX-bMP8yDqZFKpcMHi1KlNZGKWR3NeA2S2Sd72eiyktulI5ja8DbyFNpTcqlsXGalCLNlMqFSeI3ZHtWz6q3hGrOtZKZ6XOrkkjCMpdrhdvHucq0qKJd8iXMVTF3nCuFy5WIC5zTws_pLtlDIYUumwX37j6d3pMnHVY_kO3l7ar6SLYWZvXJy_sf_hiEnA
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blowing-up+solutions+for+second-order+critical+elliptic+equations%3A+the+impact+of+the+scalar+curvature&rft.jtitle=International+mathematics+research+notices&rft.au=Robert%2C+Fr%C3%A9d%C3%A9ric&rft.au=V%C3%A9tois%2C+J%C3%A9r%C3%B4me&rft.date=2023-01-19&rft.pub=Oxford+University+Press+%28OUP%29&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093%2Fimrn%2Frnab286&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02420321v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-7928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-7928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-7928&client=summon