Blowing-up Solutions for 2nd-Order Critical Elliptic Equations: The Impact of the Scalar Curvature
Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \textrm{in }M\end{align*}$$is that $h_0\in C^1(M...
Saved in:
Published in: | International mathematics research notices Vol. 2023; no. 2; pp. 901 - 931 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford University Press (OUP)
19-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \textrm{in }M\end{align*}$$is that $h_0\in C^1(M)$ touches the Yamabe potential somewhere when $n\geq 4$ (the condition is different for $n=6$). In this paper, we prove that Druet’s condition is also sufficient provided we add its natural differentiable version. For $n\geq 6$, our arguments are local. For the low dimensions $n\in \{4,5\}$, our proof requires to introduce a suitable mass that is defined only where Druet’s condition holds. This mass carries global information both on $h_0$ and $(M,g)$. |
---|---|
AbstractList | Given a closed manifold $(M^n,g)$, $n\geq 3$, Olivier Druet proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation$$\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0\hbox{ in }M$$is that $h_0\in C^1(M)$ touches the Scalar curvature somewhere when $n\geq 4$ (the condition is different for $n=6$). In this paper, we prove that Druet's condition is also sufficient provided we add its natural differentiable version. For $n\geq 6$, our arguments are local. For the low dimensions $n\in\{4,5\}$, our proof requires the introduction of a suitable mass that is defined only where Druet's condition holds. This mass carries global information both on $h_0$ and $(M,g)$. Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \textrm{in }M\end{align*}$$is that $h_0\in C^1(M)$ touches the Yamabe potential somewhere when $n\geq 4$ (the condition is different for $n=6$). In this paper, we prove that Druet’s condition is also sufficient provided we add its natural differentiable version. For $n\geq 6$, our arguments are local. For the low dimensions $n\in \{4,5\}$, our proof requires to introduce a suitable mass that is defined only where Druet’s condition holds. This mass carries global information both on $h_0$ and $(M,g)$. |
Author | Vétois, Jérôme Robert, Frédéric |
Author_xml | – sequence: 1 givenname: Frédéric surname: Robert fullname: Robert, Frédéric – sequence: 2 givenname: Jérôme surname: Vétois fullname: Vétois, Jérôme |
BackLink | https://hal.science/hal-02420321$$DView record in HAL |
BookMark | eNo9kE1PAjEQhhuDiYDe_AG9mrjSj2W79YYEhYSEA3huZrddqVnatbuL8d9bhHiadybPTCbPCA2cdwahe0qeKJF8Yg_BTYKDguXZFRrSLBcJYakYxEwET4Rk-Q0ate0nIYzQnA9R8VL7b-s-kr7BW1_3nfWuxZUPmDmdbII2Ac-D7WwJNV7UtW1ixIuvHv7IZ7zbG7w6NFB22Fe4i902ohC3-nCErg_mFl1XULfm7lLH6P11sZsvk_XmbTWfrZOSZbJL4m80hbLUAJSKqWZTKYlgciqYyQuioeS80lLSPJOVzojUFc_SgmUCIGc65WP0cL67h1o1wR4g_CgPVi1na3WaRRWMcEaPLLKPZ7YMvm2Dqf4XKFEnl-rkUl1c8l8BeGpy |
CitedBy_id | crossref_primary_10_2140_pjm_2022_316_249 |
Cites_doi | 10.1155/S1073792804133278 10.4171/134 10.1090/S0273-0979-1987-15514-5 10.1007/978-3-0348-0373-1_6 10.1007/s00208-013-0971-9 10.4310/jdg/1090426771 10.4310/jdg/1231856261 10.1007/s00526-018-1433-8 10.1007/s11854-019-0008-8 10.1080/03605302.2012.745552 10.1007/s11118-016-9608-4 10.1007/s00526-014-0802-1 10.1016/j.jde.2011.09.032 10.1142/S021919979900002X 10.4310/jdg/1406552253 10.21711/217504322010/em191 10.1090/S0002-9947-04-03681-5 10.1090/S0894-0347-07-00575-9 10.4310/MRL.2012.v19.n4.a18 10.4310/jdg/1228400630 10.4310/jdg/1143651772 10.1016/j.jfa.2006.11.010 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1093/imrn/rnab286 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1687-0247 |
EndPage | 931 |
ExternalDocumentID | oai_HAL_hal_02420321v2 10_1093_imrn_rnab286 |
GroupedDBID | -E4 .2P .I3 0R~ 4.4 48X 5GY 5VS 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAYXX ABDBF ABDTM ABEJV ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ ESX F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H5~ HAR HW0 HZ~ IOX J21 JAVBF KAQDR KOP KSI KSN M-Z M49 N9A NGC NMDNZ NOMLY NU- O9- OCL ODMLO OJQWA OJZSN OWPYF OXVGQ P2P PAFKI PEELM Q1. Q5Y RD5 ROL ROX ROZ RUSNO RW1 RXO TCN TJP X7H YAYTL YKOAZ YXANX ~91 1TH 1XC 6.Y AAJQQ AAUQX AAWDT ABQTQ ABSAR ABSMQ ACFRR ACMRT ACPQN ACZBC AEKPW AFSHK AFYAG AGKRT AGMDO ANFBD APJGH AQDSO ASAOO ASPBG ATDFG AVWKF AZFZN CXTWN DFGAJ EJD ELUNK FEDTE H13 HVGLF KBUDW MBTAY NVLIB O0~ O~Y PB- QBD VOOES |
ID | FETCH-LOGICAL-c269t-92814accdaa1175d25990729572e8b0dac33fd991869fd609df364b267aa82d43 |
ISSN | 1073-7928 |
IngestDate | Tue Oct 15 15:43:39 EDT 2024 Thu Nov 21 21:32:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c269t-92814accdaa1175d25990729572e8b0dac33fd991869fd609df364b267aa82d43 |
ORCID | 0000-0001-5610-6988 |
OpenAccessLink | https://hal.science/hal-02420321 |
PageCount | 31 |
ParticipantIDs | hal_primary_oai_HAL_hal_02420321v2 crossref_primary_10_1093_imrn_rnab286 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-19 |
PublicationDateYYYYMMDD | 2023-01-19 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | International mathematics research notices |
PublicationYear | 2023 |
Publisher | Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press (OUP) |
References | Schoen (2023012014102883600_ref27) 1988 Marques (2023012014102883600_ref18) 2005; 71 Brendle (2023012014102883600_ref2) 2009; 81 Druet (2023012014102883600_ref8) 2005; 357 Premoselli (2023012014102883600_ref20) 2018; 57 Chen (2023012014102883600_ref3) 2012; 252 Druet (2023012014102883600_ref6) 2004; 23 Li (2023012014102883600_ref17) 1999; 1 Robert (2023012014102883600_ref23) 2013 Druet (2023012014102883600_ref5) 2003; 63 Robert (2023012014102883600_ref26) 2019 Lee (2023012014102883600_ref14) 1987; 17 Khuri (2023012014102883600_ref13) 2009; 81 Druet (2023012014102883600_ref9) 2004 Hebey (2023012014102883600_ref11) 2014 Vétois (2023012014102883600_ref29) 2019; 1 Pistoia (2023012014102883600_ref21) 2019 Robert (2023012014102883600_ref24) 2014; 98 Brendle (2023012014102883600_ref1) 2008; 21 Schoen (2023012014102883600_ref28) 1991 Morabito (2023012014102883600_ref19) 2017; 47 Druet (2023012014102883600_ref7) 2010 Esposito (2023012014102883600_ref10) 2014; 358 Robert (2023012014102883600_ref25) 2015; 54 Robert (2023012014102883600_ref22) 2013; 38 del Pino (2023012014102883600_ref4) 2019; 137 Li (2023012014102883600_ref15) 2005; 24 Hebey (2023012014102883600_ref12) 2012; 19 Li (2023012014102883600_ref16) 2007; 245 |
References_xml | – volume: 23 start-page: 1143 year: 2004 ident: 2023012014102883600_ref6 article-title: Compactness for Yamabe metrics in low dimensions publication-title: Internat. Math. Res. Notices doi: 10.1155/S1073792804133278 contributor: fullname: Druet – start-page: 311 volume-title: Differential Geometry year: 1991 ident: 2023012014102883600_ref28 article-title: On the Number of Constant Scalar Curvature Metrics in a Conformal Class contributor: fullname: Schoen – volume-title: Compactness and Stability for Nonlinear Elliptic Equations year: 2014 ident: 2023012014102883600_ref11 doi: 10.4171/134 contributor: fullname: Hebey – volume: 17 start-page: 37 issue: 1 year: 1987 ident: 2023012014102883600_ref14 article-title: The Yamabe problem publication-title: Bull. Amer. Math. Soc. (N.S.) doi: 10.1090/S0273-0979-1987-15514-5 contributor: fullname: Lee – start-page: 85 volume-title: Concentration Analysis and Applications to PDE (ICTS Workshop, Bangalore, 2012) year: 2013 ident: 2023012014102883600_ref23 article-title: A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations via Lyapunov-Schmidt’s Reduction doi: 10.1007/978-3-0348-0373-1_6 contributor: fullname: Robert – volume: 358 start-page: 511 issue: 1–2 year: 2014 ident: 2023012014102883600_ref10 article-title: The effect of linear perturbations on the Yamabe problem publication-title: Math. Ann. doi: 10.1007/s00208-013-0971-9 contributor: fullname: Esposito – year: 1988 ident: 2023012014102883600_ref27 article-title: Notes from Graduate Lectures in Stanford University contributor: fullname: Schoen – volume: 63 start-page: 399 issue: 3 year: 2003 ident: 2023012014102883600_ref5 article-title: From one bubble to several bubbles: the low-dimensional case publication-title: J. Differential Geom. doi: 10.4310/jdg/1090426771 contributor: fullname: Druet – volume: 81 start-page: 225 issue: 2 year: 2009 ident: 2023012014102883600_ref2 article-title: Blow-up phenomena for the Yamabe equation. II publication-title: J. Differential Geom. doi: 10.4310/jdg/1231856261 contributor: fullname: Brendle – volume-title: Blow-up Theory for Elliptic PDEs in Riemannian Geometry year: 2004 ident: 2023012014102883600_ref9 article-title: Mathematical Notes contributor: fullname: Druet – volume: 57 start-page: 57 issue: 6 year: 2018 ident: 2023012014102883600_ref20 article-title: Bubbling above the threshold of the scalar curvature in dimensions four and five publication-title: Calc. Var. Partial Differential Equations doi: 10.1007/s00526-018-1433-8 contributor: fullname: Premoselli – volume: 137 start-page: 813 issue: 2 year: 2019 ident: 2023012014102883600_ref4 article-title: Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3 publication-title: JAMA doi: 10.1007/s11854-019-0008-8 contributor: fullname: del Pino – volume: 38 start-page: 1437 issue: 8 year: 2013 ident: 2023012014102883600_ref22 article-title: Sign-changing blow-up for scalar curvature type equations publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2012.745552 contributor: fullname: Robert – start-page: 311 volume-title: Partial Differential Equations Arising from Physics and Geometry year: 2019 ident: 2023012014102883600_ref21 article-title: Clustering Phenomena for Linear Perturbation of the Yamabe Equation contributor: fullname: Pistoia – volume: 1 start-page: 715 year: 2019 ident: 2023012014102883600_ref29 article-title: Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four publication-title: Adv. Nonlinear Anal. contributor: fullname: Vétois – volume: 47 start-page: 53 issue: 1 year: 2017 ident: 2023012014102883600_ref19 article-title: Towering phenomena for the Yamabe equation on symmetric manifolds publication-title: Potential Anal. doi: 10.1007/s11118-016-9608-4 contributor: fullname: Morabito – volume: 54 start-page: 693 issue: 1 year: 2015 ident: 2023012014102883600_ref25 article-title: Sign-changing solutions to elliptic second order equations: glueing a peak to a degenerate critical manifold publication-title: Calc. Var. doi: 10.1007/s00526-014-0802-1 contributor: fullname: Robert – volume: 252 start-page: 2425 issue: 3 year: 2012 ident: 2023012014102883600_ref3 article-title: Infinitely many solutions for the Schrödinger equations in ${\mathbb {R}}^n$ with critical growth publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.09.032 contributor: fullname: Chen – volume: 1 start-page: 1 issue: 1 year: 1999 ident: 2023012014102883600_ref17 article-title: Yamabe type equations on three-dimensional Riemannian manifolds publication-title: Commun. Contemp. Math. doi: 10.1142/S021919979900002X contributor: fullname: Li – volume: 98 start-page: 349 issue: 2 year: 2014 ident: 2023012014102883600_ref24 article-title: Examples of non-isolated blow-up for perturbations of the scalar curvature equation publication-title: J. Differential Geom. doi: 10.4310/jdg/1406552253 contributor: fullname: Robert – volume-title: La Notion de Stabilité pour des Équations aux Dérivées Partielles Elliptiques year: 2010 ident: 2023012014102883600_ref7 doi: 10.21711/217504322010/em191 contributor: fullname: Druet – volume: 24 start-page: 185 issue: 2 year: 2005 ident: 2023012014102883600_ref15 publication-title: Compactness of solutions to the Yamabe problem. II. contributor: fullname: Li – volume: 357 start-page: 1915 issue: 5 year: 2005 ident: 2023012014102883600_ref8 article-title: Blow-up examples for second order elliptic PDEs of critical Sobolev growth publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-04-03681-5 contributor: fullname: Druet – volume: 21 start-page: 951 issue: 4 year: 2008 ident: 2023012014102883600_ref1 article-title: Blow-up phenomena for the Yamabe equation publication-title: J. Amer. Math. Soc. doi: 10.1090/S0894-0347-07-00575-9 contributor: fullname: Brendle – volume: 19 start-page: 953 issue: 4 year: 2012 ident: 2023012014102883600_ref12 article-title: Resonant states for the static Klein-Gordon-Maxwell-Proca system publication-title: Math. Res. Lett. doi: 10.4310/MRL.2012.v19.n4.a18 contributor: fullname: Hebey – volume: 81 start-page: 143 year: 2009 ident: 2023012014102883600_ref13 article-title: A compactness theorem for the Yamabe problem publication-title: J. Differential Geom. doi: 10.4310/jdg/1228400630 contributor: fullname: Khuri – start-page: 693 year: 2019 ident: 2023012014102883600_ref26 article-title: Blowing-up solutions for second-order critical elliptic equations: the impact of the scalar curvature, extended contributor: fullname: Robert – volume: 71 start-page: 315 issue: 2 year: 2005 ident: 2023012014102883600_ref18 article-title: A priori estimates for the Yamabe problem in the non-locally conformally flat case publication-title: J. Differential Geom. doi: 10.4310/jdg/1143651772 contributor: fullname: Marques – volume: 245 start-page: 438 issue: 2 year: 2007 ident: 2023012014102883600_ref16 article-title: Compactness of solutions to the Yamabe problem. III publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2006.11.010 contributor: fullname: Li |
SSID | ssj0020183 |
Score | 2.3751423 |
Snippet | Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to... Given a closed manifold $(M^n,g)$, $n\geq 3$, Olivier Druet proved that a necessary condition for the existence of energy-bounded blowing-up solutions to... |
SourceID | hal crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 901 |
SubjectTerms | Analysis of PDEs Mathematics |
Title | Blowing-up Solutions for 2nd-Order Critical Elliptic Equations: The Impact of the Scalar Curvature |
URI | https://hal.science/hal-02420321 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcKvGwP0z419iULbU_IwnHSJN5bO1qVjSEkoOItcuxYII2mo-327-8uthMqdRI88JI0rps6vp_Od-e7Xwj5LLmN-7kGtyTlmiXaWJZrWTKT2L6VwsZJifGOyVl2cpkfjpJRrxdeTNK1PaqkoQ1kjZWzD5B2e1NogM8gcziC1OF4L7kPf9V_YTliq_l--0dNLuECXV_DGq7NfR3ecIB8nHMkba1-O9LvRcj06Oon8WoBnRX8boUxXM9CEoza9ajiTUsEizsSPqoyqzHJrsurb_K5neHstuqNO91e69Bn6lqWtWNB-O474GmYeIoFH64QmKzF7ijF_5RBNtyqF6ch-uF0MWgflklfO165thR0IpgV2Ubt75ixrm8wDXoMz12KTTTbk8FZcXo4Lo6PTn6sf9vybU8Gx8UViB4NGB6L6A8s8jsCVBlo0p3B8HI6bZ16HuWuiMMP1hdXwFAOcCAHfhhrZs_WVYjaN1bM-XPyzLsfdOBw84L0qtlL8vRnJ7JXpOoQRFsEUZhPehdBNCCIBgTRFkFfKdyOOvzQ2jZXDj-0xc9rcjEenX-bMP8yDqZFKpcMHi1KlNZGKWR3NeA2S2Sd72eiyktulI5ja8DbyFNpTcqlsXGalCLNlMqFSeI3ZHtWz6q3hGrOtZKZ6XOrkkjCMpdrhdvHucq0qKJd8iXMVTF3nCuFy5WIC5zTws_pLtlDIYUumwX37j6d3pMnHVY_kO3l7ar6SLYWZvXJy_sf_hiEnA |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blowing-up+solutions+for+second-order+critical+elliptic+equations%3A+the+impact+of+the+scalar+curvature&rft.jtitle=International+mathematics+research+notices&rft.au=Robert%2C+Fr%C3%A9d%C3%A9ric&rft.au=V%C3%A9tois%2C+J%C3%A9r%C3%B4me&rft.date=2023-01-19&rft.pub=Oxford+University+Press+%28OUP%29&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093%2Fimrn%2Frnab286&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02420321v2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-7928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-7928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-7928&client=summon |