MANIFOLD MATCHING COMPLEXES

The matching complex of a graph is the simplicial complex whose vertex set is the set of edges of the graph with a face for each independent set of edges. In this paper, we completely characterize the pairs (graph, matching complex) for which the matching complex is a homology manifold, with or with...

Full description

Saved in:
Bibliographic Details
Published in:Mathematika Vol. 66; no. 4; pp. 973 - 1002
Main Authors: Bayer, Margaret, Goeckner, Bennet, Jelić Milutinović, Marija
Format: Journal Article
Language:English
Published: 01-10-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The matching complex of a graph is the simplicial complex whose vertex set is the set of edges of the graph with a face for each independent set of edges. In this paper, we completely characterize the pairs (graph, matching complex) for which the matching complex is a homology manifold, with or without boundary. Except in dimension two, all of these manifolds are spheres or balls.
AbstractList The matching complex of a graph is the simplicial complex whose vertex set is the set of edges of the graph with a face for each independent set of edges. In this paper, we completely characterize the pairs (graph, matching complex) for which the matching complex is a homology manifold, with or without boundary. Except in dimension two, all of these manifolds are spheres or balls.
Author Bayer, Margaret
Goeckner, Bennet
Jelić Milutinović, Marija
Author_xml – sequence: 1
  givenname: Margaret
  surname: Bayer
  fullname: Bayer, Margaret
  email: bayer@ku.edu
  organization: University of Kansas
– sequence: 2
  givenname: Bennet
  surname: Goeckner
  fullname: Goeckner, Bennet
  email: goeckner@uw.edu
  organization: University of Washington
– sequence: 3
  givenname: Marija
  surname: Jelić Milutinović
  fullname: Jelić Milutinović, Marija
  email: marijaj@matf.bg.ac.rs
  organization: University of Belgrade
BookMark eNp1j89LwzAYhoNMsJsePHvZ1UO2L0mTNMdSu1nWroITvIW0SWG6H9IIY_-90Xrd6eV7eb4XnjEaHY4Hh9A9gRkhhM73358zQiFWVygKQbBUMR2hCIByzKViN2js_QcAF0lMIvRQpetiUZdP0yrdZM_FejnN6uqlzN_z11t03Zmdd3f_OUFvizxAuKyXRZaWuKVCKWwdtKLlhnGZUG5NTJiwprFNIq0MpwltQqFhQgjJTNMZyh0DFtOAOcPZBD0Ou21_9L53nf7qt3vTnzUB_Wulg5X-swrsfGBP2507XwZ1tVkNHz8B2kwy
CitedBy_id crossref_primary_10_1007_s10801_022_01205_3
crossref_primary_10_1090_bproc_115
crossref_primary_10_1142_S0219498823501463
crossref_primary_10_1016_j_disc_2023_113428
crossref_primary_10_1007_s00026_022_00605_3
crossref_primary_10_1016_j_topol_2023_108541
Cites_doi 10.1090/S0002-9947-1964-0158382-7
10.1007/BF02772986
10.1007/978-1-4613-0019-9
10.1007/s11856-008-0024-3
10.1016/j.aim.2006.10.014
10.1007/s00012-003-1825-1
10.1007/978-3-540-75859-4
10.37236/8480
10.1112/jlms/49.1.25
10.37236/825
10.1007/s00454-003-2869-x
10.1007/978-3-319-24298-9_26
10.37236/6212
10.1006/jcta.1999.2984
ContentType Journal Article
Copyright 2020 The Authors. The publishing rights for this article are licensed to University College London under an exclusive licence.
Copyright_xml – notice: 2020 The Authors. The publishing rights for this article are licensed to University College London under an exclusive licence.
DBID AAYXX
CITATION
DOI 10.1112/mtk.12049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2041-7942
EndPage 1002
ExternalDocumentID 10_1112_mtk_12049
MTK12049
Genre article
GrantInformation_xml – fundername: Simons Foundation
  funderid: #316262; #426971
– fundername: NSF
  funderid: 1603823; 1604773; 1604458
– fundername: Ministry of Education, Science and Technological Development
  funderid: #174034
– fundername: NSA
  funderid: H98230‐18‐1‐0017
GroupedDBID --Z
-1D
-1F
-2P
-2V
-DZ
-E.
-~X
.FH
0E1
0R~
1OB
1OC
33P
5VS
74X
74Y
7~V
AAAZR
AABES
AABWE
AACJH
AAGFV
AAHHS
AAKTX
AANLZ
AARAB
AAUKB
ABBXD
ABCUV
ABEFU
ABJNI
ABKKG
ABMWE
ABQTM
ABROB
ABTAH
ABZCX
ABZUI
ACBMC
ACCFJ
ACCZN
ACETC
ACGFS
ACIMK
ACPOU
ACQPF
ACUIJ
ACXQS
ACZBM
ACZUX
ADCGK
ADFEC
ADKYN
ADOVT
ADZMN
AEBAK
AEEZP
AEHGV
AEIGN
AEMTW
AENEX
AENGE
AEQDE
AETEA
AEUYR
AEYYC
AFFPM
AFFUJ
AFKQG
AFLOS
AFLVW
AFUTZ
AGLWM
AHBTC
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AITYG
AIWBW
AJBDE
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPG
ALWZO
AMYDB
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BESQT
BFHJK
BGHMG
BJBOZ
BMAJL
BQFHP
C0O
CBIIA
CFAFE
DC4
DCZOG
EBS
EJD
FSPIC
HF~
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L98
LATKE
LEEKS
LHUNA
M-V
M7~
M8.
MEWTI
N9A
NIKVX
O9-
PYCCK
RAMDC
RCA
RJQFR
ROL
RR0
S6-
S6U
SAAAG
SAMSI
SUPJJ
T9M
TN5
UQL
UT1
VOH
WH7
WQ3
WXSBR
WXU
WXY
YNT
YQT
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c2699-de0c6c5a357825da4136dabdb87d7da4a825820b366673abfa25e303426daea53
IEDL.DBID 33P
ISSN 0025-5793
IngestDate Thu Nov 21 21:07:57 EST 2024
Sat Aug 24 01:04:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2699-de0c6c5a357825da4136dabdb87d7da4a825820b366673abfa25e303426daea53
Notes This work was done in part at the 2018 Graduate Research Workshop in Combinatorics. The workshop was partially funded by NSF grants 1603823, 1604773, and 1604458, “Collaborative Research: Rocky Mountain ‐ Great Plains Graduate Research Workshops in Combinatorics,” NSA grant H98230‐18‐1‐0017, “The 2018 and 2019 Rocky Mountain ‐ Great Plains Graduate Research Workshops in Combinatorics,” Simons Foundation Collaboration Grants #316262 and #426971, and grants from the Combinatorics Foundation and the Institute for Mathematics and its Applications. Margaret Bayer also received support from the University of Kansas General Research Fund. Bennet Goeckner also received support from an AMS‐Simons travel grant. Marija Jelić Milutinović also received support from Grant #174034 of the Ministry of Education, Science and Technological Development of Serbia.
PageCount 30
ParticipantIDs crossref_primary_10_1112_mtk_12049
wiley_primary_10_1112_mtk_12049_MTK12049
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Mathematika
PublicationYear 2020
References 2004; 31
2018; 8
2007; 212
2010; 46
2017; 24
2019; 26
2019
2008
1964; 111
2008; 15
2018
1999; 88
1996
2003; 49
1994; 49
2016
2003
2008; 164
1994; 87
e_1_2_9_11_1
Klee S. (e_1_2_9_13_1) 2016
e_1_2_9_21_1
e_1_2_9_12_1
Kwun K. W. (e_1_2_9_15_1) 1964; 111
e_1_2_9_8_1
Matsushita T. (e_1_2_9_17_1) 2019; 26
Jojić D. (e_1_2_9_10_1) 2018; 8
e_1_2_9_5_1
e_1_2_9_3_1
Braun B. (e_1_2_9_4_1) 2017; 24
Athanasiadis C. A. (e_1_2_9_2_1) 2004; 31
Frohmader A. (e_1_2_9_7_1) 2008; 164
Marietti M. (e_1_2_9_16_1) 2008; 15
Stanley R. P. (e_1_2_9_19_1) 1996
e_1_2_9_9_1
Frendrup A. (e_1_2_9_6_1) 2010; 46
Wachs M. L. (e_1_2_9_20_1) 2003; 49
Kozlov D. N. (e_1_2_9_14_1) 1999; 88
e_1_2_9_18_1
References_xml – volume: 49
  start-page: 25
  issue: 1
  year: 1994
  end-page: 39
  article-title: Chessboard complexes and matching complexes
  publication-title: J. Lond. Math. Soc. (2)
– volume: 87
  start-page: 97
  issue: 1–3
  year: 1994
  end-page: 110
  article-title: Shellability of chessboard complexes
  publication-title: Israel J. Math.
– volume: 111
  start-page: 108
  year: 1964
  end-page: 120
  article-title: Manifolds which are joins
  publication-title: Trans. Amer. Math. Soc.
– volume: 88
  start-page: 112
  issue: 1
  year: 1999
  end-page: 122
  article-title: Complexes of directed trees
  publication-title: J. Combin. Theory Ser. A
– volume: 24
  issue: 4
  year: 2017
  article-title: Matching and independence complexes related to small grids
  publication-title: Electron. J. Combin.
– volume: 8
  start-page: 413
  issue: 3
  year: 2018
  end-page: 421
  article-title: On the ‐vectors of chessboard complexes
  publication-title: Bull. Int. Math. Virtual Inst.
– year: 2008
– year: 2003
– volume: 31
  start-page: 395
  issue: 3
  year: 2004
  end-page: 403
  article-title: Decompositions and connectivity of matching and chessboard complexes
  publication-title: Discrete Comput. Geom.
– volume: 15
  issue: 1
  year: 2008
  article-title: A uniform approach to complexes arising from forests
  publication-title: Electron. J. Combin.
– year: 1996
– start-page: 653
  year: 2016
  end-page: 686
– volume: 49
  start-page: 345
  issue: 4
  year: 2003
  end-page: 385
  article-title: Topology of matching, chessboard, and general bounded degree graph complexes
  publication-title: Algebra Universalis
– volume: 212
  start-page: 525
  issue: 2
  year: 2007
  end-page: 570
  article-title: Torsion in the matching complex and chessboard complex
  publication-title: Adv. Math.
– year: 2018
– year: 2019
– volume: 46
  start-page: 185
  year: 2010
  end-page: 190
  article-title: A note on equimatchable graphs
  publication-title: Australas. J. Combin.
– volume: 164
  start-page: 153
  year: 2008
  end-page: 164
  article-title: Face vectors of flag complexes
  publication-title: Israel J. Math.
– volume: 26
  issue: 3
  year: 2019
  article-title: Matching complexes of small grids
  publication-title: Electron. J. Combin.
– volume: 111
  start-page: 108
  year: 1964
  ident: e_1_2_9_15_1
  article-title: Manifolds which are joins
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1964-0158382-7
  contributor:
    fullname: Kwun K. W.
– ident: e_1_2_9_21_1
  doi: 10.1007/BF02772986
– ident: e_1_2_9_5_1
– ident: e_1_2_9_8_1
  doi: 10.1007/978-1-4613-0019-9
– volume: 164
  start-page: 153
  year: 2008
  ident: e_1_2_9_7_1
  article-title: Face vectors of flag complexes
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-008-0024-3
  contributor:
    fullname: Frohmader A.
– ident: e_1_2_9_18_1
  doi: 10.1016/j.aim.2006.10.014
– volume: 49
  start-page: 345
  issue: 4
  year: 2003
  ident: e_1_2_9_20_1
  article-title: Topology of matching, chessboard, and general bounded degree graph complexes
  publication-title: Algebra Universalis
  doi: 10.1007/s00012-003-1825-1
  contributor:
    fullname: Wachs M. L.
– ident: e_1_2_9_11_1
  doi: 10.1007/978-3-540-75859-4
– volume: 26
  issue: 3
  year: 2019
  ident: e_1_2_9_17_1
  article-title: Matching complexes of small grids
  publication-title: Electron. J. Combin.
  doi: 10.37236/8480
  contributor:
    fullname: Matsushita T.
– ident: e_1_2_9_3_1
  doi: 10.1112/jlms/49.1.25
– ident: e_1_2_9_12_1
– volume: 15
  issue: 1
  year: 2008
  ident: e_1_2_9_16_1
  article-title: A uniform approach to complexes arising from forests
  publication-title: Electron. J. Combin.
  doi: 10.37236/825
  contributor:
    fullname: Marietti M.
– volume: 31
  start-page: 395
  issue: 3
  year: 2004
  ident: e_1_2_9_2_1
  article-title: Decompositions and connectivity of matching and chessboard complexes
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-003-2869-x
  contributor:
    fullname: Athanasiadis C. A.
– volume-title: Combinatorics and Commutative Algebra
  year: 1996
  ident: e_1_2_9_19_1
  contributor:
    fullname: Stanley R. P.
– start-page: 653
  volume-title: Recent Trends in Combinatorics
  year: 2016
  ident: e_1_2_9_13_1
  doi: 10.1007/978-3-319-24298-9_26
  contributor:
    fullname: Klee S.
– volume: 46
  start-page: 185
  year: 2010
  ident: e_1_2_9_6_1
  article-title: A note on equimatchable graphs
  publication-title: Australas. J. Combin.
  contributor:
    fullname: Frendrup A.
– volume: 24
  issue: 4
  year: 2017
  ident: e_1_2_9_4_1
  article-title: Matching and independence complexes related to small grids
  publication-title: Electron. J. Combin.
  doi: 10.37236/6212
  contributor:
    fullname: Braun B.
– ident: e_1_2_9_9_1
– volume: 8
  start-page: 413
  issue: 3
  year: 2018
  ident: e_1_2_9_10_1
  article-title: On the h‐vectors of chessboard complexes
  publication-title: Bull. Int. Math. Virtual Inst.
  contributor:
    fullname: Jojić D.
– volume: 88
  start-page: 112
  issue: 1
  year: 1999
  ident: e_1_2_9_14_1
  article-title: Complexes of directed trees
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1006/jcta.1999.2984
  contributor:
    fullname: Kozlov D. N.
SSID ssj0056841
Score 2.317414
Snippet The matching complex of a graph is the simplicial complex whose vertex set is the set of edges of the graph with a face for each independent set of edges. In...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 973
SubjectTerms 05C70 (primary)
05E45
57M15 (secondary)
Title MANIFOLD MATCHING COMPLEXES
URI https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fmtk.12049
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50T_rgb3FOpYgPvkRt2rQNPo2tQ3HdBpuwt5JrspfhFLf9_17SduiDIPjWpBdoLsndfUfzHcCNnGHMlfSZibRiIS8MSxQiQ-EnsTaafILNQz6N48E06aaWJuexvgtT8kNsEm72ZDh7bQ-4wqoKiW9JQ99W8zufU4BL9pdQgru-EYxqKyyiJPTrcq2CNmHFKkRj7zcjf_ii77Gpcy69_X991gHsVTGl1y43wSFsmcUR7GYbQtblMbSy9uC5N-x3vaw96dgUldcZZqN-Ok3HJ_DaS6mTVXURWMEjKZk2D0VUCGWJarjQivwQKRo1knZjairqJceOQWRreiqcKS5MYLn-SMwoEZxCY_G-MGfgoWXj4QUvBIrQyEjSe40EanzkkqBlE65rDeUfJf1FXsIGntNMczfTJtw6jfwukWeTF_dw_nfRFuxwi23dj3MX0Fh9rs0lbC_1-sqt9BeSeKZ2
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbYOAAH3ogxHhXiwKVA0yZtJC7T1mnT2m3ShrRblTTZBTEQ2_4_TtpOcEBC4tamjtS4dj7baj4D3PG5DIngnquZEm5Acu1GQkpXUi8KlVaICaYO2ZuEw1nUiQ1NznN1Fqbgh9gU3Ixn2P3aOLgpSJdeblhD31avDx7BCLcG2wFDQzQHOPxxtQ9TFgVe1bCVohmWvEI4-XEz9QcafY9OLbx0D_73YoewX4aVTquwgyPY0otj2Es3nKzLE2imrWG_O0o6Ttqatk2VymmP0nESz-LJKbx0Yxx0y9YIbk4Y567STznLqTBcNYQqgVCEupZKooJDvBU4itgufWbaego5F4Rq39D9oZgW1D-D-uJ9oc_BkYaQh-Qkp5IGmjOOz5XEvMaThGN22YDbSkXZR8GAkRWZA8lwpZldaQPurUp-l8jS6cBeXPxd9AZ2etM0yZL-cNCEXWJSXfsf3SXUV59rfQW1pVpf28_-BUxCqp4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4CaIHv8U5P4p48BK1adM2eBpbi2PrNtiE3UrSZBdxDrf9_76k7dCDIHhr0hdofsnL-yD9PYA7PpMhFdwlOlCC-DTXJBJSEsncKFRaoU0weciXcTiYRp3Y0OQ8V__CFPwQm4Sb0Qx7XhsFX6hZqeSGNPR99fbgUnRwa7DtoxtuiPM9b1QdwyyIfLeq18pwF5a0Qjj4cTP0hzH67pxa65Ic_Ou7DmG_dCqdVrELjmBLz49hL90wsi5PoJm2Bt1k2O84aWvSNjkqpz1MR_14Go9P4TWJsZOUhRFITgPOidJPeZAzYZhqKFMCDREiLZVEeENsCuxFyy69wBT1FHImKNOeIftDMS2Ydwb1-cdcn4MjDR0PzWnOJPM1Dzi-VxLhdCXlGFs24LZCKFsU_BdZETfQDGea2Zk24N4i8rtElk569uHi76I3sDPqJFm_O-g1YZeaONdeoruE-upzra-gtlTra7voX3O6qUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MANIFOLD+MATCHING+COMPLEXES&rft.jtitle=Mathematika&rft.au=Bayer%2C+Margaret&rft.au=Goeckner%2C+Bennet&rft.au=Jeli%C4%87+Milutinovi%C4%87%2C+Marija&rft.date=2020-10-01&rft.issn=0025-5793&rft.eissn=2041-7942&rft.volume=66&rft.issue=4&rft.spage=973&rft.epage=1002&rft_id=info:doi/10.1112%2Fmtk.12049&rft.externalDBID=10.1112%252Fmtk.12049&rft.externalDocID=MTK12049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5793&client=summon