Defect Analysis in Compressor Vanes Using Split Bregman Noise-Reduced Digital Industrial Radiography
Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable...
Saved in:
Published in: | Russian journal of nondestructive testing Vol. 59; no. 5; pp. 622 - 632 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
01-05-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable nondestructive inspection method capable of providing high defect detection sensitivity. Radiographic images are intrinsically noisy and various digital image acquisition and processing methods have been employed to achieve improved selective region and bandwidth image quality. The noise in the RT images is usually random in nature and the quality of the image is often uniformly degraded by the resulting fogging effect. In this study, a modified form of the split Bregman (SB) algorithm was developed and applied to remove the blurring in the radiography images. The SB algorithm was successfully applied to radiographic images of compressor vanes to achieve noise reduction whilst retaining sufficient image details, enabling more effective information extraction of object structures and defects. The results of the study have shown marked and quantifiable improvement in defect detectability and analysis compared to the outcomes using original unprocessed images. The method was used successfully by industrial radiography experts to detect object deterioration due to pre-failure high-speed rotational loading of the vanes; the experts' preference for working with noise-subtracted images was demonstrated as part of the study. These evaluations were carried out after and before high-speed testing of the vanes. It was confirmed that the implemented method improved image quality and defect detection. |
---|---|
AbstractList | Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable nondestructive inspection method capable of providing high defect detection sensitivity. Radiographic images are intrinsically noisy and various digital image acquisition and processing methods have been employed to achieve improved selective region and bandwidth image quality. The noise in the RT images is usually random in nature and the quality of the image is often uniformly degraded by the resulting fogging effect. In this study, a modified form of the split Bregman (SB) algorithm was developed and applied to remove the blurring in the radiography images. The SB algorithm was successfully applied to radiographic images of compressor vanes to achieve noise reduction whilst retaining sufficient image details, enabling more effective information extraction of object structures and defects. The results of the study have shown marked and quantifiable improvement in defect detectability and analysis compared to the outcomes using original unprocessed images. The method was used successfully by industrial radiography experts to detect object deterioration due to pre-failure high-speed rotational loading of the vanes; the experts' preference for working with noise-subtracted images was demonstrated as part of the study. These evaluations were carried out after and before high-speed testing of the vanes. It was confirmed that the implemented method improved image quality and defect detection. Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable nondestructive inspection method capable of providing high defect detection sensitivity. Radiographic images are intrinsically noisy and various digital image acquisition and processing methods have been employed to achieve improved selective region and bandwidth image quality. The noise in the RT images is usually random in nature and the quality of the image is often uniformly degraded by the resulting fogging effect. In this study, a modified form of the split Bregman (SB) algorithm was developed and applied to remove the blurring in the radiography images. The SB algorithm was successfully applied to radiographic images of compressor vanes to achieve noise reduction whilst retaining sufficient image details, enabling more effective information extraction of object structures and defects. The results of the study have shown marked and quantifiable improvement in defect detectability and analysis compared to the outcomes using original unprocessed images. The method was used successfully by industrial radiography experts to detect object deterioration due to pre-failure high-speed rotational loading of the vanes; the experts' preference for working with noise-subtracted images was demonstrated as part of the study. These evaluations were carried out after and before high-speed testing of the vanes. It was confirmed that the implemented method improved image quality and defect detection. |
Author | Mirzapour, Mahdi Nekouei, Jahangir Movafeghi, Amir Rostami, Peyman Monem, Sajad Yahaghi, Effat |
Author_xml | – sequence: 1 givenname: Amir surname: Movafeghi fullname: Movafeghi, Amir organization: Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI) – sequence: 2 givenname: Effat surname: Yahaghi fullname: Yahaghi, Effat email: yahaghi@sci.ikiu.ac.ir organization: Department of Physics, Faculty of Science, Imam Khomeini International University – sequence: 3 givenname: Sajad surname: Monem fullname: Monem, Sajad organization: Parto Azmoon Azar Engineering Co – sequence: 4 givenname: Jahangir surname: Nekouei fullname: Nekouei, Jahangir organization: Parto Azmoon Azar Engineering Co – sequence: 5 givenname: Peyman surname: Rostami fullname: Rostami, Peyman organization: Parto Azmoon Azar Engineering Co – sequence: 6 givenname: Mahdi surname: Mirzapour fullname: Mirzapour, Mahdi organization: Department of Mathematics, Faculty of Basic Sciences, Bu-Ali Sina University |
BookMark | eNp1kEtLAzEUhYNUsK3-AHcB16N5dSYua-ujUBRa63ZIk8yYMk3G3JlF_70pFVyIq3vgfOfAPSM08MFbhK4puaWUi7s1JTmVnNwznhPCKD1DQ5oTmXEuJ4Okk50d_Qs0AtiRxBScDZGZ28rqDk-9ag7gADuPZ2HfRgsQIv5Q3gLegPM1XreN6_BDtPVeefwaHNhsZU2vrcFzV7tONXjhTQ9ddEmulHGhjqr9PFyi80o1YK9-7hhtnh7fZy_Z8u15MZsuM81y2WWGkqogaiJzxopCmJxZVRHJt1ITbZScWMtloRQjnFSkEFsmjKTMaMK1qYzhY3Rz6m1j-OotdOUu9DF9BiWTggqR1hGJoidKxwAQbVW20e1VPJSUlMcxyz9jpgw7ZSCxvrbxt_n_0DfHO3f4 |
Cites_doi | 10.1080/09349847.2011.556543 10.1016/0167-2789(92)90242-F 10.1137/080725891 10.1140/epjp/s13360-020-00119-y 10.1007/978-3-662-09449-5 10.1007/s10921-017-0458-9 10.1137/1.9780898719697 10.1080/09349847.2018.1476744 10.1784/insi.2011.53.5.263 10.1109/ISAS49493.2020.9378856 10.1016/j.measurement.2005.11.027 10.1007/s10915-009-9331-z 10.1080/09349847.2020.1836293 10.5120/ijca2017913466 10.1137/040616024 10.1007/BF02149761 10.1155/2015/789485 10.1784/insi.2017.59.7.364 10.1186/s42492-019-0012-y 10.1016/j.ijrefrig.2009.07.005 10.5201/ipol.2012.g-tvd |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2023. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2023, Vol. 59, No. 5, pp. 622–632. © Pleiades Publishing, Ltd., 2023. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2023, Vol. 59, No. 5, pp. 622–632. © Pleiades Publishing, Ltd., 2023. |
DBID | AAYXX CITATION |
DOI | 10.1134/S1061830923600211 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1608-3385 |
EndPage | 632 |
ExternalDocumentID | 10_1134_S1061830923600211 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5VS 642 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN8 ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9N PF0 PT4 QOR QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7S Z7Y Z7Z Z85 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c268t-d10f70a58622774d62eaf083b8c0cda85ee387aa2030f074b24d812dc03cdfdd3 |
IEDL.DBID | AEJHL |
ISSN | 1061-8309 |
IngestDate | Wed Nov 06 08:17:46 EST 2024 Thu Sep 12 17:04:11 EDT 2024 Sat Dec 16 12:05:21 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | split Bregman method compressor vanes digital industrial radiography defect analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-d10f70a58622774d62eaf083b8c0cda85ee387aa2030f074b24d812dc03cdfdd3 |
PQID | 2841449234 |
PQPubID | 2043547 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2841449234 crossref_primary_10_1134_S1061830923600211 springer_journals_10_1134_S1061830923600211 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Russian journal of nondestructive testing |
PublicationTitleAbbrev | Russ J Nondestruct Test |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | FengChangliZhangJianxunLiangRuiLiZhifuA method for lung boundary correction using split Bregman method and geometric active contour modelComput. Math. Meth. Med.2015201578948510.1155/2015/789485 CasellesV.ChambolleA.NovagaM.Handbook of Mathematical Methods in Imaging2015New YorkSpringer RudinL.I.OsherS.FatemiE.Nonlinear total variation based noise removal algorithmsPhys. D19926025926810.1016/0167-2789(92)90242-F GeL.ZhangY.Weld defect detection in industrial radiography based on image segmentationInsight Nondestr. Test. Cond. Monit.20115326326910.1784/insi.2011.53.5.263 WangX.WongB.TanC.TuiGuanC., Automated crack detection for digital radiography aircraft wing inspectionRes. Nondestr. Eval.2011222310.1080/09349847.2011.556543 YahaghiE.MirzapourM.MovafeghiA.Mohammadi MatinP.RokrokB.FISTA algorithm for radiography images enhancement with background blurring removalRes. Nondestr. Eval.201930808810.1080/09349847.2018.1476744 MirzapourMahdiYahaghiEffatMovafeghiAmirThe performance of three total variation based algorithms for enhancing the contrast of industrial radiography imagesRes. Nondestr. Eval.202132102310.1080/09349847.2020.1836293 GoldsteinT.BressonX.OsherS.Geometric applications of the split Bregman method: segmentation and surface reconstructionJ. Sci. Comput.20104527229310.1007/s10915-009-9331-z Huang, Y.M. and Yang, Sh.-An, A measurement method for air pressures in compressor vane segments, Measurement, 2008, vol. 41, no. 8, pp. 835–841. https://doi.org/10.1016/j.measurement.2005.11.027 YahaghiE.MirzapourM.MovafeghiA.RokrokB.Interlaced bilateral filtering and wavelet thresholding for flaw detection in the radiography of weldmentsEur. Phys. J. Plus202013511010.1140/epjp/s13360-020-00119-y BingL.LeiCh.YuegenW.MengqiuG.3D detection of internal defects for gas turbine bladesInsight Nondestr. Test. Cond. Monit.20175936437010.1784/insi.2017.59.7.364 ISO19232-5. Non-destructive testing-image quality of radiographs. Part 5: Determination of the image unsharpness value using duplex wire-type image quality indicators, 2013. EN 16407-2. Non-destructive testing—radiographic inspection of corrosion and deposits in pipes by X- and gamma rays. Part 2: Double wall radiographic inspection, 2014. Matilda Wilson, Anthony Y. Aidoo, and Charles H. Acquah, Chest radiograph image enhancement: a total variation approach, Int. J. Comput. Appl., 2017, vol. 163, no. 7. https://doi.org/10.5120/ijca2017913466 FanL.ZhangF.FanH.ZhangC.Brief review of image denoising techniquesVisual Comput. Ind. Biomed. Art201921121:CAS:528:DC%2BC1MXhslaqtrzK Lüdtke, K.H., Process Centrifugal Compressors, Basics, Function, Operation, Design, Application, Berlin–Heidelberg: Springer-Verlag, 2004. https://doi.org/10.1007/978-3-662-09449-5 Getreuer, P., Rudin–Osher–Fatemi total variation denoising using split Bregman, Image Proces.On Line, 2012, no. 2, pp. 74–95. https://doi.org/10.5201/ipol.2012.g-tvd ISO 17636-2. Non-destructive testing of welds-radiographic testing. Part 2: X- and gamma-ray techniques with digital detectors, 2013. Movafeghi, A., Mohammadzadeh, N., Yahaghi, E. Nekouei, J., Rostami, P., and Moradi, Gh., Defect detection of industrial radiography images of ammonia pipes by a sparse coding model, J. Nondestr. Eval., 2018, vol. 37, p. 3. https://link.springer.com/article/10.1007/s10921-017-0458-9 GoldsteinT.OsherS.The split Bregman method for L1-regularized problemsSIAM J. Imaging Sci.2009232334310.1137/080725891 BuadesA.CollB.MorelJ.-M.A review of image denoising algorithms, with a new oneMultiscale Model. & Simul.2005449053010.1137/040616024 HansenP.Ch., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Philadelphia: Soc.1998Ind.Appl. Math10.1137/1.9780898719697 Ge Ma and Junfang Lin, Image restoration method based on partition and regularization for industrial X-ray images, 2020 Int. Symp. Auton. Syst. (ISAS) (Guangzhou, 2020), pp. 254–257. Osama Al-HawajTheoretical modeling of sliding vane compressor with leakageInt. J. Refrig.2009321555156210.1016/j.ijrefrig.2009.07.005 HansenP.Ch.Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problemsNumer. Algorithms1994613510.1007/BF02149761 P.Ch. Hansen (1453_CR24) 1994; 6 L. Ge (1453_CR4) 2011; 53 T. Goldstein (1453_CR8) 2010; 45 L. Fan (1453_CR19) 2019; 2 T. Goldstein (1453_CR9) 2009; 2 X. Wang (1453_CR6) 2011; 22 E. Yahaghi (1453_CR22) 2020; 135 P. Hansen (1453_CR25) 1998 L. Bing (1453_CR5) 2017; 59 Mahdi Mirzapour (1453_CR13) 2021; 32 Osama Al-Hawaj (1453_CR2) 2009; 32 1453_CR7 A. Buades (1453_CR18) 2005; 4 L.I. Rudin (1453_CR20) 1992; 60 V. Caselles (1453_CR21) 2015 1453_CR12 1453_CR1 1453_CR10 1453_CR3 1453_CR16 1453_CR17 1453_CR14 1453_CR15 E. Yahaghi (1453_CR23) 2019; 30 Changli Feng (1453_CR11) 2015; 2015 |
References_xml | – volume: 22 start-page: 23 year: 2011 ident: 1453_CR6 publication-title: Res. Nondestr. Eval. doi: 10.1080/09349847.2011.556543 contributor: fullname: X. Wang – volume: 60 start-page: 259 year: 1992 ident: 1453_CR20 publication-title: Phys. D doi: 10.1016/0167-2789(92)90242-F contributor: fullname: L.I. Rudin – volume: 2 start-page: 323 year: 2009 ident: 1453_CR9 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080725891 contributor: fullname: T. Goldstein – volume: 135 start-page: 1 year: 2020 ident: 1453_CR22 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00119-y contributor: fullname: E. Yahaghi – ident: 1453_CR3 doi: 10.1007/978-3-662-09449-5 – ident: 1453_CR7 doi: 10.1007/s10921-017-0458-9 – volume-title: Ch., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Philadelphia: Soc. year: 1998 ident: 1453_CR25 doi: 10.1137/1.9780898719697 contributor: fullname: P. Hansen – ident: 1453_CR17 – volume: 30 start-page: 80 year: 2019 ident: 1453_CR23 publication-title: Res. Nondestr. Eval. doi: 10.1080/09349847.2018.1476744 contributor: fullname: E. Yahaghi – volume: 53 start-page: 263 year: 2011 ident: 1453_CR4 publication-title: Insight Nondestr. Test. Cond. Monit. doi: 10.1784/insi.2011.53.5.263 contributor: fullname: L. Ge – ident: 1453_CR12 doi: 10.1109/ISAS49493.2020.9378856 – ident: 1453_CR15 – ident: 1453_CR1 doi: 10.1016/j.measurement.2005.11.027 – volume: 45 start-page: 272 year: 2010 ident: 1453_CR8 publication-title: J. Sci. Comput. doi: 10.1007/s10915-009-9331-z contributor: fullname: T. Goldstein – volume: 32 start-page: 10 year: 2021 ident: 1453_CR13 publication-title: Res. Nondestr. Eval. doi: 10.1080/09349847.2020.1836293 contributor: fullname: Mahdi Mirzapour – volume-title: Handbook of Mathematical Methods in Imaging year: 2015 ident: 1453_CR21 contributor: fullname: V. Caselles – ident: 1453_CR14 doi: 10.5120/ijca2017913466 – volume: 4 start-page: 490 year: 2005 ident: 1453_CR18 publication-title: Multiscale Model. & Simul. doi: 10.1137/040616024 contributor: fullname: A. Buades – volume: 6 start-page: 1 year: 1994 ident: 1453_CR24 publication-title: Numer. Algorithms doi: 10.1007/BF02149761 contributor: fullname: P.Ch. Hansen – volume: 2015 start-page: 789485 year: 2015 ident: 1453_CR11 publication-title: Comput. Math. Meth. Med. doi: 10.1155/2015/789485 contributor: fullname: Changli Feng – volume: 59 start-page: 364 year: 2017 ident: 1453_CR5 publication-title: Insight Nondestr. Test. Cond. Monit. doi: 10.1784/insi.2017.59.7.364 contributor: fullname: L. Bing – volume: 2 start-page: 1 year: 2019 ident: 1453_CR19 publication-title: Visual Comput. Ind. Biomed. Art doi: 10.1186/s42492-019-0012-y contributor: fullname: L. Fan – volume: 32 start-page: 1555 year: 2009 ident: 1453_CR2 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.07.005 contributor: fullname: Osama Al-Hawaj – ident: 1453_CR16 – ident: 1453_CR10 doi: 10.5201/ipol.2012.g-tvd |
SSID | ssj0002732 |
Score | 2.3008854 |
Snippet | Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance... Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 622 |
SubjectTerms | Algorithms Blurring Centrifugal compressors Characterization and Evaluation of Materials Chemistry and Materials Science Defects Digital imaging Fogging High speed Image acquisition Image quality Information retrieval Inspection Materials Science Noise reduction Nondestructive testing Preventive maintenance Quality control Radiography Structural Materials Vanes X-Ray Methods |
Title | Defect Analysis in Compressor Vanes Using Split Bregman Noise-Reduced Digital Industrial Radiography |
URI | https://link.springer.com/article/10.1134/S1061830923600211 https://www.proquest.com/docview/2841449234 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BKwQMPAqIQkEemECGxE7idCx9UBDq0AJiixzbqSJEipr2_2Pn0fIcYMoQx4pyznff-c7fAZxZTFJJRIiJ8h3sCJtiLiTFEQ9tRr2QRZHZ0-2P2ODZ73SNTA5ZbF0kL5dlRjID6rztiHM1MrGLTy1NSEwqyRznrWrX47oVqLa6d_37Bf5qh5znOD0bmweKXOaPk3z2RkuK-SUrmjmb3vZ_XnMHtgpqiVr5WtiFFZXUYL1ddnSrweYH8cEarGXFnyLdA9lRpqgDlQIlKE6QwQkTiU-m6IlrOERZbQEaac46Q9dTNX7lCRpM4lThoVF_VRJ14rHpQIKW3UDQkMu40MTeh8de96Hdx0X3BSyI58-wtK2IWdzVIQ_RHFF6RPFIE7bQF5aQ3HeVoj7jnGiYiDQRCYkjNVuQwqJCRlLSA6gkk0QdAlKezW3uCeaSpsOtMNQgofRUTDVdLnxeh_PSCsFbLrIRZMEJdYJvH7QOjdJOQfG_pYF2sjoy1GOcOlyUhlne_nWyoz-NPoYN020-r3dsQGU2nasTWE3l_LRYhOZ6-3DTewdP-tUy |
link.rule.ids | 315,782,786,27935,27936,41075,42144,48346,48349,49651,49654,52155 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oxKAHH6gRRd2DJ83Gtru05YgUghE5ABo4NdvdLenBYij8f3f7EJ8HPXc7aTrbmW86s98HcGU4ggiLB9iSLsWUmwQzLggOWWA6xA6cMNT_dHsjZzBxvY6mySHFWZh02r1oSaaROtMdobcjXby4xFCIRPeS9HnesiY7pyUotybTqfcegFVGzpqcton1DXkz80cjn9PRGmN-aYum2aa796_n3IfdHFyiVrYbDmBDxlWotAtNtyrsfKAfrMJWOv7Jk0MQntRjHaigKEFRjHSk0LX4fIGemQqIKJ0uQCOFWpfobiFnLyxGg3mUSDzU_K9SIC-aaQ0StNYDQUMmopwV-wieup1xu4dz_QXMLdtdYmEaoWOwhip6LIUShW1JFirIFrjc4IK5DSmJ6zBmqUARKigSWFQovCC4QbgIhSDHUIrnsTwBJG2TmczmTsNqUmYEgQoTUplyZLPBuMtqcF24wX_NaDb8tDwh1P_2QmtQLxzl519c4qs0q2pDtYbW4KZwzPryr8ZO_7T6Eiq98WPf798PHs5gW2vPZ9OPdSgtFyt5DpuJWF3kO_INyMXX1g |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgE68DjwFiMCAHTqBobdPXTmhslE2gCW0DcavSJJ16oJvW7v-T9MF4HhDnplZVO_bn2PkMcKE5nHCDBdgQrolNphNMGSc4pIHuEDtwwlCd6fZGzuDF7d4qmpzr8i5M1u1eliTzOw2KpSlOmzMeFjNIzOZIJTIu0SQ6UXUldbe3qk7FpIlX2_3xnffujGV0zgueto7VC0Vh80chn0PTEm9-KZFmkcfb-fc378J2ATpRO7eSPVgRcQ02OuWstxpsfaAlrMFa1hbKkn3gXaHaPVBJXYKiGCkPonL06Rw9U-koUdZ1gEYSzaboZi4mrzRGg2mUCDxUvLCCo240UbNJ0HJOCBpSHhVs2Qfw5N2OOz1czGXAzLDdFHNdCx2NWjIZMiR65LYhaCihXOAyjXHqWkIQ16HUkA4klBAlMEwucQRnGmE85JwcQiWexuIIkLB1qlObOZbRMqkWBNJ9CCnKES2LMpfW4bJUiT_L6Tf8LG0hpv_th9ahUSrNL3Zi4svwK3NGucasw1WppOXjX4Ud_2n1Oaw_dj3_oT-4P4FNNZI-b4psQCWdL8QprCZ8cVYY5xsd1eBt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Analysis+in+Compressor+Vanes+Using+Split+Bregman+Noise-Reduced+Digital+Industrial+Radiography&rft.jtitle=Russian+journal+of+nondestructive+testing&rft.au=Movafeghi%2C+Amir&rft.au=Yahaghi%2C+Effat&rft.au=Monem%2C+Sajad&rft.au=Nekouei%2C+Jahangir&rft.date=2023-05-01&rft.pub=Pleiades+Publishing&rft.issn=1061-8309&rft.eissn=1608-3385&rft.volume=59&rft.issue=5&rft.spage=622&rft.epage=632&rft_id=info:doi/10.1134%2FS1061830923600211&rft.externalDocID=10_1134_S1061830923600211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8309&client=summon |