Defect Analysis in Compressor Vanes Using Split Bregman Noise-Reduced Digital Industrial Radiography

Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of nondestructive testing Vol. 59; no. 5; pp. 622 - 632
Main Authors: Movafeghi, Amir, Yahaghi, Effat, Monem, Sajad, Nekouei, Jahangir, Rostami, Peyman, Mirzapour, Mahdi
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-05-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable nondestructive inspection method capable of providing high defect detection sensitivity. Radiographic images are intrinsically noisy and various digital image acquisition and processing methods have been employed to achieve improved selective region and bandwidth image quality. The noise in the RT images is usually random in nature and the quality of the image is often uniformly degraded by the resulting fogging effect. In this study, a modified form of the split Bregman (SB) algorithm was developed and applied to remove the blurring in the radiography images. The SB algorithm was successfully applied to radiographic images of compressor vanes to achieve noise reduction whilst retaining sufficient image details, enabling more effective information extraction of object structures and defects. The results of the study have shown marked and quantifiable improvement in defect detectability and analysis compared to the outcomes using original unprocessed images. The method was used successfully by industrial radiography experts to detect object deterioration due to pre-failure high-speed rotational loading of the vanes; the experts' preference for working with noise-subtracted images was demonstrated as part of the study. These evaluations were carried out after and before high-speed testing of the vanes. It was confirmed that the implemented method improved image quality and defect detection.
AbstractList Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable nondestructive inspection method capable of providing high defect detection sensitivity. Radiographic images are intrinsically noisy and various digital image acquisition and processing methods have been employed to achieve improved selective region and bandwidth image quality. The noise in the RT images is usually random in nature and the quality of the image is often uniformly degraded by the resulting fogging effect. In this study, a modified form of the split Bregman (SB) algorithm was developed and applied to remove the blurring in the radiography images. The SB algorithm was successfully applied to radiographic images of compressor vanes to achieve noise reduction whilst retaining sufficient image details, enabling more effective information extraction of object structures and defects. The results of the study have shown marked and quantifiable improvement in defect detectability and analysis compared to the outcomes using original unprocessed images. The method was used successfully by industrial radiography experts to detect object deterioration due to pre-failure high-speed rotational loading of the vanes; the experts' preference for working with noise-subtracted images was demonstrated as part of the study. These evaluations were carried out after and before high-speed testing of the vanes. It was confirmed that the implemented method improved image quality and defect detection.
Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance procedures. Historically, radiography testing (RT) and more recently digital industrial radiography testing (DIR) has proved to be an indispensable nondestructive inspection method capable of providing high defect detection sensitivity. Radiographic images are intrinsically noisy and various digital image acquisition and processing methods have been employed to achieve improved selective region and bandwidth image quality. The noise in the RT images is usually random in nature and the quality of the image is often uniformly degraded by the resulting fogging effect. In this study, a modified form of the split Bregman (SB) algorithm was developed and applied to remove the blurring in the radiography images. The SB algorithm was successfully applied to radiographic images of compressor vanes to achieve noise reduction whilst retaining sufficient image details, enabling more effective information extraction of object structures and defects. The results of the study have shown marked and quantifiable improvement in defect detectability and analysis compared to the outcomes using original unprocessed images. The method was used successfully by industrial radiography experts to detect object deterioration due to pre-failure high-speed rotational loading of the vanes; the experts' preference for working with noise-subtracted images was demonstrated as part of the study. These evaluations were carried out after and before high-speed testing of the vanes. It was confirmed that the implemented method improved image quality and defect detection.
Author Mirzapour, Mahdi
Nekouei, Jahangir
Movafeghi, Amir
Rostami, Peyman
Monem, Sajad
Yahaghi, Effat
Author_xml – sequence: 1
  givenname: Amir
  surname: Movafeghi
  fullname: Movafeghi, Amir
  organization: Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI)
– sequence: 2
  givenname: Effat
  surname: Yahaghi
  fullname: Yahaghi, Effat
  email: yahaghi@sci.ikiu.ac.ir
  organization: Department of Physics, Faculty of Science, Imam Khomeini International University
– sequence: 3
  givenname: Sajad
  surname: Monem
  fullname: Monem, Sajad
  organization: Parto Azmoon Azar Engineering Co
– sequence: 4
  givenname: Jahangir
  surname: Nekouei
  fullname: Nekouei, Jahangir
  organization: Parto Azmoon Azar Engineering Co
– sequence: 5
  givenname: Peyman
  surname: Rostami
  fullname: Rostami, Peyman
  organization: Parto Azmoon Azar Engineering Co
– sequence: 6
  givenname: Mahdi
  surname: Mirzapour
  fullname: Mirzapour, Mahdi
  organization: Department of Mathematics, Faculty of Basic Sciences, Bu-Ali Sina University
BookMark eNp1kEtLAzEUhYNUsK3-AHcB16N5dSYua-ujUBRa63ZIk8yYMk3G3JlF_70pFVyIq3vgfOfAPSM08MFbhK4puaWUi7s1JTmVnNwznhPCKD1DQ5oTmXEuJ4Okk50d_Qs0AtiRxBScDZGZ28rqDk-9ag7gADuPZ2HfRgsQIv5Q3gLegPM1XreN6_BDtPVeefwaHNhsZU2vrcFzV7tONXjhTQ9ddEmulHGhjqr9PFyi80o1YK9-7hhtnh7fZy_Z8u15MZsuM81y2WWGkqogaiJzxopCmJxZVRHJt1ITbZScWMtloRQjnFSkEFsmjKTMaMK1qYzhY3Rz6m1j-OotdOUu9DF9BiWTggqR1hGJoidKxwAQbVW20e1VPJSUlMcxyz9jpgw7ZSCxvrbxt_n_0DfHO3f4
Cites_doi 10.1080/09349847.2011.556543
10.1016/0167-2789(92)90242-F
10.1137/080725891
10.1140/epjp/s13360-020-00119-y
10.1007/978-3-662-09449-5
10.1007/s10921-017-0458-9
10.1137/1.9780898719697
10.1080/09349847.2018.1476744
10.1784/insi.2011.53.5.263
10.1109/ISAS49493.2020.9378856
10.1016/j.measurement.2005.11.027
10.1007/s10915-009-9331-z
10.1080/09349847.2020.1836293
10.5120/ijca2017913466
10.1137/040616024
10.1007/BF02149761
10.1155/2015/789485
10.1784/insi.2017.59.7.364
10.1186/s42492-019-0012-y
10.1016/j.ijrefrig.2009.07.005
10.5201/ipol.2012.g-tvd
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2023, Vol. 59, No. 5, pp. 622–632. © Pleiades Publishing, Ltd., 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2023, Vol. 59, No. 5, pp. 622–632. © Pleiades Publishing, Ltd., 2023.
DBID AAYXX
CITATION
DOI 10.1134/S1061830923600211
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1608-3385
EndPage 632
ExternalDocumentID 10_1134_S1061830923600211
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5VS
642
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN8
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9N
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7S
Z7Y
Z7Z
Z85
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c268t-d10f70a58622774d62eaf083b8c0cda85ee387aa2030f074b24d812dc03cdfdd3
IEDL.DBID AEJHL
ISSN 1061-8309
IngestDate Wed Nov 06 08:17:46 EST 2024
Thu Sep 12 17:04:11 EDT 2024
Sat Dec 16 12:05:21 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords split Bregman method
compressor vanes
digital industrial radiography
defect analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-d10f70a58622774d62eaf083b8c0cda85ee387aa2030f074b24d812dc03cdfdd3
PQID 2841449234
PQPubID 2043547
PageCount 11
ParticipantIDs proquest_journals_2841449234
crossref_primary_10_1134_S1061830923600211
springer_journals_10_1134_S1061830923600211
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Russian journal of nondestructive testing
PublicationTitleAbbrev Russ J Nondestruct Test
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References FengChangliZhangJianxunLiangRuiLiZhifuA method for lung boundary correction using split Bregman method and geometric active contour modelComput. Math. Meth. Med.2015201578948510.1155/2015/789485
CasellesV.ChambolleA.NovagaM.Handbook of Mathematical Methods in Imaging2015New YorkSpringer
RudinL.I.OsherS.FatemiE.Nonlinear total variation based noise removal algorithmsPhys. D19926025926810.1016/0167-2789(92)90242-F
GeL.ZhangY.Weld defect detection in industrial radiography based on image segmentationInsight Nondestr. Test. Cond. Monit.20115326326910.1784/insi.2011.53.5.263
WangX.WongB.TanC.TuiGuanC., Automated crack detection for digital radiography aircraft wing inspectionRes. Nondestr. Eval.2011222310.1080/09349847.2011.556543
YahaghiE.MirzapourM.MovafeghiA.Mohammadi MatinP.RokrokB.FISTA algorithm for radiography images enhancement with background blurring removalRes. Nondestr. Eval.201930808810.1080/09349847.2018.1476744
MirzapourMahdiYahaghiEffatMovafeghiAmirThe performance of three total variation based algorithms for enhancing the contrast of industrial radiography imagesRes. Nondestr. Eval.202132102310.1080/09349847.2020.1836293
GoldsteinT.BressonX.OsherS.Geometric applications of the split Bregman method: segmentation and surface reconstructionJ. Sci. Comput.20104527229310.1007/s10915-009-9331-z
Huang, Y.M. and Yang, Sh.-An, A measurement method for air pressures in compressor vane segments, Measurement, 2008, vol. 41, no. 8, pp. 835–841. https://doi.org/10.1016/j.measurement.2005.11.027
YahaghiE.MirzapourM.MovafeghiA.RokrokB.Interlaced bilateral filtering and wavelet thresholding for flaw detection in the radiography of weldmentsEur. Phys. J. Plus202013511010.1140/epjp/s13360-020-00119-y
BingL.LeiCh.YuegenW.MengqiuG.3D detection of internal defects for gas turbine bladesInsight Nondestr. Test. Cond. Monit.20175936437010.1784/insi.2017.59.7.364
ISO19232-5. Non-destructive testing-image quality of radiographs. Part 5: Determination of the image unsharpness value using duplex wire-type image quality indicators, 2013.
EN 16407-2. Non-destructive testing—radiographic inspection of corrosion and deposits in pipes by X- and gamma rays. Part 2: Double wall radiographic inspection, 2014.
Matilda Wilson, Anthony Y. Aidoo, and Charles H. Acquah, Chest radiograph image enhancement: a total variation approach, Int. J. Comput. Appl., 2017, vol. 163, no. 7. https://doi.org/10.5120/ijca2017913466
FanL.ZhangF.FanH.ZhangC.Brief review of image denoising techniquesVisual Comput. Ind. Biomed. Art201921121:CAS:528:DC%2BC1MXhslaqtrzK
Lüdtke, K.H., Process Centrifugal Compressors, Basics, Function, Operation, Design, Application, Berlin–Heidelberg: Springer-Verlag, 2004. https://doi.org/10.1007/978-3-662-09449-5
Getreuer, P., Rudin–Osher–Fatemi total variation denoising using split Bregman, Image Proces.On Line, 2012, no. 2, pp. 74–95. https://doi.org/10.5201/ipol.2012.g-tvd
ISO 17636-2. Non-destructive testing of welds-radiographic testing. Part 2: X- and gamma-ray techniques with digital detectors, 2013.
Movafeghi, A., Mohammadzadeh, N., Yahaghi, E. Nekouei, J., Rostami, P., and Moradi, Gh., Defect detection of industrial radiography images of ammonia pipes by a sparse coding model, J. Nondestr. Eval., 2018, vol. 37, p. 3. https://link.springer.com/article/10.1007/s10921-017-0458-9
GoldsteinT.OsherS.The split Bregman method for L1-regularized problemsSIAM J. Imaging Sci.2009232334310.1137/080725891
BuadesA.CollB.MorelJ.-M.A review of image denoising algorithms, with a new oneMultiscale Model. & Simul.2005449053010.1137/040616024
HansenP.Ch., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Philadelphia: Soc.1998Ind.Appl. Math10.1137/1.9780898719697
Ge Ma and Junfang Lin, Image restoration method based on partition and regularization for industrial X-ray images, 2020 Int. Symp. Auton. Syst. (ISAS) (Guangzhou, 2020), pp. 254–257.
Osama Al-HawajTheoretical modeling of sliding vane compressor with leakageInt. J. Refrig.2009321555156210.1016/j.ijrefrig.2009.07.005
HansenP.Ch.Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problemsNumer. Algorithms1994613510.1007/BF02149761
P.Ch. Hansen (1453_CR24) 1994; 6
L. Ge (1453_CR4) 2011; 53
T. Goldstein (1453_CR8) 2010; 45
L. Fan (1453_CR19) 2019; 2
T. Goldstein (1453_CR9) 2009; 2
X. Wang (1453_CR6) 2011; 22
E. Yahaghi (1453_CR22) 2020; 135
P. Hansen (1453_CR25) 1998
L. Bing (1453_CR5) 2017; 59
Mahdi Mirzapour (1453_CR13) 2021; 32
Osama Al-Hawaj (1453_CR2) 2009; 32
1453_CR7
A. Buades (1453_CR18) 2005; 4
L.I. Rudin (1453_CR20) 1992; 60
V. Caselles (1453_CR21) 2015
1453_CR12
1453_CR1
1453_CR10
1453_CR3
1453_CR16
1453_CR17
1453_CR14
1453_CR15
E. Yahaghi (1453_CR23) 2019; 30
Changli Feng (1453_CR11) 2015; 2015
References_xml – volume: 22
  start-page: 23
  year: 2011
  ident: 1453_CR6
  publication-title: Res. Nondestr. Eval.
  doi: 10.1080/09349847.2011.556543
  contributor:
    fullname: X. Wang
– volume: 60
  start-page: 259
  year: 1992
  ident: 1453_CR20
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
  contributor:
    fullname: L.I. Rudin
– volume: 2
  start-page: 323
  year: 2009
  ident: 1453_CR9
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080725891
  contributor:
    fullname: T. Goldstein
– volume: 135
  start-page: 1
  year: 2020
  ident: 1453_CR22
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00119-y
  contributor:
    fullname: E. Yahaghi
– ident: 1453_CR3
  doi: 10.1007/978-3-662-09449-5
– ident: 1453_CR7
  doi: 10.1007/s10921-017-0458-9
– volume-title: Ch., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Philadelphia: Soc.
  year: 1998
  ident: 1453_CR25
  doi: 10.1137/1.9780898719697
  contributor:
    fullname: P. Hansen
– ident: 1453_CR17
– volume: 30
  start-page: 80
  year: 2019
  ident: 1453_CR23
  publication-title: Res. Nondestr. Eval.
  doi: 10.1080/09349847.2018.1476744
  contributor:
    fullname: E. Yahaghi
– volume: 53
  start-page: 263
  year: 2011
  ident: 1453_CR4
  publication-title: Insight Nondestr. Test. Cond. Monit.
  doi: 10.1784/insi.2011.53.5.263
  contributor:
    fullname: L. Ge
– ident: 1453_CR12
  doi: 10.1109/ISAS49493.2020.9378856
– ident: 1453_CR15
– ident: 1453_CR1
  doi: 10.1016/j.measurement.2005.11.027
– volume: 45
  start-page: 272
  year: 2010
  ident: 1453_CR8
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9331-z
  contributor:
    fullname: T. Goldstein
– volume: 32
  start-page: 10
  year: 2021
  ident: 1453_CR13
  publication-title: Res. Nondestr. Eval.
  doi: 10.1080/09349847.2020.1836293
  contributor:
    fullname: Mahdi Mirzapour
– volume-title: Handbook of Mathematical Methods in Imaging
  year: 2015
  ident: 1453_CR21
  contributor:
    fullname: V. Caselles
– ident: 1453_CR14
  doi: 10.5120/ijca2017913466
– volume: 4
  start-page: 490
  year: 2005
  ident: 1453_CR18
  publication-title: Multiscale Model. & Simul.
  doi: 10.1137/040616024
  contributor:
    fullname: A. Buades
– volume: 6
  start-page: 1
  year: 1994
  ident: 1453_CR24
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02149761
  contributor:
    fullname: P.Ch. Hansen
– volume: 2015
  start-page: 789485
  year: 2015
  ident: 1453_CR11
  publication-title: Comput. Math. Meth. Med.
  doi: 10.1155/2015/789485
  contributor:
    fullname: Changli Feng
– volume: 59
  start-page: 364
  year: 2017
  ident: 1453_CR5
  publication-title: Insight Nondestr. Test. Cond. Monit.
  doi: 10.1784/insi.2017.59.7.364
  contributor:
    fullname: L. Bing
– volume: 2
  start-page: 1
  year: 2019
  ident: 1453_CR19
  publication-title: Visual Comput. Ind. Biomed. Art
  doi: 10.1186/s42492-019-0012-y
  contributor:
    fullname: L. Fan
– volume: 32
  start-page: 1555
  year: 2009
  ident: 1453_CR2
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.07.005
  contributor:
    fullname: Osama Al-Hawaj
– ident: 1453_CR16
– ident: 1453_CR10
  doi: 10.5201/ipol.2012.g-tvd
SSID ssj0002732
Score 2.3008854
Snippet Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance...
Detection and analysis of defects in the vanes of centrifugal compressors are invaluable as part of routine quality control and preventative maintenance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 622
SubjectTerms Algorithms
Blurring
Centrifugal compressors
Characterization and Evaluation of Materials
Chemistry and Materials Science
Defects
Digital imaging
Fogging
High speed
Image acquisition
Image quality
Information retrieval
Inspection
Materials Science
Noise reduction
Nondestructive testing
Preventive maintenance
Quality control
Radiography
Structural Materials
Vanes
X-Ray Methods
Title Defect Analysis in Compressor Vanes Using Split Bregman Noise-Reduced Digital Industrial Radiography
URI https://link.springer.com/article/10.1134/S1061830923600211
https://www.proquest.com/docview/2841449234
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BKwQMPAqIQkEemECGxE7idCx9UBDq0AJiixzbqSJEipr2_2Pn0fIcYMoQx4pyznff-c7fAZxZTFJJRIiJ8h3sCJtiLiTFEQ9tRr2QRZHZ0-2P2ODZ73SNTA5ZbF0kL5dlRjID6rztiHM1MrGLTy1NSEwqyRznrWrX47oVqLa6d_37Bf5qh5znOD0bmweKXOaPk3z2RkuK-SUrmjmb3vZ_XnMHtgpqiVr5WtiFFZXUYL1ddnSrweYH8cEarGXFnyLdA9lRpqgDlQIlKE6QwQkTiU-m6IlrOERZbQEaac46Q9dTNX7lCRpM4lThoVF_VRJ14rHpQIKW3UDQkMu40MTeh8de96Hdx0X3BSyI58-wtK2IWdzVIQ_RHFF6RPFIE7bQF5aQ3HeVoj7jnGiYiDQRCYkjNVuQwqJCRlLSA6gkk0QdAlKezW3uCeaSpsOtMNQgofRUTDVdLnxeh_PSCsFbLrIRZMEJdYJvH7QOjdJOQfG_pYF2sjoy1GOcOlyUhlne_nWyoz-NPoYN020-r3dsQGU2nasTWE3l_LRYhOZ6-3DTewdP-tUy
link.rule.ids 315,782,786,27935,27936,41075,42144,48346,48349,49651,49654,52155
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oxKAHH6gRRd2DJ83Gtru05YgUghE5ABo4NdvdLenBYij8f3f7EJ8HPXc7aTrbmW86s98HcGU4ggiLB9iSLsWUmwQzLggOWWA6xA6cMNT_dHsjZzBxvY6mySHFWZh02r1oSaaROtMdobcjXby4xFCIRPeS9HnesiY7pyUotybTqfcegFVGzpqcton1DXkz80cjn9PRGmN-aYum2aa796_n3IfdHFyiVrYbDmBDxlWotAtNtyrsfKAfrMJWOv7Jk0MQntRjHaigKEFRjHSk0LX4fIGemQqIKJ0uQCOFWpfobiFnLyxGg3mUSDzU_K9SIC-aaQ0StNYDQUMmopwV-wieup1xu4dz_QXMLdtdYmEaoWOwhip6LIUShW1JFirIFrjc4IK5DSmJ6zBmqUARKigSWFQovCC4QbgIhSDHUIrnsTwBJG2TmczmTsNqUmYEgQoTUplyZLPBuMtqcF24wX_NaDb8tDwh1P_2QmtQLxzl519c4qs0q2pDtYbW4KZwzPryr8ZO_7T6Eiq98WPf798PHs5gW2vPZ9OPdSgtFyt5DpuJWF3kO_INyMXX1g
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgE68DjwFiMCAHTqBobdPXTmhslE2gCW0DcavSJJ16oJvW7v-T9MF4HhDnplZVO_bn2PkMcKE5nHCDBdgQrolNphNMGSc4pIHuEDtwwlCd6fZGzuDF7d4qmpzr8i5M1u1eliTzOw2KpSlOmzMeFjNIzOZIJTIu0SQ6UXUldbe3qk7FpIlX2_3xnffujGV0zgueto7VC0Vh80chn0PTEm9-KZFmkcfb-fc378J2ATpRO7eSPVgRcQ02OuWstxpsfaAlrMFa1hbKkn3gXaHaPVBJXYKiGCkPonL06Rw9U-koUdZ1gEYSzaboZi4mrzRGg2mUCDxUvLCCo240UbNJ0HJOCBpSHhVs2Qfw5N2OOz1czGXAzLDdFHNdCx2NWjIZMiR65LYhaCihXOAyjXHqWkIQ16HUkA4klBAlMEwucQRnGmE85JwcQiWexuIIkLB1qlObOZbRMqkWBNJ9CCnKES2LMpfW4bJUiT_L6Tf8LG0hpv_th9ahUSrNL3Zi4svwK3NGucasw1WppOXjX4Ud_2n1Oaw_dj3_oT-4P4FNNZI-b4psQCWdL8QprCZ8cVYY5xsd1eBt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Analysis+in+Compressor+Vanes+Using+Split+Bregman+Noise-Reduced+Digital+Industrial+Radiography&rft.jtitle=Russian+journal+of+nondestructive+testing&rft.au=Movafeghi%2C+Amir&rft.au=Yahaghi%2C+Effat&rft.au=Monem%2C+Sajad&rft.au=Nekouei%2C+Jahangir&rft.date=2023-05-01&rft.pub=Pleiades+Publishing&rft.issn=1061-8309&rft.eissn=1608-3385&rft.volume=59&rft.issue=5&rft.spage=622&rft.epage=632&rft_id=info:doi/10.1134%2FS1061830923600211&rft.externalDocID=10_1134_S1061830923600211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8309&client=summon